TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Free Space Management,
Introduction to Paging, :
Translation Lookaside Buffer ;-

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

November302021 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 11/30

| * Questions from 11,/23 |
m Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

November 30, 2021

Slides by Wes J. Lloyd L15.1

TCSS 422 A — Fall 2021

School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 11:59p

® Thursday surveys: due ~ Mon @ 11:59p

=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom

Syllabus « TCSS422- Online Daily Feedback Survey - 4/1

™ Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Nicriiccinne Niiiz N el sl crimrnar

TCSS422: Computer Operating Systems [Fall 2021]

L15..
School of Engineering and Technology, University of Washington - Tacoma 53

November 30, 2021

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

[©| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

[| Question 2 0.5 pts

Please rate the pace of today's class:

ol 2 3 4 5 6 7 8 9 10

slow Just Right Fast

TCSS422: Computer Operating Systems [Fall 2021]

Noxember (2024 School of Engineering and Technology, University of Washington - Tacoma L15.4

Slides by Wes J. Lloyd

11/30/2021

L15.2

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (29 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.29 (T - previous 5.98)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.67 (T - previous 5.41)

TCSS422: Computer Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.5

n?
i
TCSS422: Operating Systems [Fall 2021]
RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma L15.6

Slides by Wes J. Lloyd L15.3

TCSS 422 A - Fall 2021
School of Engineering a

nd Technology

OBJECTIVES - 11/30

® Questions from 11/23
|I Assignment 2 - Dec 3 |
® Quiz 3 - Synchronized Array - Dec 2

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
m Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.7

OBJECTIVES - 11/30

® Questions from 11/23
m Assignment 2 - Dec 3
|I Quiz 3 - Synchronized Array - Dec 2 |
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1158

November 30, 2021

Slides by Wes J. Lloyd

11/30/2021

L15.4

TCSS 422 A - Fall 2021
School of Engineering a

nd Technology

OBJECTIVES - 11/30

® Questions from 11/23
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
|I Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30 |
m Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.9

OBJECTIVES - 11/30

® Questions from 11/23
m Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
|l Assignment 3 (as a Tutorial) to be posted... |
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.10

November 30, 2021

10

Slides by Wes J. Lloyd

11/30/2021

L15.5

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

OBJECTIVES - 11/30

® Questions from 11/23
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
m Assignment 3 (as a Tutorial) to be posted...
| = Chapter 17: Free Space Management |
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.11

11

BRgs:- . a8
T AT

:": ."‘I '.‘JI ; .\’ fl

i
CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Fall 2021]

Sciembegu 12021 School of Engineering and Technology, University of Washington -

12

Slides by Wes J. Lloyd L15.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.13

13

FREE SPACE MANAGEMENT

® How should free space be managed, when satisfying
variable-sized requests?

® What strategies can be used to minimize fragme

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.14

14

Slides by Wes J. Lloyd

11/30/2021

L15.7

TCSS 422 A — Fall 2021

School of Engineering and Technology

FREE SPACE MANAGEMENT

® Management of memory using

® Only fixed-sized units

= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.15

15

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap:

0 10 20 30

= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.16

November 30, 2021

16

Slides by Wes J. Lloyd

11/30/2021

L15.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:

returns NULL
= Memory is externally fragmented - - Compaction can fix!

= Internal: Jost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Fall 2021]

L15.17

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

17

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: free | used | free |
0 10 20 30
. ddr:0 ddr:20

free list. head —» ;enflo ?_en:lo — NULL

m OS locates a free chunk to satisfy request

® Splits chunk into two, returns first chunk

| used | free |
10 20 21 30

free

30-byte heap: ‘
0

addr:0 addr:21
— NULL

free list. head —* 1...10 —® 1en:o

L15.18

TCSS422: Operating Systems [Fall 2021]
RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

18

Slides by Wes J. Lloyd

11/30/2021

L15.9

TCSS 422 A — Fall 2021

School of Engineering and Technology

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head len:10 Len:10 len:10

—* NULL

m Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
® Coalescing regroups chunks into contiguous chunk

addr:0

head len:30

— NULL

= Allocation can now proceed
® Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.19

19

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

® How does the OS know how much memory to free?

= Header block
= Small descriptive block of memory at start of chunk

:|» The header used by malloc library

ptr —>

The 20 bytes returned to caller

An Allocated Region Plus Header

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 30, 2021 115.20

20

Slides by Wes J. Lloyd

11/30/2021

L15.10

TCSS 422 A — Fall 2021

School of Engineering and Technology

MEMORY HEADERS - 2

—
hptr size: 20

magic: 1234567

ptr —>

The 20 bytes

typedef struct _ header t {
int size;
int magic;

} header t;

returned to caller

Specific Contents Of The Header

® Contains size
® Pointers: for faster memory access
® Magic number: integrity checking

A Simple Header

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.21

21

MEMORY HEADERS - 3

= Size of memory chunk is:
® Header size + user malloc size
= N bytes + sizeof(header)

m Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (void *)ptr - sizeof (header_t);:

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.22

22

Slides by Wes J. Lloyd

11/30/2021

L15.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

THE FREE LIST

® Simple free list struct

type

Y

} nodet t;

struct _ node_t {
int size;
struct _ node t *next;

= Use mmap to creat

e free list

= 4kb heap, 4 byte header, one contiguous free chunk

head-»size
head->next

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap (NULL, 409&, PROT_READ|PROT_WRITE,

MAP ANON|MAP_ PRIVATE, -1,

4096 - sizeof(node t):
NULL;

0y

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

23

FREE LIST - 2

® Create and initialize free-list “heap”

node t *head

// mmap () returns a p

ointer to a chunk of free space
= mmap (NULL, 4096, PROT_READ|PROT WRITE,
MAP ANON|MAP_ PRIVATE, -1,

0):

head->»size = 4096 - sizeof(node t);
head-»next = NULL;
= Heap layout:
[virtual address: 16KB]
. header: size field
size: 4088
head —>»| next 0 | header: next field(NULL is 0)

e the rest of the 4KB chunk

[

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

24

Slides by Wes J. Lloyd

11/30/2021

L15.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

Slides by Wes J.

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 pbytes for size, 4 bytes for magic number
= Split the heap - header goes with each block U

A 4KB Heap With One Free Chunk A Heap : After One Allocation :
head ——> —
size: 4088 Stz 100
magic: 1234567
ptr —> 1
the rest of FI.rSt--b-IOCk the 100 bytes now allocated
the 4KB chunk is used
head — E
size: 3980
next: 0
the free 3980 byte chunk
TCSS422: Operating Systems [Fall 2021]
November 30, 2021 School of Engineering and Technology, University of Washington - Tacoma L15.25

25

FREE LIST: FREE() CALL

® Addresses of chunks

size: 100 [virtual address: 16KB]
8 bytes header { magic: 1234567

= Start=16384 100 bytes still allocated

+ 108 (end of 15t chunk) size. 100
ic: 1234567
+ 108 (end of 2" chunk) sptr — 2
Free this } 100 bytes still allocated

+ 108 (end of 3rd Chunk) block (but about to be freed)
= 16708 size: 100

magic: 1234567

100 bytes still allocated

head size: 3764
next: 0
The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.26

26

Lioyd

11/30/2021

L15.13

TCSS 422 A - Fall 2021
School of Engineering and Technology

FREE LIST

= Free(sptr)
® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

FREE() CHUNK #2

size: 100
magic: 1234567

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of
memory)

= addr - sizeof(node_t)

® Actual start of chunk #2

head size: 100
: 16708
= Free chunk #2 - sptr sptr —> et
Block
= Sptr = 16500 Now Free
size: 100

magic: 1234567

100 bytes still allocated

School of Engineering and Technology, University of Washington - Tacoma

size: 3764
= 16492 next: 0
The free 3764-byte chunk
November 30, 2021 TCSS422: Operating Systems [Fall 2021] 115.27

27

= Now free remaining chunks:

o size: 100
" Free(16392) T
= Free(16608)
size: 100
= Walk back 8 bytes for actual next. 16708
start of chunk
head = e 1m0
= External fragmentation next 16384
® Free chunk pointers
out of order
size: 3764
= Coalescing of next i L
pointers is needed
L

FREE LIST- FREE ALL CHUNKS

[virtual address: 16KB]

—

(now free)

-— |

(now free)

(now free)

—

The free 3764-byte chunk

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.28

28

Slides by Wes J. Lloyd

11/30/2021

L15.14

TCSS 422 A — Fall 2021

School of Engineering and Technology

GROWING THE HEAP

m Start with small sized heap
® Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
- l break sbrk() s
break— 7 . _‘ (not in use)
(not in use) AN
S
Address Space Address Space Heap

Physical Memory

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.29

29

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.30

30

Slides by Wes J. Lloyd

11/30/2021

L15.15

TCSS 422 A — Fall 2021

11/30/2021
School of Engineering and Technology

EXAMPLES

m Allocation request for 15 bytes

head —» 10 ——> 30 ——> 20 ——> NULL

® Result of Best Fit

head —> 10 —» 30 —> 3 —> NULL

® Result of Worst Fit

head —> 10 ——> 15 ——> 20 ——> NULL

TCSS422: Operating Systems [Fall 2021]
November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.31 |

31

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit

= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.32

32

Slides by Wes J. Lloyd L15.16

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

Which memory allocation strategy is more likely to
distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit
Worst Fit
First Fit

None of the above

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

33

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

® |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1534

November 30, 2021

34

Slides by Wes J. Lloyd L15.17

TCSS 422 A — Fall 2021

School of Engineering and Technology

BUDDY ALLOCATION

= Binary buddy allocation
= Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small...

® Consider a 7KB request

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

64KB free space for 7KB request

November 30, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.35

35

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

® Coalescing is simple

= Two adjacent blocks are promoted up

November 30, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.36

36

Slides by Wes J. Lloyd

11/30/2021

L15.18

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

.ﬁ computer system manages program memory using'.
three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation

Internal fragmentation

Coalescing
Splitting
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
37
A request is made to store 1 byte. For this scenario,
which memory allocation strategy will always locate
memory the fastest?
Best fit
Worst fit
Next fit
None of the above
All of the above
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
38

Slides by Wes J. Lloyd L15.19

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

OBJECTIVES - 11/30

® Questions from 11/23
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
m Assignment 3 (as a Tutorial) to be posted...
® Chapter 17: Free Space Management
|I Chapter 18: Introduction to Paging |
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.39

39

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Fall 2021]

Sciembegu 12021 School of Engineering and Technology, University of Washington -

40

Slides by Wes J. Lloyd L15.20

TCSS 422 A - Fall 2021
School of Engineering and Technology

= Split up address space of process into fixed sized pieces

called pages

suffers from significant fragmentation

called page frames.

addresses to physical addresses

= Alternative to variable sized pieces (Segmentation) which

= Physical memory is split up into an array of fixed-size slots

= Each process has a page table which translates virtual

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.41

41

ADVANTAGES OF PAGING

= Flexibility

Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.42

42

Slides by Wes J. Lloyd

11/30/2021

L15.21

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

P Table:
PAGING: EXAMPLE [NEEY

VP1 > PF7
VP2 > PF5
= Consider a 128 byte (27) address space VP3 - PF2

with 16-byte (24) pages 0
page frame 0 of
" reserved for OS physical memory
® Consider a 64-byte (26) (unused) page frame 1

program address space oage 3 of AS | page frame 2

page 0 of AS page frame 3

0 64
(page 0 of (unused) page frame 4

16 the address space) 80
(page 1) page 2 of AS | page frame 5

32 96
(page 2) (unused) page frame 6

48 112
(page 3) page 1 of AS | page frame7

64 128

A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

TCSS422: Operating Systems [Fall 2021]

November 30, 2021 School of Engineering and Technology, University of Washington - Tacoma L15.43 |

43

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)

VPN offset

i 1T 1

Va5 | Vad | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes (24),
Program Address Space: 64-bytes (2°)

VPN offset
)] Here program can have

Jjust four pages...

0 1 0 1 0 1

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.44

44

Slides by Wes J. Lloyd L15.22

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (26) program address space (4 pages—>2?)
= Stored in 128-byte (27) physical memory (8 frames—>23)

B VPN offset
m Offset is preserved ‘ ‘

= 4 bits indexes any byte Virtual
= Page size is 16 bytes (24) Address ‘ ° ‘ : ‘ ° ‘ " ‘ ° ‘ "
= Page table translates a v

Virtual Page Number (VPN) to Address

a Physical Frame Number (PFN) Translation
Page Table: 1 L Jr
VPO - PF3 Physical
VP1 > PF7 e NI E
VP2 - PF5 0 ‘ T ‘ |
VP3 > PF2 PFN offset

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.45

45

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?

® (2) What are the typical contents of the page table?

® (3) How big are page tables?

E (4) Does paging make the system too slow?

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.46

46

Slides by Wes J. Lloyd L15.23

TCSS 422 A — Fall 2021

School of Engineering and Technology

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.47

47

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
. . VPN,

= Each entry requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPN,048576

= How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.48

November 30, 2021

48

Slides by Wes J. Lloyd

11/30/2021

L15.24

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

m |s this efficient?

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.49

49

(2) WHAT’'S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
humbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

BB RBHTHX5ABR2210191817161514B31211109 876543210
[[} v
PFN o|g|o|<|8(5|4E|~

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.50

November 30, 2021

50

Slides by Wes J. Lloyd L15.25

TCSS 422 A — Fall 2021

School of Engineering and Technology

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

BB RBHTHX5ABR2210191817161514B31211109 876543210
[[} v
PFN o|g|o|<|8(5|4E|~

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.51

51

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been
accessed

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 30, 2021 115.52

52

Slides by Wes J. Lloyd

11/30/2021

L15.26

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

® Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.53

53

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

® Translation

= [ssue #1: Starting location of the page table is

heeded
= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP13 PF7
: VP2 > PF5
Stored in RAM > VP3 > PF2

= |ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 30, 2021

L15.54

54

Slides by Wes J. Lloyd L15.27

TCSS 422 A — Fall 2021

School of Engineering and Technology

PAGING MEMORY ACCESS

1. // Extract the VPN from the virtual address
2 VPN = (virtualAddress & VPN_MASK) >> SHIFT
3.
4. // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // Check if process can access the page
11. if (PTE.Valid == False)
12 RaiseException(SEGMENTATION_FAULT)
13. else if (CanAccess(PTE.ProtectBits) == False)
14. RaiseException(PROTECTION_FAULT)
15. else
16. // Access is OK: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

November 30, 2021 gf:zzlzgf g:geifetler:'ignsgyas:\edn;gﬂIolzggzy%]University of Washington - Tacoma L15.55

55

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];

- (1= 07 1 < 1000; i++)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
01030 jne 0xl024

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

56

Slides by Wes J. Lloyd

11/30/2021

L15.28

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

; Page Table[39]
® | ocations:

= Page table o o o o o 1 ¥
= Array Page Table[1] 1124 3
= Code \ Foe 2

= 50 accesses 2 40100 . IR
ES : g

for 5 loop & 40050 : . - o2s 3
iterations * s0000 1—m B B u o <
E k

Memory Access

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.57

57

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2732 /2720 =2/12 pages

2732 /2712 = 2720 pages

2A32 /2716 =216 pages

21732 [278 = 2124 pages

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

58

Slides by Wes J. Lloyd L15.29

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

For the 4GB computer example, how many bits are
required for the VPN?

24 VPN bits (indexes
2724 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

TCSS422: Operating Systems [Fall 2021]
.. Novernber 30203 presentatiorgi s e FEFANMERIAHAAL BGRSANFSSiEy SSTerTaethhRiBsh POTUERT2PP “5-'.

59

For the 4GB computer example, how many bits are
available for page status bits?

32-12 VPN bits
=20 status bits

32 -24 VPN bits
= 8 status bits

32- 16 VPN bits
= 16 status bits

32-20VPN bits
= 12 status bits

None of the
above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

60

Slides by Wes J. Lloyd L15.30

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

For the 4GB computer, how much space does this
page table require? (number of page table entries x
size of page table entry)

2720 entries x 4b =4 MB
2712 entries x4b =16 KB
2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

TCSS422: Operating Systems [Fall 2021]
.. Novernber 30203 presentatiorgi s e FEFANMERIAHAAL BGRSANFSSiEy SSTerTaethhRiBsh POTUERT2PP L15 ..

61

For the 4GB computer, how many page tables (for
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB =65,536
4GB /64 MB =256
4GB /256 KB = 16,384
4GB /4MB=1,024

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

62

Slides by Wes J. Lloyd L15.31

TCSS 422 A — Fall 2021

School of Engineering and Technology

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Fall 2021]

L15.
School of Engineering and Technology, University of Washington - Tacoma 563

November 30, 2021

63

OBJECTIVES - 11/30

® Questions from 11/23
m Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
|- Chapter 19: Translation Lookaside Buffer (TLB)|
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1564

November 30, 2021

64

Slides by Wes J. Lloyd

11/30/2021

L15.32

TCSS 422 A — Fall 2021

School of Engineering and Technology

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington -

CHAPTER 19:
TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Fall 2021]

Rlckenbegs (2028 School of Engineering and Technology, University of Washington -

66

Slides by Wes J. Lloyd

11/30/2021

L15.33

TCSS 422 A - Fall 2021
School of Engineering and Technology

TRANS

LATION LOOKASIDE BUFFER

= Legacy name...

m Better name, “Address Translation Cache”

ETLB is an on CPU cache of address translations
=virtual - physical memory

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

67

= Goal:

to the page
tables

= Example:

iterations

= Move lookups

table entries

50 RAM accesses
for first 5 for-loop

from RAM to TLB
by caching page

Page Table[39]

\ 1224
Reduce access o o o o

Page Table[1]

TRANSLATION LOOKASIDE BUFFER - 2

Code(vi)

Memory Access

Page Table(PA)

Array(PA)

Code(Pa)

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

68

Slides by Wes J. Lloyd

11/30/2021

L15.34

TCSS 422 A — Fall 2021

11/30/2021
School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

®m Address translation cache

L6 TLB Hit

. i .
Logical Physical
Address TLB Address

popular v to p ’ ‘lr
Page 0

Page Table J
. Page 1
all v to p entries

Address Translation with MMU .
Physical Memory

TCSS422: Operating Systems [Fall 2021]
November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.69

69

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

® Address translation cache

1 7ig (T I
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

Fea

:

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.70

70

Slides by Wes J. Lloyd L15.35

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 11/30

® Questions from 11/23
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2

m Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
| = TLB Algorithm| Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

TCSS422: Operating Systems [Fall 2021]

| November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.71

71

TLB BASIC ALGORITHM

® For: array based page table
= Hardware managed TLB

»
»

: VPN = (VirtualaAddress & VPN _MASK) >> SHIFT
: (Success , TlbEntry) = TLB Lookup (VPN)
if(Success == True){ // TLE Hit

1f (CanAccess (T1bEntry.ProtectBits) == True){

»PhysAddr»(leEntry.PFN << SHIFT) | Offset

1
2
3
4
5: Offset = VirtualAddress & OFFSET_MASK
3
7 AccessMemory (PhysAddr)

8

}else RaiseException (PROTECTION ERROR)

| Generate the physical address to access memory |

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

| November 30, 2021

L15.72

72

Slides by Wes J. Lloyd

11/30/2021

L15.36

TCSS 422 A - Fall 2021
School of Engineering and Technology

TLB BASIC ALGORITHM - 2

School of Engineering and Technology, University of Washington - Tacoma

11: else{ //TLB Miss

12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: » PTE = AccessMemory (PTEAddr)

14: (..) // Check for, and raise exceptions..

15:

16: TLB_ Insert(VEN , PTE.PFN , PTE.ProtectBits)

17: RetryInstruction ()

18: }

19:}

| Retry the instruction... (requery the TLB)
| November 30, 2021 TCSS422: Operating Systems [Fall 2021] 115.73

73

= Key detail:

populate the TLB... we then requery the TLB

TLB - ADDRESS TRANSLATION CACHE

= All address translations go through the TLB

® For a TLB miss, we first access the page table in RAM to

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.74

74

Slides by Wes J. Lloyd

11/30/2021

L15.37

TCSS 422 A — Fall 2021

School of Engineering and Technology

OBJECTIVES - 11/30

® Questions from 11/23
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
m Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm,| Hit-to-Miss Ratios |
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.75

75

OBJECTIVES - 5/25

® Questions from 5/25
® Assignment 2
® Activity - Memory Segmentation (available in Canvas)
® Tutorial 2 - Pthread, locks, conditions tutorial
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm| Hit-to-Miss Ratios |
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.76

November 30, 2021

76

Slides by Wes J. Lloyd

11/30/2021

L15.38

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

TLB EXAMPLE

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN - 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
= Example: .

VPN = 06 al0] | af] | a[21
= Program address space: 256-byte ven - o7 Tomn o 1 om Tar
= Addressable using 8 total bits (28) VEN = 08 | o) | apE) | am9)

= 4 bits for the VPN (16 total pages) VPN =08
VPN = 10

= Page size: 16 bytes e
VPN = 12

= Offset is addressable using 4-bits VPN < 13
VPN = 14

m Store an array: of (10) 4-byte integers VPN - 15

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.77

77

TLB EXAMPLE - 2

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN - 00
2: sum+=a[i]; VPN = 01
3: } VPN =03
. VPN = 04
® Consider the code above: VPN = 05
. . VPN = 06 a[o] | am | a2
= |nitially the TLB does not know where al] is vew - 07 [Tag | =t | = | =@l
= Consider the accesses: VN =08 | am | e | e
VPN = 09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9] VPN = 11
= How many pages are accessed? v
VPN =13
= What happens when accessing a page not VPN - 14
in the TLB? VPN = 15

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.78

November 30, 2021

78

Slides by Wes J. Lloyd L15.39

TCSS 422 A - Fall 2021
School of Engineering and Technology

TLB EXAMPLE - 3

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN = 00
2: sum+=al[i]; VPN = 01
3: 1 VPN = 03
VPN = 04
VPN = 05
= For the accesses: a[0], a[1], a[2], a[3], a[4],
VPN = 06 al0] | af] | a[21
U a[5]7 a[6], a[7]v 3[8]7 a[9] VPN =07 | 23] | al4] | a[s] | al6]
VPN =08 | a7 | afg] | a[9)
) VPN = 09
= How many are hits? VPN - 10
= How many are misses? VPN - 11
VPN = 12
= What is the hit rate? (%) N - 13
= 70% (3 misses one for each VP, 7 hits) VPN - 14
VPN = 15
TCSS422: Operating Systems [Fall 2021]
November 30, 2021 School of Engineering and Technology, University of Washington - Tacoma L15.79

79

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VEN < 00
2: sum+=a[i]; VPN = 01
3: 1 VPN =03
VPN = 04
. . VPN =05
= What factors affect the hit/miss rate? -
= afo] | a | a2
= Page size VPN =07 | o] | ap4] | &[5 | ale)
. VPN =08 | al7] | alg] | al9l
= Data/Access locality (how is data accessed?) VPN - 09
Sequential array access vs. random array access V-1
. VPN = 11
* Temporal locality -
= Size of the TLB cache ven - 13
(how much history can you store?) VeN =14
VPN =15
TCSS422: Operating Systems [Fall 2021]
RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma | L1580

80

Slides by Wes J. Lloyd

11/30/2021

L15.40

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 11/30

® Questions from 11/23
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
m Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
|I Chapter 20: Paging: Smaller Tables |
= Smaller TablesTulti-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

115.81
School of Engineering and Technology, University of Washington - Tacoma 58

| November 30, 2021

81

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington -

November 30, 2021

82

Slides by Wes J. Lloyd

11/30/2021

L15.41

TCSS 422 A — Fall 2021

School of Engineering and Technology

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.83

83

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 229 translations
= 1,048,576 pages per process @ 4 bytes/page
m Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.84

84

Slides by Wes J. Lloyd

11/30/2021

L15.42

TCSS 422 A - Fall 2021
School of Engineering and Technology

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.85

85

OBJECTIVES - 11/30

® Questions from 11/23
m Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
I- Smaller Tables,|Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.86

| November 30, 2021

86

Slides by Wes J. Lloyd

11/30/2021

L15.43

TCSS 422 A - Fall 2021
School of Engineering and Technology

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

® Memory requirement cut to ¥
= However pages are huge
® Internal fragmentation results

few variables

PAGING: USE LARGER PAGES

32
;T; x4 =1MB per page table

= 16KB page(s) allocated for small programs with only a

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.87

87

® Process: 16KB Address Space w/ 1KB pages

PAGE TABLES: WASTED SPACE

A 16KB Address Space with 1KB Pages

Page Table Physical Memory
Virtual Address
Space
code 0.
1 \Allucate_‘ . .
. N/ PFN valid prot present dirty
3 N 10 1 r-x 1 0
AN
h /
eap ;\ / 0
/ 0
3 \ . - -
7)
[/ \ 15 1 rw- 1 1
9 :
o/
n |/ 0 - -
12 3 1 rw- 1 1
stack 13 23 1 rw- 1 1
-
A Page Table For 16KB Address Space

November 30, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.88

88

Slides by Wes J. Lloyd

11/30/2021

L15.44

TCSS 422 A - Fall 2021
School of Engineering and Technology

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address
Space

code

0. 4
1 Allocate |

PFN valid prot present dirty

2

heap Most of the page table is unused
and full of wasted space. (73%)

9 f
w /
n o/
12/ 3 1 rw- 1 1
stack 13/ 23 1 rw- 1 1
e

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Fall 2021]

L15.
School of Engineering and Technology, University of Washington - Tacoma 589

November 30, 2021

89

OBJECTIVES - 11/30

® Questions from 11/23
m Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables| Multi-level Page Tablesl N-level Page Tables

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.90

90

Slides by Wes J. Lloyd

11/30/2021

L15.45

TCSS 422 A — Fall 2021

School of Engineering and Technology

MULTI-LEVEL PAGE TABLES

32
Page table size = % + 4Byte = 4MByte

® Consider a page table:
m 32-bit addressing, 4KB pages
m 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

= MUST SAVE MEMORY!

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.91

91

MULTI-LEVEL PAGE TABLES - 2

Linear Page Table

15

= Add level of indirection, the “page directory”
Multi-level Page Table

1"

200
PEN
00 | ———>

rw

86

MEEE

w

15

38 PFN 2 235
S = 3 T & PN
1 12
z ™ 5 - 1 1| n 12
3 o
™ g 8 |o 1| w 13 b=y
o - R z S I
& T |o of - - z
1] w 100 o &
1| 203 1| rw 100
ol -
— "
ol - Q The Page Directory [Page 1 of PT:Not Allocated]
z _
o - i
&
ol -
0| -
S
0| - - S 3
1| rw 86 o g
1 a

Linear (Left) And Multi-Level (Right) Page Tables

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.92

92

Slides by Wes J. Lloyd

11/30/2021

L15.46

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

pera

]

Two level page table:
220 pages addressed with

two level-indexing

3 0
]
z 0
&
1
1

PFN204

w 86
w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Fall 2021]

L15.
School of Engineering and Technology, University of Washington - Tacoma 593

November 30, 2021

93

MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.94

94

Slides by Wes J. Lloyd L15.47

TCSS 422 A — Fall 2021

School of Engineering and Technology

0000 000

code

0000 0001

code

(free)

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
m 214 (address space) / 2¢ (page size) = 28 = 256 (pages)

(free)

heap

heap

(free)

(free)

stack

1111 1117

stack

Address space 16 KB
Page size 64 byte
Virtual address 14 bit
VPN 8 bit
Offset 6 bit
Page table entry 28(256)

A 16-KB Address Space With 64-byte Pages

13[12]11]10] 9876

slaf3[2]1]0]

Offset

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.95

95

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= Key idea: the page table is stored using pages too!

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.96

96

Slides by Wes J. Lloyd

11/30/2021

L15.48

TCSS 422 A — Fall 2021

School of Engineering and Technology

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 1st level page table)
= 6 bits offset into 64-byte page

Page Directory Index |

13[12[12]0] 9|87 |6]5]a]3]2]1]0]
VPN ‘ Offset k
14-bits Virtual address
TCSS422: Operating Systems [Fall 2021]
November 30, 2021 School of Engineering and Technology, University of Washington - Tacoma L15.97

97

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1st level)
= 4 bits page table index (PTI - 2"d |evel)

. Page Directory Index , Page Table Index

13 10’\' 9

12

11

gl7]6[s[al3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.98

November 30, 2021

98

Slides by Wes J. Lloyd

11/30/2021

L15.49

TCSS 422 A — Fall 2021

School of Engineering and Technology

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.99

99

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.100

100

Slides by Wes J. Lloyd

11/30/2021

L15.50

TCSS 422 A - Fall 2021
School of Engineering and Technology

® Questions from 11/23
® Assignment 2 - Dec 3

® Quiz 3 - Synchronized Array - Dec 2

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

m Assignment 3 (as a Tutorial) to be posted...

= Chapter 17: Free Space Management

® Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables,IN-IeveI Page Tablesl

OBJECTIVES - 11/30

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.101

101

= VPN is 21 bits

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes

MORE THAN TWO LEVELS

30292827262524232221201918171615141312111098 7654 3 21 0

>l
>

ANNNNRNNNRRNNNNRNNRRNNRENREREE

!
>

i
<

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.102

102

Slides by Wes J. Lloyd

11/30/2021

L15.51

TCSS 422 A — Fall 2021

School of Engineering and Technology

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
m 7 pytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7 654 3 21 0

]

1]

AN

Page Directory Index

ANNNNRNNNRRNNNRRNRER

35!
ra

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs

——1—> log, 128 =7

ovember 30, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.103

103

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Page size = 512 bytes / 4 bytes per addr

30202827262524232221201918171615141312111098 7654 3 21 0

L]

|

[T FET

Page Directory Index

1T]

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs —

—> log,128 =7

November 30, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L15.104

104

Slides by Wes J. Lloyd

11/30/2021

L15.52

TCSS 422 A - Fall 2021
School of Engineering and Technology

= Pagcad

= When using 27 (1

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Virtual address b

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——> log,128 =7

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
28 entry) page tables...

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.105

105

= Pagess

= When using 27 (128 entry) page tables...

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

Need three level page table:
Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)

Page Table Index

Virtual address

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —— 1> log,128 =7

November 30, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.106

106

Slides by Wes J. Lloyd

11/30/2021

L15.53

TCSS 422 A - Fall 2021
School of Engineering and Technology

MORE THAN TWO LEVELS - 4

= Using multiple levels of indirection

30292827262524232221201918171615141312111098 7654 3 21 0

INARENNARNNNARNNNARRNNRRNNNEE

€

| Page Table Index

Y. Y

!
>

< <
< €

VPN

® Consider the implications for address translation!

entries on a 512-byte page? (let’s say 4 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= We can now address 1GB with“fine grained” 512 byte pages

= How much space is required for a virtual address space with 4

® Memory Usage= 1,536 (3-level) / 8,388,608 (1-lever) = .0183% !!!

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.107

107

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.108

108

Slides by Wes J. Lloyd

11/30/2021

L15.54

TCSS 422 A — Fall 2021

School of Engineering and Technology

p4d = p4d_offset(pgd, vpage); -
if (p4d_none(*p4d) || p4d_bad(*p4d)) p4d/pud/pmd_offset():

pud = pud_offset (p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

if

physical page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_ page_addr; // param to send back

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset (mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad (*pgd))| forthe process, returns the PGD entry that
return O; covers the requested address...

Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O;

return O;

pmd = pmd_offset (pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return O;

if (! (pte = pte_offset_map(pmd, vpage)))

feturn 8; . ot pte_unmap()
L UROET) S g J2Ee I (B0 release temporary kernel mapping

zeEn=n 0F for the page table entry

TCSS422: Operating Systems [Fall 2021]

L15.1f
School of Engineering and Technology, University of Washington - Tacoma 5.109

November 30, 2021

109

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 220 pages
= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L15.110

November 30, 2021

110

Slides by Wes J. Lloyd

11/30/2021

L15.55

TCSS 422 A — Fall 2021

School of Engineering and Technology

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

u (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.111

111

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

m | et’'s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTIH)?

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 30, 2021 115.112

112

Slides by Wes J. Lloyd

11/30/2021

L15.56

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 3

m Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Fall 2021]

November30;2021 School of Engineering and Technology, University of Washington - Tacoma

L15.113

113

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Fall 2021]

RolEmbenEDi202E School of Engineering and Technology, University of Washington - Tacoma

L15.114

114

Slides by Wes J. Lloyd L15.57

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

ANSWERS
= #1 - 4096 pages
m#2 - 12 bits
m #3 - 12 bits
= #4 - 4 bytes
= #5 - 4096 x 4 = 16,384 bytes (16KB)
= #6 - 6 bits
= #7 - 6 bits
= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Fall 2021]

L15.11!
School of Engineering and Technology, University of Washington - Tacoma 5115

November 30, 2021

115

QUESTIONS

116

Slides by Wes J. Lloyd L15.58

