
TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.1Slides by Wes J. Lloyd

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 10/7

 Installing a Ubuntu Vir tual Machine on Apple M1 MacBooks:

 FREE

 https://mac.getutm.app/

 MACs have switched to using ARM-based CPUs

▪ Motivation: faster, less expensive than Intel-based CPUs

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

VIRTUAL MACHINE SUPPORT

ON APPLE M1

 15% off textbook code: TRICK15 (through Friday Oct 8)

 https://www.lulu.com/shop/remzi -arpaci-dusseau-and-andrea-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-

23779877.html?page=1&pageSize=4

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

TEXT BOOK COUPON

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p

 Thursday surveys: due ~ Mon @ 9p, closes 11:59p

October 7, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ONLINE DAILY FEEDBACK SURVEY

October 7, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.6

1 2

3 4

5 6

https://mac.getutm.app/
https://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-23779877.html?page=1&pageSize=4

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (28 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.00 ( - previous 5.64)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.89 ( - previous 5.38)

October 7, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

MATERIAL / PACE

 Trying to conceptualize the reason for vir tual addresses

(in Operating Systems)

▪ Security: if physical addresses were exposed, an attacker could

acquire the physical address and attempt to read, modify, write the

data

▪ Program Relocation: because users only see virtual addresses, the

OS can physically move programs to new locations without changing

any user pointers

▪ Memory defragmentation: OS can dynamically reorganize memory

for better efficiency. All user pointers are virtual. Virtual pointers still

work and are translated to new addresses

▪ Shared Libraries: Two programs can have a virtual address (pointer)

to a shared library that is mapped by the OS to a single physical

address. The sharing and library location are abstracted. Shared

libraries are important to save memory.

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many vir tual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Vir tual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft -developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it -runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

MOTIVATION FOR LINUX

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://www.ec2instances.info/

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

MOTIVATION FOR LINUX - 2

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://www.ec2instances.info/

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS

10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

OBJECTIVES – 10/7

7 8

9 10

11 12

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.ec2instances.info/
https://www.ec2instances.info/

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.3Slides by Wes J. Lloyd

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

OBJECTIVES – 10/7

 Please complete the Student Background Survey

https://forms.gle/BuJwXPwZpqf6cnTQ9

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

STUDENT BACKGROUND SURVEY

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Vir tual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

OBJECTIVES – 10/7

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/V2sg4iW1awvhFx4W8

Will close Thursday 10/7…

 VM requests will be sent to Stephen Rondeau for set up

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

VIRTUAL MACHINE SURVEY

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

OBJECTIVES – 10/7

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 10/7

13 14

15 16

17 18

https://forms.gle/BuJwXPwZpqf6cnTQ9
https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.4Slides by Wes J. Lloyd

CHAPTER 4:

PROCESSES

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.19

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

OBJECTIVES – 10/7

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

PROCESS STATES

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

CONTEXT SWITCH

19 20

21 22

23 24

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.5Slides by Wes J. Lloyd

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.25

 When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

QUESTION: WHEN TO CONTEXT SWITCH

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

OBJECTIVES – 10/7

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PROCESS DATA STRUCTURES

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

October 7, 2021 TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of
Washington - Tacoma

L3.29

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register

int ecx; // Called the counter register

int edx; // Called the data register

int esi; // Source index register

int edi; // Destination index register

int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

25 26

27 28

29 30

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.6Slides by Wes J. Lloyd

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 – 1852

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

LINUX: STRUCTURES

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 5.11)

 Process ID

 pid_t pid; LOC #857

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 volatile long state; LOC #666

 Process t ime s l ice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #710

▪ unsigned int time_slice; LOC #503

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

STRUCT TASK_STRUCT

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #779

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #874

 Child processes (as a list)

 struct list_head children; LOC #879

 Open f i les

 struct files_struct *files; LOC #981

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

STRUCT TASK_STRUCT - 2

 List of Linux data structures:

http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux -kernel-

development/9780768696974/cover.html

3rd edition is online (dated from 2010):

See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login

Linux Kernel Development, 3 rd edition

Robert Love

Addison-Wesley

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

LINUX STRUCTURES - 2

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

OBJECTIVES – 10/7

31 32

33 34

35 36

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.7Slides by Wes J. Lloyd

WE WILL RETURN AT

2:50PM

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.37

CHAPTER 5:

C PROCESS API

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.38

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

OBJECTIVES – 10/7

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

fork()

 p1.c

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)

printf("hello, I am parent of %d (pid:%d)\n",

rc, (int) getpid());

}

return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

37 38

39 40

41 42

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.8Slides by Wes J. Lloyd

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

:(){ :|: & };:

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

OBJECTIVES – 10/7

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

wait()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

 Deterministic ordering of execution

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

FORK EXAMPLE

43 44

45 46

47 48

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.9Slides by Wes J. Lloyd

 Questions from 10/5

 C Review Survey – Due Sunday Oct 10

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

OBJECTIVES – 10/7

 Supports running an external program by “transferring control”

 6 types: execl() , execlp() , execle() , execv(), execvp(), execvpe()

 execl() , execlp() , execle() : const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, . . argn)

 Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

EXEC() - 2

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p3.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

…

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

EXEC EXAMPLE - 2

…

execvp(myargs[0], myargs); // runs word count

printf("this shouldn’t print out");

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child: redirect standard output to a file

close(STDOUT_FILENO);

open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

…

49 50

51 52

53 54

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/7/2021

L3.10Slides by Wes J. Lloyd

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

// now exec "wc"...

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p4.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)

int wc = wait(NULL);

}

return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L3.57

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

October 7, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

QUESTION: PROCESS API

QUESTIONS

55 56

57 58

59

