

5

4

FINAL EXAM - DEC 14TH

15

EXPAN	MOTIVATION FOR IDING THE ADDRESS SPACE	
Provide the il physical RAM	llusion of an address space larger than I	
 For a single p Convenience Ease of use 	process e	
 For multiple Large virtua many concu 	processes Il memory space supports running irrent processes	
December 9, 2021	TCSS422: Operating Systems [Fall 2021] School of Engineering and Technology, University of Washington - Tacoma	L18.19

Design considera	ations:		
SSDs 4x the time	of DRAM		
HDDs 80x the tim	e of DRAM		
Action	Latency (ns)	(μs)	
L1 cache reference	0.5ns		
L2 cache reference	7 ns		14x L1 cache
Mutex lock/unlock	25 ns		
Main memory reference	100 ns		20x L2 cache, 200x L1
Read 4K randomly from SSD*	150,000 ns	150 µs	~1GB/sec SSD
Read 1 MB sequentially from memor	y 250,000 ns	250 µs	
Read 1 MB sequentially from SSD*	1,000,000 ns	1,000 µs	1 ms ~1GB/sec SSD, 4X memory
Read 1 MB sequentially from disk	20,000,000 ns	20,000 µs	20 ms 80x memory, 20X SSD
Latency numbers ever	y programmer	should kr	10W

21

27

29

33

35

32

39

45

47

44

51

53

50

57

