
TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.1Slides by Wes J. Lloyd

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Operating Systems –
Three Easy Pieces & Processes

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 10/5

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, cutoff 11:59p

 Thursday surveys: due ~ Mon @ 9p, cutoff 11:59p

October 5, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

ONLINE DAILY FEEDBACK SURVEY

October 5, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.4

 Please classify your perspective on material covered in today’s

class (28 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.64 (spring 2021, 5.59)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.38 (spring 2021, 5.33)

October 5, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

MATERIAL / PACE

 How does vir tualization work?

▪ Two types of virtualization:

▪ Virtualization (1): as in abstraction to hide low-level details and
restrict access through interface(s) provided by the operating system

▪ Virtualization (2): as it virtual machine technology which emulates a
computer using a software program known as a hypervisor

▪ Oracle Vir tual Box is a software hypervisor for running vir tual machines
(VMs)

▪ In this course, we are primarily focused on the first type

 How the CPU transitions f rom one program to another?

▪ This is known as a “context switch”

▪ This generally requires swapping out program state data with
another programming and transferring control to the other program

▪ We will discuss further..

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK

1 2

3 4

5 6

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.2Slides by Wes J. Lloyd

 I don’t understand the point of virtual addresses and why the

OS translates vir tual addresses into physical addresses

▪ There are several motivations for virtualizing access to memory

▪ Security: another user or program should never obtain a physical

address to your program’s data. If they have a pointer to this

memory, then they could read and change it

▪ Flexibility: because all addresses are virtual, the operating system

can physically change the location of your data or entire program in

memory without any issues. Your program only works with virtual

addresses. Things can change behind the scenes without your

program knowing. This allows the OS to swap program out of

memory, rearrange memory, or do what ever is needed to keep

things running efficiently.

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 2

 Ubuntu is really s low, I had to download i t for a pr ior c lass and i t
made programming in C a lmost impossible, is there anything else I
can do?

 Natively, Ubuntu is of ten faster, requiring less memory and disk
space than MS Windows

 If Vir tual Box VM is running slow, consider increasing configured
resources (CPU cores, memory)

 Consider upgrading laptop memory

▪ Investigate if laptop is upgradable

▪ Investigate proper type of memory

▪ For example, upgrading from 12MB to 32MB was $129 Aug 2021 (now
$114) for HP Pavilion laptop and only took a few minutes using small
screwdriver

▪ Youtube videos may be available describing how to perform upgrades

 As instructor for fur ther help

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

FEEDBACK - 3

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

OBJECTIVES – 10/5

C REVIEW SURVEY

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.10

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

OBJECTIVES – 10/5

 Please complete the Student Background Survey

https://forms.gle/BuJwXPwZpqf6cnTQ9

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

STUDENT BACKGROUND SURVEY

7 8

9 10

11 12

https://forms.gle/BuJwXPwZpqf6cnTQ9

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.3Slides by Wes J. Lloyd

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Vir tual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

OBJECTIVES – 10/5

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/V2sg4iW1awvhFx4W8

Will close Thursday 10/7…

 VM requests will be sent to Stephen Rondeau for set up

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

VIRTUAL MACHINE SURVEY

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

OBJECTIVES – 10/5

What form of abstraction does the OS provide?

▪CPU

▪ Process and/or thread

▪Memory

▪ Address space

▪→ large array of bytes

▪ All programs see the same “size” of RAM

▪Disk

▪ Files

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

ABSTRACTIONS

Allow applications to reuse common facilities

Make different devices look the same

▪Easier to write common code to use devices

▪ Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

WHY ABSTRACTION?

What level of abstraction?

▪How much of the underlying hardware should be

exposed?

▪What if too much?

▪What if too little?

What are the correct abstractions?

▪Security concerns

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

ABSTRACTION CHALLENGES

13 14

15 16

17 18

https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.4Slides by Wes J. Lloyd

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

OBJECTIVES – 10/5

 Each running program gets its own “vir tual” representation of

the CPU

 Many programs seem to run at once

 Linux: “top” command shows

process list

 Windows: task manager

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

VIRTUALIZING THE CPU

 Simple Looping C Program

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second

17 printf("%s\n", str);

18 }

19 return 0;

20 }

 Runs forever, must Ctrl -C to halt…

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four instances
of our program seem to be running at the same time!

 & - run a job in the background

 fg – brings a job to the foreground

 bg – sends a job to the background

 CTRL-Z to suspend a job

 CTRL-C to kill a job

 “jobs” command – l ists running jobs

 “jobs –p” command – l ists running jobs by process ID

 top –d .2 top utility shows active running jobs like
the Windows task manager

 top –H –d .2 display all processes & threads

 top –H –p <pid> display all threads of a process

 htop alternative to top, shows CPU core graphs

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

MANAGING PROCESSES FROM THE CLI

19 20

21 22

23 24

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.5Slides by Wes J. Lloyd

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

OBJECTIVES – 10/5

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

▪ Read memory (load)

▪ Specify an address to read data from

▪Write memory (store)

▪ Specify data to write to an address

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

VIRTUALIZING MEMORY

 Program to read/write memory: (mem.c) (from ch. 2 pgs. 5-6)

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // a1: allocate some

memory

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the

address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }

 Output of mem.c (example from ch. 2 pgs. 5-6)

 int value stored at vir tual address 00200000

 program increments int value pointed to by p

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

VIRTUALIZING MEMORY - 3

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

 Mult iple instances of mem.c

 IN THE BOOK: (int*)p appears to have the same memory location

00200000

 Why does modifying the value of *p in program #1 (PID 24113), not

inter fere with the value of *p in program #2 (PID 24114) ?

▪ The OS has “virtualized” memory, and provides a “virtual” address

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...

This example no longer
works as advertised !

Ubuntu has been updated.

The ptr location is no
longer identical. This was
considered a security issue.

Key take-aways:

 Each process (program) has its own vir tual address space

 The OS maps virtual address spaces onto

physical memory

 A memory reference from one process can not affect the

address space of others.

➢ Isolation

 Physical memory, a shared resource, is managed by the OS

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

VIRTUAL MEMORY

25 26

27 28

29 30

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.6Slides by Wes J. Lloyd

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

OBJECTIVES – 10/5

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

▪ Stores data while power is present

▪When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

▪ I/O device(s): hard disk drive (HDD), solid state drive (SSD)

▪ File system(s): “catalog” data for storage and retrieval

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() requires page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

October 5, 2021

 To write to disk, OS must:

▪ Determine where on disk data should reside

▪ Perform sys calls to perform I/O:

▪ Read/write to file system (inode record)

▪ Read/write data to file

 OS provides fault tolerance for system crashes

▪ Journaling: Record disk operations in a journal for replay

▪ Copy-on-write: replicate shared data across multiple disks

- see ZFS filesystem

▪ Carefully order writes on disk (especially spindle drives)

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

PERSISTENCE - 3

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

OBJECTIVES – 10/5

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

CONCURRENCY

Linux htop (Ubuntu)
Windows 10 Task Manager

31 32

33 34

35 36

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.7Slides by Wes J. Lloyd

 Linux: 179 processes, 1089 threads (htop)

 Windows 10: 364 processes, 6011 threads (task mgr)

 OSes appear to run many programs at once, juggling

them

 Modern multi-threaded programs feature concurrent

threads and processes

 What is a key dif ference between a process and a thread?

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

CONCURRENCY

pthread.c

Listing continues …

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15 ...

pthread.c

Listing continues …

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

CONCURRENCY - 3

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }

pthread.c

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.41

Linux
“man”
page

example

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

CONCURRENCY - 4

 Command line parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o pthread pthread.c -Wall -pthread

prompt> ./pthread 1000

Initial value : 0

Final value : 2000

prompt> ./pthread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./pthread 100000

Initial value : 0

Final value : 137298 // what ???

37 38

39 40

41 42

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.8Slides by Wes J. Lloyd

 When loop value is large why do we not achieve 200,000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,

While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

CONCURRENCY - 5

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.44

 To perform parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while

sharing global data in memory

 B. Launch multiple processes to execute code in parallel

without sharing global data in memory

 C. Both A and B

 D. None of the above

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

PARALLEL PROGRAMMING

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

OBJECTIVES – 10/5

 ABSTRACTING THE HARDWARE

▪ Makes programming code easier to write

▪ Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE

▪ Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/O)

▪ Share resources fairly

▪ Attempt to tradeoff performance vs. fairness → consider
priority

 PROVIDE ISOLATION

▪ User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

▪ OS must not crash, 24/7 Up-time

▪ Poor user programs must not bring down the system:

Blue Screen

 Other Issues:

▪ Energy-efficiency

▪ Security (of data)

▪ Cloud: Virtual Machines

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

43 44

45 46

47 48

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.9Slides by Wes J. Lloyd

WE WILL RETURN AT

2:40PM

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.49

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

OBJECTIVES – 10/5

CHAPTER 4:

PROCESSES

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.51

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

VIRTUALIZING THE CPU

 Process comprises of:

▪Memory

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

PROCESS

A process is a running program.

 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl -c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl -z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

PROCESS API

49 50

51 52

53 54

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.10Slides by Wes J. Lloyd

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

PROCESS API: CREATE

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

PROCESS API: CREATE

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.57

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

OBJECTIVES – 10/5

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

PROCESS STATES

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

55 56

57 58

59 60

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.11Slides by Wes J. Lloyd

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

CONTEXT SWITCH

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

 Mileage can vary depending on system conditions, etc.

 See blog:

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-

make-context.html

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

CONTEXT SWITCH

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L2.64

 When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

QUESTION: WHEN TO CONTEXT SWITCH

 Questions from 9/30

 C Review Survey

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

OBJECTIVES – 10/5

61 62

63 64

65 66

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.12Slides by Wes J. Lloyd

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register

int ecx; // Called the counter register

int edx; // Called the data register

int esi; // Source index register

int edi; // Destination index register

int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 – 1852

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

LINUX: STRUCTURES

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 5.11)

 Process ID

 pid_t pid; LOC #857

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 volatile long state; LOC #666

 Process t ime s l ice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #710

▪ unsigned int time_slice; LOC #503

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

STRUCT TASK_STRUCT

67 68

69 70

71 72

TCSS 422 A – Fall 2021
School of Engineering and Technology

10/5/2021

L2.13Slides by Wes J. Lloyd

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #779

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #874

 Child processes (as a list)

 struct list_head children; LOC #879

 Open f i les

 struct files_struct *files; LOC #981

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

STRUCT TASK_STRUCT - 2

 List of Linux data structures:

http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux -kernel-

development/9780768696974/cover.html

3rd edition is online (dated from 2010):

See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login

Linux Kernel Development, 3 rd edition

Robert Love

Addison-Wesley

October 5, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L2.74

LINUX STRUCTURES - 2

QUESTIONS

73 74

75

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

