
TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.1Slides by Wes J. Lloyd

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Free Space Management,
Introduction to Paging,

Translation Lookaside Buffer

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OBJECTIVES – 11/30

1

2

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

November 30, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

ONLINE DAILY FEEDBACK SURVEY

November 30, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.4

3

4

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.29 (- previous 5.98)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.67 (- previous 5.41)

November 30, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

MATERIAL / PACE

 ?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK

5

6

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.4Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

OBJECTIVES – 11/30

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

OBJECTIVES – 11/30

7

8

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.5Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

OBJECTIVES – 11/30

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

OBJECTIVES – 11/30

9

10

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.6Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

OBJECTIVES – 11/30

CHAPTER 17: FREE

SPACE MANAGEMENT

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.12

11

12

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.7Slides by Wes J. Lloyd

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

OBJECTIVES – 5/18

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

FREE SPACE MANAGEMENT

13

14

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.8Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

FRAGMENTATION

15

16

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.9Slides by Wes J. Lloyd

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

ALLOCATION STRATEGY: SPLITTING

17

18

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.10Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

MEMORY HEADERS

19

20

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.11Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

MEMORY HEADERS - 3

21

22

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.12Slides by Wes J. Lloyd

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

THE FREE LIST

 Create and initialize free- list “heap”

 Heap layout:

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

FREE LIST - 2

23

24

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.13Slides by Wes J. Lloyd

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

FREE LIST: FREE() CALL

Free this
block

25

26

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.14Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

FREE LIST:

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

FREE LIST- FREE ALL CHUNKS

27

28

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.15Slides by Wes J. Lloyd

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

GROWING THE HEAP

Segmented heapSegmented heap

 Best fit

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst fit

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

MEMORY ALLOCATION STRATEGIES

29

30

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.16Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

EXAMPLES

 First f it

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next fit

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

MEMORY ALLOCATION STRATEGIES - 2

31

32

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.17Slides by Wes J. Lloyd

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.3
3

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

SEGREGATED LISTS

33

34

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.18Slides by Wes J. Lloyd

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

BUDDY ALLOCATION - 2

35

36

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.19Slides by Wes J. Lloyd

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.3
7

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.3
8

37

38

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.20Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

OBJECTIVES – 11/30

CHAPTER 18:

INTRODUCTION TO

PAGING

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.40

39

40

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.21Slides by Wes J. Lloyd

 Split up address space of process into f ixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page frames.

 Each process has a page table which translates virtual

addresses to physical addresses

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

ADVANTAGES OF PAGING

41

42

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.22Slides by Wes J. Lloyd

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

PAGING: EXAMPLE
Page Table:

VP0 → PF3

VP1 → PF7
VP2 → PF5
VP3 → PF2

 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

PAGING: ADDRESS TRANSLATION

Here program can have

just four pages…

43

44

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.23Slides by Wes J. Lloyd

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Virtual Page Number (VPN) to

a Physical Frame Number (PFN)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5

VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

PAGING DESIGN QUESTIONS

45

46

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.24Slides by Wes J. Lloyd

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

47

48

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.25Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this efficient?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

49

50

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.26Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

PAGE TABLE ENTRY

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been

accessed

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

PAGE TABLE ENTRY - 2

51

52

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.27Slides by Wes J. Lloyd

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5
VP3 → PF2

Stored in RAM →

53

54

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.28Slides by Wes J. Lloyd

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

COUNTING MEMORY ACCESSES

55

56

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.29Slides by Wes J. Lloyd

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.5
8

57

58

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.30Slides by Wes J. Lloyd

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.5
9

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.6
0

59

60

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.31Slides by Wes J. Lloyd

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.6
1

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.6
2

61

62

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.32Slides by Wes J. Lloyd

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

PAGING SYSTEM EXAMPLE

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

OBJECTIVES – 11/30

63

64

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.33Slides by Wes J. Lloyd

WE WILL RETURN AT

2:40PM

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.65

CHAPTER 19:

TRANSLATION

LOOKASIDE BUFFER

(TLB)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.66

65

66

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.34Slides by Wes J. Lloyd

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

TRANSLATION LOOKASIDE BUFFER

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for -loop

iterations

 Move lookups

from RAM to TLB

by caching page

table entries

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

TRANSLATION LOOKASIDE BUFFER - 2

67

68

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.35Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.69

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.70

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

69

70

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.36Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.71

OBJECTIVES – 11/30

 For: array based page table

 Hardware managed TLB

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

71

72

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.37Slides by Wes J. Lloyd

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.73

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to

populate the TLB… we then requery the TLB

 All address translations go through the TLB

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.74

TLB – ADDRESS TRANSLATION CACHE

73

74

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.38Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.75

OBJECTIVES – 11/30

 Questions from 5/25

 Assignment 2

 Activity – Memory Segmentation (available in Canvas)

 Tutorial 2 – Pthread, locks, conditions tutorial

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.76

OBJECTIVES – 5/25

75

76

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.39Slides by Wes J. Lloyd

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.77

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not

in the TLB?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.78

TLB EXAMPLE - 2

77

78

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.40Slides by Wes J. Lloyd

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.79

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache
(how much history can you store?)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.80

TLB EXAMPLE - 4

79

80

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.41Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.81

OBJECTIVES – 11/30

CHAPTER 20:

PAGING:

SMALLER TABLES

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L15.82

81

82

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.42Slides by Wes J. Lloyd

Consider array-based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.83

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.84

LINEAR PAGE TABLES - 2

83

84

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.43Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.85

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.86

OBJECTIVES – 11/30

85

86

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.44Slides by Wes J. Lloyd

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a

few variables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.87

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.88

PAGE TABLES: WASTED SPACE

Page Table

87

88

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.45Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.89

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.90

OBJECTIVES – 11/30

89

90

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.46Slides by Wes J. Lloyd

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page

table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.91

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.92

MULTI-LEVEL PAGE TABLES - 2

91

92

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.47Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.93

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

▪ Only allocates page table space in proportion to the

address space actually used

▪ Can easily grab next free page to expand page table

 Disadvantages

▪Multi-level page tables are an example of a time-space

tradeoff

▪ Sacrifice address translation time (now 2-level) for space

▪ Complexity: multi-level schemes are more complex

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.94

MULTI-LEVEL PAGE TABLES - 3

93

94

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.48Slides by Wes J. Lloyd

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.95

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64 -byte pages

= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table

entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)

= 256 total PTEs

 Key idea: the page table is stored using pages too!

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.96

EXAMPLE - 2

95

96

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.49Slides by Wes J. Lloyd

 Now, let’s split the page table into two:

▪ 8 bit VPN to map 256 pages

▪ 4 bits for page directory index (PDI – 1st level page table)

▪ 6 bits offset into 64-byte page

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.97

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

▪ We need one page directory entry (PDE)

▪ One page table Index (PTI) – can address 16 pages

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.98

PAGE TABLE INDEX

97

98

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.50Slides by Wes J. Lloyd

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 4 entries x 4 bytes (1 x 64 byte page)

 128 bytes required (2 x 64 byte pages)

▪ Savings = using just 12.5% the space !!!

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.99

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 2 20 pages

 Only 4 mapped pages

 Single level : 4 MB (we’ve done this before)

 Two level : (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.100

32-BIT EXAMPLE

99

100

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.51Slides by Wes J. Lloyd

 Questions from 11/23

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.101

OBJECTIVES – 11/30

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.102

MORE THAN TWO LEVELS

101

102

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.52Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.103

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.104

MORE THAN TWO LEVELS - 3

103

104

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.53Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.105

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.106

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

105

106

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.54Slides by Wes J. Lloyd

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4

entries on a 512-byte page? (let’s say 4 32 -bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.107

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct – process’s memory map struct

// vpage – virtual page address

// Define page struct pointers

pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.108

ADDRESS TRANSLATION CODE

107

108

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.55Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);

if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;

p4d = p4d_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))

return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;

if (!(pte = pte_offset_map(pmd, vpage)))

return 0;

if (!(page = pte_page(*pte)))

return 0;

physical_page_addr = page_to_phys(page);

pte_unmap(pte);

return physical_page_addr; // param to send back

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.109

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct

for the process, returns the PGD entry that

covers the requested address…

p4d/pud/pmd_offset():

Takes a vpage address and the

pgd/p4d/pud entry and returns the

relevant p4d/pud/pmd.

pte_unmap()

release temporary kernel mapping

for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

▪ Which process uses each page

▪ Which process virtual page (from process virtual address

space) maps to the physical page

 All processes share the same page table for memory mapping,

kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 2 20 pages

 Hash table: can index memory and speed lookups

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.110

INVERTED PAGE TABLES

109

110

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.56Slides by Wes J. Lloyd

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.111

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.

 HelloWorld.c requires virtual address translation for 4 pages:

▪ 1 – code page 1 – stack page

▪ 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.112

MULTI LEVEL PAGE TABLE EXAMPLE - 2

111

112

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.57Slides by Wes J. Lloyd

 Assume each page directory entry (PDE) and page table entry

(PTE) requires 4 bytes:

▪ 6 bits for the Page Directory Index (PDI)

▪ 6 bits for the Page Table Index (PTI)

▪ 12 offset bits

▪ 8 status bits

 (#8) How much total memory is required to index the

HelloWorld.c program using a two-level page table when we

only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page

Table…

 HINT: how many entries are in the PD and PT

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.113

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a

single page table (PT), if all of the slots of the page table (PT)

are in use, what is the total amount of memory a two -level

page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),

how much memory does the 2-level page table scheme

consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.114

MULTI LEVEL PAGE TABLE EXAMPLE - 4

113

114

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/30/2021

L15.58Slides by Wes J. Lloyd

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page

With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 → 3.125%

November 30, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.115

ANSWERS

QUESTIONS

115

116

