TCSS 422 A - Fall 2021
School of Engineering and Technology

12/7/2021

TCSS 422: OPERATING SYSTEMS

Multi-Level Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

o) School of Engineering and Technology, University of Washington

OBJECTIVES - 12/7

|I Questions from 12/2 |
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules
= Final exam - December 14
= Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

u72

December 7, 2021

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

173

December 7, 2021

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o
Question 2 05pes

Piease rate the pace of today's class:

TCS$422: Computer Operating Systems [Fall 2021]

Decemberlz2023 School of Engineering and Technology, University of Washington - Tacoma L17.4

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (27 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.27 (T - previous 6.02)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.58 (T - previous 5.46)

TCS5422: Computer Operating Systems [Fall 2021]

December7, 2021 School of Engineering and Technology, University of Washington - Tacoma

u7s

FEEDBACK

= | have trouble understanding the math with byte sizes.
= >>> |t is good to review charts and patterns:
= 8 bits = 1 byte

= 16 bits = 2 bytes

= 32 bits = 4 bytes

= 64 bits = 8 bytes

= 1,024 bytes = 1 kilobyte (2710)

= 1,024 kilobytes = 1 megabyte (2720)

= 1,024 megabytes = 1 gigabyte (2730)

= 1,024 gigabytes = 1 terabyte (2740)

= 1,024 terrabytes = 1 petabyte (2250)

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

176

‘ December 7, 2021

Slides by Wes J. Lloyd

L17.1

TCSS 422 A — Fall 2021

School of

Engineering and Technology

FEEDBACK - 2

= For simplicity rounding is often acceptable:

= 1 kilobyte (2710) = 1,024 bytes > 1,000 bytes

= 1,024 kilobytes (2720) = 1 megabyte > 1,000,000 bytes
= 1,024 megabytes = 1 gigabyte (27230)—>1,000,000,000 bytes
= 1,024 gigabytes = 1 terabyte (2”°40)-1,000,000,000,000 bytes
= 1,024 terrabytes = 1 petabyte (2*50) - 1,000,000,000,000,000 bytes

TCS5422: Operating Systems [Fall 2021]

‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma.

w77

FEEDBACK - 3

= How many blts are required to Index the following amounts of
memory?

1. 1,024 bytes = 1 kilobyte (2710)

2. 1,024 kilobytes = 1 megabyte (2°20)

3. 1,024 megabytes = 1 gigabyte (2730)

4. 1,024 gigabytes = 1 terabyte (2"40)

5. 1,024 terrabytes = 1 petabyte (2”50)

TCSS422: Operating Systems [Fall 2021]

December7,2021 School of Engineering and Technology, University of Washington - Tacoma.

179

FEEDBACK - 5

= Assignment 2 Questions:
= In chapter 30, the book mentioned the two broken solutions
about using a single condition variable. They recommended
Ing tw ndltional variable locks In or: fix th
problem.
= Yes with the book there is an empty and fill signal for the bounded
buffer when working with multiple producers and multiple
consumers
= But on Thursday, you mentloned that It Is not necessary to add
more locks (conditions??) but it's up to us to decide.
= | wonder why It’'s not necessary and If there's any blg difference.
= For each shared b ded buffer in nt 2, there is only one
producer thread and one consumer thread
= Assignment 2 instead has many unique bounded buffer instances

TCS3422: Operating Systems [Fall 2021]

Db R School of Engineering and Technology, University of Washington - Tacoma

uza

12/7/2021

2|2 27 131072 2® [8589,934592 2% 1562,949 953,421,312
2[4 25 262,144 2% [17,179869,184 2% [1,125,899,906, 842,624
2|8 2¥ (524288 2% 34359738368 2% 12,251,799,813,685,248

2 |16 zﬂm 1,048,576 2% [68,719476,736 214,503,599 627,370 A9
ERED 2 12097,152 27 137438953472 2% | 9,007,199,254,740,992
N 22 (4194304 238 | 274877906944 2% 18,014,398,50.481,984
27 |8 22 18,388,608 27 |549,755,813,888 2% | 36,028,797,018,963,968
T 2 16777216 ‘z:; i 1,099,511,627,776 2% | 72157,594/037,927,936
P (512 [2F |35 27 (2199023255582 25 [144,115,188,075 835,872
EANE] 2% ez 08864 |2 4398046511104 2% 268,230 376,151,711,744
2 ams (27 [eaz7s |28 (8796093022208 2% | 576,460,752,303423488
22 Lame [2% 268435456 |2M (1759218644416 290 11,152,921, 504,606 846976
2P (g1 |2¥ [sesT0912 |25 3584372088802 290 2,305,843,009,213,693952
2M (16384 E:-hrl 107 7a 824 2% | 70,368,744,177 664 251 4,611,686018,427.387,904
25 2768 |2 2147483648 |27 |140,737,488,355,328 25 19,223,372 036,854,775,808
20 6553 [2% 4294967296 |2

281,474,976,710,656 ﬁ:lh }&446,7“,073,709,551 616

TCSS422: Operating Systems [Fall 2021]

Decembei 2021 School of Engineering and Technology, University of Washington - Tacoma L17.8

FEEDBACK - 4

= With paging, we divide an address space In fixed slzed pleces
(known as the page size)

=A inga puter ind memory using

1 kilobyte memory pages
= How many uni rer ired to man Index memory?
= 1 kilobyte (2710) of memory

= 1 page

= 1 megabyte (2720) of memory
= 1024 pages (2°10)
= 1 gigabyte (2730) of memory
= 1,048,576 pages (2"20)
= 1 terabyte (2°40) of memory
= 1,073,741,824 pages (2°30)
= 1 petabyte (2*50) of memory
= 1,099,511,627,776 pages (2°40)

TCSS422: Operating Systems [Fall 2021]

‘ December7,2021 School of Engineering and Technology, University of Washington - Tacoma

ur10

10

FEEDBACK - 6

= Is there more information on "pagemon”? I'm still a little bit
confused about what it does and why it is useful.
= Pagemon is an interactive tool for browsing memory of a process

= Are there different ways that we can test/identify for deadlock
1 lookin, h. ?
= Try running the program with small bounded buffer sizes
= Try running the program to generate a large number of primes
= Try running the program with minimal to no output to the screen
= Try running the program with no sleep or wait statements
= Try running the program using as many CPU cores as possible
on the virtual machine
The fewer the cores, the fewer the synchronization issues
1 core hides deadlock altogether
8 cores is better for testing than 4, than 2, etc.

TCS5422: Operating Systems [Fall 2021]

‘ COIEET T School of Engineering and Technology, University of Washington - Tacoma

ur12

11

Slides by Wes J. Lloyd

12

L17.2

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 12/7

= Questions from 12/2
|- Memory Segmentation Actlvity + s (avallable InC
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
= Final exam - Dec 14
= Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma. 1713

12/7/2021

OBJECTIVES - 12/7

= Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
= Final exam - Dec 14
= Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TC55422; Operating Systems [Fall 2021]
‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma u7.1a

13

OBJECTIVES - 12/7

= Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
|I Asslgnment 3: (Tutorlal) Intro to LInux Kernel Modules - Dec 11
= Final exam - Dec 14
® Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TC55422; Operating Systems [Fall 2021]
‘ December7,2021 School of Engineering and Technology, University of Washington - Tacoma. 7.1

14

ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

= Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

= Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures
= For example: Linux task_struct process data structure

= Assignment 3 is scored in the Quizzes / Activities /
Tutorials category

= Lowest two grades in this category are dropped

TC55422: Operating Systems [Fall 2021]
‘ December7,2021 School of Engineering and Technology, University of Washington - Tacoma 1718

15

OBJECTIVES - 12/7

® Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
| = Final exam - Dec 14 |
® Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Fall 2021]
‘ Db R School of Engineering and Technology, University of Washington - Tacoma w7

16

FINAL EXAM - DEC 14™

= Tuesday December 14 from 1:30 to 3:30 pm
= Final (100 points)
= SHORT: similar number of questions as the midterm
= 2-hours
= Focus on new content - since the midterm (~70% new, 30% before)

= Final Exam Review -
= Complete Memory Segmentation Activity
= Complete Quiz 4
= Practice Final Exam Questions - 2"d hour of Dec 9" class session
= Individual work
= 2 pages of notes (any sized paper), double sided
= Basic calculators allowed
= NO smartphones, laptop, book, Internet, group wowkr

TCS3422: Operating Systems [Fall 2021] 718
School of Engineering and Technology, University of Washington - Tacoma

‘ December 7, 2021

17

Slides by Wes J. Lloyd

18

L17.3

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 12/7
= Questions from 12/2
= Assignment 2 - Dec 6 (Closing Dec 10)

= Final exam - Dec 14

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17

| = Quiz 4 - Page Tables - Due Dec 13

= Chapter 20: Paging: Smaller Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCS5422: Operating Systems [Fall 2021]

l Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma.

1719

19

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Fall 2021]

B School of Engineering and Technology, University of Washington -

21

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Fall 2021]

l Db R School of Engineering and Technology, University of Washington - Tacoma

u7.23

12/7/2021

OBJECTIVES - 12/7

= Questions from 12/2

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 2 - Dec 6 (Closing Dec 10)

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17

= Final exam - Dec 14

= Quiz 4 - Page Tables - Due Dec 13

| = Chapter 20: Paging: Smaller Tables |

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Fall 2021)

l (Rl 2 School of Engineering and Technology, University of Washington - Tacoma

1720

20

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Fall 2021]

l Deccibenz2028 School of Engineering and Technology, University of Washington - Tacoma

ur22

22

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Fall 2021]

l CEEECAbETR School of Engineering and Technology, University of Washington - Tacoma

1724

23

Slides by Wes J. Lloyd

24

L17.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 12/7

= Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
= Final exam - Dec 14
= Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma. L7.25

25

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtusl Address g
code [.
L Ao -
. PFN valid prot present dirty
s 10 1 rx 1 [}
heap “ 1 - o - - -
s N . . . -
v
7 - o - - -
® 15 L[o 1 1
o 5
n
1 3 1| 1 1
stack. L] 23 1 w 1 1
it
— A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCS5422: Operating Systems [Fall 2021]
‘ December7)2020 School of Engineering and Technology, University of Washington - Tacoma w27

27

OBJECTIVES - 12/7

® Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
= Final exam - Dec 14
® Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
=Smaller TablesN-IeveI Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Fall 2021]
‘ Db R School of Engineering and Technology, University of Washington - Tacoma 12

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
;—H* 4 = 1MB per page table

= Memory requirement cut to %
= However pages are huge
= Internal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

TC55422; Operating Systems [Fall 2021]
‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma 17.26

26

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtusl Address
Space

PFN valid prot present dirty

Most of the page table is unused
and full of wasted space. (73%)

0
n
12 3 1 - 1 1
stack 1 23 1 . 1 1

— A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCSS422: Operating Systems [Fall 2021]
‘ Deccibenz2028 School of Engineering and Technology, University of Washington - Tacoma L1728

28

MULTI-LEVEL PAGE TABLES

Consider a page table:
32-bit addressing, 4KB pages
220 page table entries

Even if memory is sparsely populated the per process page
table requires:

2
)

Page table size =

* 4Byte — 4MByte

Often most of the 4MB per process page table is empty
Page table must be placed in 4MB contiguous block of RAM

MUST SAVE MEMORY!

29

Slides by Wes J. Lloyd

7CS5422: Operating Systems [Fall 2021]
‘ CEEECAbETR School of Engineering and Technology, University of Washington - Tacoma 1730

30

12/7/2021

L17.5

TCSS 422 A - Fall 2021
School of Engineering and Technology

12/7/2021

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

PETR [o PETR
3 P

H =
H 3
EREE =
& o
o " g
1w | w :
o B -
[g The Pege Diraciory [Page 1 of PT:Nat Allocated
[£ —
g L Te
] 5 Y
] = &]
Sl T =g
|
Linear (Left) And Multi-Level (Right) Page Tables
TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma 731

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PaTR | 0 PETR 200

o level page tabl
220 pages addressed with

two level-indexing

(page directory index, page table index)

Linear (Left) And Multi-Level (Right) Page Tables

31

MULTI-LEVEL PAGE TABLES - 3

= Advantages
= Only allocates page table space in proportion to the
address space actually used
= Can easily grab next free page to expand page table

Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space

= Complexity: multi-level schemes are more complex

TC55422; Operating Systems [Fall 2021]
December7)2020 School of Engineering and Technology, University of Washington - Tacoma 11733

= 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table is stored using pages too!

TCSS422: Operating Systems [Fall 2021]
‘ Db R School of Engineering and Technology, University of Washington -Tacoma 1738

35

Slides by Wes J. Lloyd

TCSS422: Operating Systems [Fall 2021]
‘ (Rl 2 ‘ School of Engineering and Technology, University of Washington - Tacoma w732
= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 = 256 (pages)
0000 000
a 16 KB
et byte
14 bit
VN
et
Page table entry B (256)
1111 111 A 16-KB Address Space With 64-byte Pages
[13[12[nfw[ofs]7[6[s[a]3a]2]1]0]
b Offsat
TCSS422: Operating Systems [Fall 2021]
‘ Deccibenz2028 T e N e W e A M 0D L1734

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. Page Directory Index |
IS0 o (s [7 [e [s[a[3]2]1]0]
‘ VPN Offset

14-bits Virtual address

7CS5422: Operating Systems [Fall 2021]
‘ CEEECAbETR School of Engineering and Technology, University of Washington - Tacoma 1736

36

L17.6

TCSS 422 A - Fall 2021 12/7/2021
School of Engineering and Technology

Multi-level page table sketch

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1st level)
= 4 bits page table index (PTI - 2" |evel)

| Page Directory Index | Page Toble Index
[13]12]11]10] o [6][s[a]3]2]1]0]

VPN Offset
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTl) - can address 16 pages

[oeemperram [T oo s (200 wastingon o
37 38
For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size
EXAMPLE - 3
= For thls example, how much space Is required to store as a
single-level page table with any number of PTEs?
= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)
= How much space is required for a two-level page table with
only 4 page table entrles (PTEs) ?
= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)
= Savings = using just 12.5% the space !!!
TCSS422: Oy ing Systems [Fall 202
‘ December7)2020 B e e e e 1739 Storage requirement: bytes required (single level)
39 40

How much space is required for a two-level page table with only 4 page table entries
(PTEs) ? (one page each for code stack heap data)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

Page directory = 16 entries x 4 bytes (1 x 64 byte page) = 100 sparse processes now require < 1MB for page tables

Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)

Store requirement = 128 bytes required (2 x 64 byte pages TCS5422: Operating Systems [Fall 2021]
Savings = 4 a (Vie pages) (it 2 School of Engineering and Technology, University of Washington - Tacoma e

41 42

Slides by Wes J. Lloyd L17.7

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 12/7

= Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
= Final exam - Dec 14
= Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma. L1743

43

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

D928 27262524232221201918171615141312111098 7654 3 21 0
[T T T AR

D T e —— — 1
Page Girectory Index :

VPN offset

Virtual address
Page size
VPN
Offset
Page entry per page

TCS5422: Operating Systems [Fall 2021] L1745
School of Engineering and Technology, University of Washington - Tacoma

log, 128 =7

‘ December 7, 2021

45

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index
:Sz::ne
_ZL bit
_Bbil
_128 PTES

Page entry per page

TCS3422: Operating Systems [Fall 2021] 47
School of Engineering and Technology, University of Washington - Tacoma

log, 128 =7

‘ December 7, 2021

47

Slides by Wes J. Lloyd

12/7/2021

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

302928 27262524232221 2019181716 1514131211209 8 76 54 3 21 0
Page Directory Index h > ;
VPN offset

Virtual address 30 bit
1512 byte
[21bit
[abit

| 128 pTEs

Page size
VPN
Offset
Page entry per page

TC55422; Operating Systems [Fall 2021]
‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma 7.4a

44

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (239=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Pagoming 2 WSS

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses

(512 bytes / 32 bytes)

Virtual address 0 bit
Page size 512 byte
VPN 2t6it
Offset Tobit
Page entry per page | 128 PTES log,128 = 7
[oemernom | o ey v s

46

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

1079 75 275575 24 2322 212019 18 1716 15 14 1 2 11105 8 7 6 5 4 3 21 0
< . e >

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

TCS3422: Operating Systems [Fall 2021] 748
School of Engineering and Technology, University of Washington - Tacoma

‘ December 7, 2021

48

L17.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

12/7/2021

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;

pte_t *pte;
struct page *page;
TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma L1749

ADDRESS TRANSLATION - 2

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad (*pgd))| forthe process, returns the PGD entry that
return 0; covers the requested address.

p4d = pd4d_offset(pgd, vpage); /o
if (p4d *pdd 4d_bad (*p4d p4d/pud/pmd_offset(:
if (p4d_none(*pdd) || p4d_bad(*pad)) Takes a vpage address and the

t 0;
retumn pgd/p4d/pud entry and returns the

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud bad(*pud)) Lrelevantpdd/pud/pmd.
return 0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad (*pmd))
return 0;

if (!(pte = pte_offset_map(pmd, vpage)))
return 0; pte_unmap()

if (!(page = pte_page (*pte)))
return 0;
physical_page_addr = page_to_phys (page)

release temporary kernel mapping
for the page table entry

pte_unmap (pte) ;
return physical_page_addr; // param to send back

TC55422; Operating Systems [Fall 2021]
‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma uz.s0

49

50

WE WILL RETURN AT
2:40PM

TCSS422: Operating Systems [Fall 2021]

B School of Engineering and Technology, University of Washington -

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page
= Which process virtual page (from process virtual address

space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages

= Hash table: can index memory and speed lookups

TC55422: Operating Systems [Fall 2021]
‘ Deccibenz2028 School of Engineering and Technology, University of Washington - Tacoma L1752

51

52

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

‘ T TCS5422: Operating Systems [Fall 2021] 753

School of Engineering and Technology, University of Washington - Tacoma

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TC55422: Operating Systems [Fall 2021]
‘ CEEECAbETR School of Engineering and Technology, University of Washington -Tacoma 17se

53

Slides by Wes J. Lloyd

54

TCSS 422 A - Fall 2021
School of Engineering and Technology

12/7/2021

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TC55422; Operating Systems [Fall 2021]
‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma 17.56

TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma L1755

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page

With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCS5422: Operating Systems [Fall 2021]
December7)2020 School of Engineering and Technology, University of Washington - Tacoma L1757

57

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Fall 2021

J]
BT A School of Engineering and Technology, University of Washington -

59

Slides by Wes J. Lloyd

56

OBJECTIVES - 12/7

= Questions from 12/2

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 2 - Dec 6 (Closing Dec 10)

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17

= Final exam - Dec 14

® Quiz 4 - Page Tables - Due Dec 13

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

| = Chapter 21,/22: Beyond Physical Memory |

= Swapping Mechanisms, Swapping Policies

TC55422: Operating Systems [Fall 2021]
‘ Deccibenz2028 School of Engineering and Technology, University of Washington - Tacoma L1758

58

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

VAN

/

Registers ",

,/ Cache N

AN

Main Memory \‘\

/" Mass Storage(hard disk, tape, etc.)

Memory Hierarchy in modern system

TCS3422: Operating Systems [Fall 2021] 1760
School of Engineering and Technology, University of Washington - Tacoma

‘ December 7, 2021

60

L17.10

TCSS 422 A - Fall 2021 12/7/2021
School of Engineering and Technology

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

LATENCY TIMES

= Provide the illusion of an address space larger than = Design considerations:
physical RAM =SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM
= For a single process Action Latency (ns) (1s)
O C . L1 cache reference 0.5ns5
onvenience L2 cache reference 7ns 14x L1 cache
= Ease of use Mutex lock/unlock 25ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from S5D* 150,000 ns 150 ps ~1GB/sec 88D
= For multiple processes Read 1 MB sequentially from memory 250,000 ns 250 ps
. . Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec SSD, 4X memary
= Large virtual memory space supports running Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps | 20 ms 80x memory, 20X SSD

many concurrent processes. . .
= Latency numbers every programmer should know

®= From: https://gist.github.com/jboner/2841832#file-latency-txt

TC55422; Operating Systems [Fall 2021]
(Rl 2 School of Engineering and Technology, University of Washington - Tacoma .62

TC55422; Operating Systems [Fall 2021]
Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma 1761

61 62

OBJECTIVES - 12/7 SWAP SPACE

- Quesiilens (e 12/2 = Disk space for storing memory pages
= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 2 - Dec 6 (Closing Dec 10)

= “Swap” them in and out of memory to disk as needed

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17 PEN D PFN 1 PPN 2 PFN 3
= Final exam - Dec 14 Physical | = poeg Proc 1 Proc 1 Prac 2

. Memory VPN 0] VPN 2] VPN 3] VPN 0]
® Quiz 4 - Page Tables - Due Dec 13

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
Swap Proc 0 Proc 0 [Free] Proc 1 Proc 1 Proc 3 Proc 2 Proc 3 ‘

= Chapter 21/22: Beyond Physical Memory Space | VPN 1) | VPN 2| WPN O | VPN | VPN O] | VPN L] | VPN 1)
SWappIngiM JSREERINERONCIES Physical Memory and Swap Space

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma. L1763 December7,2021 School of Engineering and Technology, University of Washington - Tacoma 7.64

Block0 Block1 Block2 Block3 Blockd BlockS Block 6 flkack 7

‘ December 7, 2021

63 64

SWAP SPACE - 2 SWAP SPACE - 3

= The size of the swap space can be seen using the Linux free = Swap space lives on a separate logical volume in Ubuntu Linux
command: “free -h” that is managed separately from the root file system

Wlloyd@dione:~$ free -h : PR i ” 5
el T AT / 9 iAo ® Check logical volumes with “sudo Ivdisplay” command:

Mer 116

= With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM

= See also “lvm lvs” command

TCS5422; Operating Systems [Fall 2021] TCS5422: Operating Systems [Fall 2021]
‘ Bzttt I School of Engineering and Technology, University of Washington - Tacoma 17 C=Rmbes School of Engineering and Technology, University of Washington - Tacoma e

65 66

Slides by Wes J. Lloyd L17.11

TCSS 422

A — Fall 2021

School of Engineering and Technology

PAGE LOCATION

= Memory pages are:
= Stored in memory
= Swapped to disk

= Present bit
=In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCS5422: Operating Systems [Fall 2021]

B School of Engineering and Technology, University of Washington - Tacoma

u7.67

67

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
=Threshold for when to swap pages to disk
=Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCS5422: Operating Systems [Fall 2021]

December7,2021 School of Engineering and Technology, University of Washington - Tacoma

u7.69

69

REPLACEMENT

POLICIES

TCSS422: Operating Systems [Fall 2021

J]
BT A School of Engineering and Technology, University of Washington -

12/7/2021

PAGE FAULT

= O0S steps in to handle the page fault
= Loading page from disk requires a free memory page

= Page-Fault Algorithm

1: PPN = FindFreePhysicalPage ()
2: (PFN == -1)
3: PFN = EvictPage ()
LH DiskRead (PTE.Diskaddr, pfn)
5: PTE.present =
LH PTE.PFN = PFN
T RetryInstruction()

68

OBJECTIVES - 12/7

= Questions from 12/2
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - Dec 6 (Closing Dec 10)
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - Dec 17
= Final exam - Dec 14
® Quiz 4 - Page Tables - Due Dec 13
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms| Swapping Policies

TCSS422: Operating Systems [Fall 2021]

‘ Deccibenz2028 School of Engineering and Technology, University of Washington - Tacoma

ur.70

70

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
= Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

| AMAT = G T + Pus o) |

Argument Meaning

Ty The cost of accessing memory (time)

Ty The cost of accessing disk (time)

Pyic__| The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)
= Consider Ty, = 100 ns, T, = 10ms

= Consider Py = .9 (90%), Piss = -1

= Consider Py, = .999 (99.9%), P, = .001

TCS5422: Operating Systems [Fall 2021]

‘ CEEECAbETR School of Engineering and Technology, University of Washington -Tacoma

71

Slides by

Wes J. Lloyd

ur.n

72

L17.12

TCSS 422 A - Fall 2021 12/7/2021
School of Engineering and Technology

OPTIMAL REPLACEMENT POLICY FIFO REPLACEMENT

= What if: = Queue based
=\Wecouldipredict theifuturei(..iwithiaimaklcalloracle) = Always replace the oldest element at the back of cache
= All future page accesses are known = Simple to implement

= Always replace the page in the cache used farthest in the future)) . .)
= Doesn’t consider importance... just arrival ordering

= Used for a comparison = Consider a 3-element empty cache with the following
= Provides a “best case” replacement policy page accesses:
= Consider a 3-element empty cache with the following page 01201303121

accesses: . i . .
Whatis the hit/miss ratio? e 1 (e IR/l Gy 4hits|
LRU incorporates history

01201303121 m = How is FIFO different than LRU?

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma 1773 (Rl 2 School of Engineering and Technology, University of Washington - Tacoma u7.74

73 74

RANDOM REPLACEMENT HISTORY-BASED POLICIES

= Pick a page at random to replace = LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again
= LRU requires constant reorganization of the cache

= Simple and fast implementation
= Performance depends on luck of random choices

01201303121 = Considers temporal locality (when pg was last accessed)
* 01201303121 What is the hit/miss ratio?
%” = LFU: Least frequently used m
b = Always replace page with the fewest # of accesses (front)
* l = Incorporates frequency of use - must track pg accesses
T, A s 6 = Consider frequency of page accesses
Random pm,m":?.'l". ::.; 10,000 Trials 01201303121 Hit/miss ratlo Is=6 hits
[oeemperrm |02 oo s (200 singon s s [oecemberron |50 e s 2080 st s s
75 76
L] L]
Consider a 3-element cache. With a FIFO Consider a 3-element cache. With an LRU
replacement policy, how many hits occur with the replacement policy, how many hits occur with the
following page access sequence: following page access sequence:
12013120213 12013120213
2 hits 2 hits
3 hits 3 hits
4 hits 4 hits
5 hits 5 hits
6 hits 6 hits
.I December7, 2024, TCSS422: Operating Systems LFa\\i0?1] : ” L177-. .. December7.2iaH TCSS422: Operating Systems [Fall 50?1] 7 u;..
77 78

Slides by Wes J. Lloyd L17.13

TCSS 422

A — Fall 2021

School of Engineering and Technology

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages
The No-Locality Workdoad

100%.

When the cache is

§ 0% — ot large enough to fit
£ - the entire workload,
0 — RAND it doesn’t matter
which policy you use.
20%
I

Cache Size (Blacks)

TCS5422: Operating Systems [Fall 2021]

Decsmberzi2021 School of Engineering and Technology, University of Washington - Tacoma

u7.79

79

WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Loaping-Sequential Worldosd

100% —

Random performs

o better than FIFO and
5 LRU for
2 e — T cache sizes < 50
] — LRy
- FIFO
o — RAND
o Algorithms should provide
“scan resistance”
P

Cache Size (Blocks)

TCSS422: Operating Systems [Fall 2021]

December7)2020 School of Engineering and Technology, University of Washington - Tacoma

u7.81

81

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages

= Times can be tracked with a list
= For cache eviction, we must scan an entire list

= Consider: 4GB memory system (232),
with 4KB pages (21?)

= This requires 22° comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

TCS3422: Operating Systems [Fall 2021]

December7, 2021 School of Engineering and Technology, University of Washington - Tacoma

17.83

12/7/2021

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80.20 Workioad

w| LRU is more likely
. to hold onto
2 ey hot pages

(recalls history)

Cache Size (Blocks)

TCSS422: Operating Systems [Fall 2021)

‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma

1780

80

® with small cache sizes, for the looping sequential "
workload, why do FIFO and LRU fail to provide cache
hits?

Cache hits in this scenario require consideration of
how frequently accessed memory is for cache
replacement

Memary accesses are unpredictable and too
random. Unpredictable accesses require a random
cache replacement policy for cache hits

Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching

Unlike Random cache replacement, both FIFO

and LRU fail to speculate memory accesses in
advance to improve caching

None of the above

ove comtent. X hely L

82

IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
mE0S setsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page
=Loops around
IF USE_BIT=1 set to USE_BIT = 0
IF USE_BIT=0 replace page

TCS5422: Operating Systems [Fall 2021]

CEEECAbETR School of Engineering and Technology, University of Washington - Tacoma

1784

83

Slides by

Wes J. Lloyd

84

L17.14

TCSS 422 A - Fall 2021
School of Engineering and Technology

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload

Hit Rate
B
#
a

Cache Size (Blocks)

TCS5422: Operating Systems [Fall 2021]

B School of Engineering and Technology, University of Washington - Tacoma

u7.8s

85

WHEN TO LOAD PAGES

= On demand - demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCS5422: Operating Systems [Fall 2021]

December7)2020 School of Engineering and Technology, University of Washington - Tacoma

L7.87

87

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCS5422: Operating Systems [Fall 2021]

Db R School of Engineering and Technology, University of Washington - Tacoma

u7.89

89

Slides by Wes J. Lloyd

12/7/2021

CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

= Clock algorithm should favor no cost eviction

TCSS422: Operating Systems [Fall 2021)

‘ (Rl 2 School of Engineering and Technology, University of Washington - Tacoma

1786

86

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

=Thrashing

=0Occurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

u78s

TCSS422: Operating Systems [Fall 2021]

‘ Deccibenz2028 School of Engineering and Technology, University of Washington - Tacoma

88

QUESTIONS

90

L17.15

