TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Free Space Management,

Introduction to Paging,
Translation Lookaside Buffer ;<

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

(), A School of Engineering and Technology, University of Washington

11/30/2021

OBJECTIVES - 11/30

| = Questions from 11/23 |
= Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021)

EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma

5.2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

sping 2021
Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1153

‘ November 30, 2021

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Fall 2021]

ckemberseizezt School of Engineering and Technology, University of Washington - Tacoma L154

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (29 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.29 (1 - previous 5.98)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.67 (T - previous 5.41)

TCS5422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Lss

‘ November 30, 2021

Slides by Wes J. Lloyd

FEEDBACK

n
[~

TCS5422: Operating Systems [Fall 2021]

e School of Engineering and Technology, University of Washington - Tacoma

1156

L15.1

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

OBJECTIVES - 11/30 OBJECTIVES - 11/30
= Questions from 11/23 = Questions from 11/23
|I Assignment 2 - Dec 3 | = Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2 |I Quiz 3 - Synchronized Array - Dec 2 |
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30 = Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted... = Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB) = Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios = TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables = Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables = Smaller Tables, Multi-level Page Tables, N-level Page Tables
[evembersozon [T creant s (200 ningon - o [e] [nouemberso.aon [T crene s (208 stington - oo 3
7 8

OBJECTIVES - 11/30 OBJECTIVES - 11/30
= Questions from 11/23 = Questions from 11/23
= Assignment 2 - Dec 3 = Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2 ® Quiz 3 - Synchronized Array - Dec 2
|- Tutorlal 2 - Pthread, locks, condltlons tutorlal - Nov 30 | = Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted... | = Assignment 3 (as a Tutorial) to be posted... |
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB) = Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios = TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables = Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables = Smaller Tables, Multi-level Page Tables, N-level Page Tables
[ovembersn,zom [T Sommime st B0 g - s [s] [ovembersn,aons [1S5 oremin e 0wt - s [uso |
9 10

OBJECTIVES - 11/30

® Questions from 11/23
= Assignment 2 - Dec 3 1] |‘ I‘ i

= Quiz 3 - Synchronized Array - Dec 2 T
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= Assignment 3 (as a Tutorial) to be posted... CHAPTER 17: FREE

= Chapter 17: Free Space Management
IIChapter 18: Introduction to Paging I SPACE MANAGEMENT
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (ErEi e ER School of Engineering and Technology, University of Washington - Tacoma e Rk a2 School of Engineering and Technology, University of Washington -

11 12

Slides by Wes J. Lloyd L15.2

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/30/2021

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Fall 2021]

l e o021 School of Engineering and Technology, University of Washington - Tacoma

1513

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragme

|

TC55422; Operating Systems [Fall 2021]
EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma ts.1a

13

14

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units

= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCS5422; Operating Systems [Fall 2021]

l Novermber30/2028 School of Engineering and Technology, University of Washington - Tacoma

Lsas

FRAGMENTATION

= Consider a 30-byte heap

30-byte heap: | Tree [IUSEAN ree
0 10 20 30

= Free space: 20 bytes

= No available contiguous chunk - return NULL

|

TC55422: Operating Systems [Fall 2021]
[November 30,2024 School of Engineering and Technology, University of Washington - Tacoma L1516

15

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)
= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Internal: /ost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk

= Memory is lost, and unaccounted for - can’t compact

= Memory is externally fragmented - - Compaction can fix!

TCS5422: Operating Systems [Fall 20211

l (EriEE e School of Engineering and Technology, University of Washington -Tacoma

usa7

17

Slides by Wes J. Lloyd

16

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)
30-byte heap: [free [Tlsed | free
0 10 20 30
free st head —% nonin —% et —w NULL
= 0S locates a free chunk to satisfy request

= Splits chunk into two, returns first chunk
30-byte heap: | free | used | free
0

10 20 21 30

addr: 0 addr:21

free list head —® jo0.99 — > jen:a > NULL
TC55422: Operating Systems [Fall 2021]
l e School of Engineering and Technology, University of Washington - Tacoma L8

18

L15.3

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

ALLOCATION STRATEGY: COALESCING MEMORY HEADERS

= Consider 30-byte heap = free(void *ptr): Does not require a size parameter
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)
= How does the OS know how much memory to free?

110 addr:0 addr:20

adir
head — jani1g * len:10 * lem:l0 * NULL

= Request arrives: malloc(30) = Header block
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists! =Small descriptive block of memory at start of chunk

= Coalescing regroups chunks into contiguous chunk]_ The header used by ma1oc fibrary
mallo

addr :0 pr —»

nead —% I — % NULL

The 20 bytes returned to caller

= Allocation can now proceed

= Coalescing is defragmentation of the free space list An Allocated Region Flus Header
TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ W), A School of Engineering and Technology, University of Washington - Tacoma Lis.19 ‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma .20

19 20

MEMORY HEADERS - 2 MEMORY HEADERS - 3

hptr —> = Size of memory chunk is:

size: 20

[magic: 1234567 | header_t (= Header size + user malloc size
_y mis men

= N bytes + sizeof(header)

ptr

magl
The 20 bytes } header_t;
returned to caller
S A Simple Header = Easy to determine address of header
Specific Contents Of The Header
i fres(void *ptr) {
= Contains size header_t *hptr = (*)ptr - (header_t):
. 1
= Pointers: for faster memory access
= Magic number: integrity checking
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]

‘ November 30,2021 School of Engineertng and Technology; Uiversity of Washington - Tacoma tis.21 ‘ November30, 2021 School of Engineeing and Technology, Universty of Washington ~Tacoma us.22

21 22

THE FREE LIST FREE LIST - 2

= Simple free list struct = Create and initialize free-list “heap”

node_t *head b (HULL, 4096, PROT_READ|PROT_WRITE,
TE, -1, 0)i

} nedet_t; heag - =
— head->next =
= Use mmap to create free list = Heap layout:
= 4kb heap, 4 byte header, one contiguous free chunk (virtual address: 16K8]
header: size field
size: 4088
¢ 0l head —»| next: 0 | header: next fieldNULL is 0)
the rest of the 4B chunk
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (ErEi e ER School of Engineering and Technology, University of Washington - Tacoma Ls.23 ‘ (U GREES R ‘ School of Engineering and Technology, University of Washington - Tacoma e

23 24

Slides by Wes J. Lloyd L15.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/30/2021

FREE LIST: MALLOC() CALL

Consider a request for a 100 bytes: malloc(100)
Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number

Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation

hosd —> [0]
= = n
= 5 e > o8 1234567

the rest of
the 4KB chunk o
I [bead >

the 100 bytes now allocsted

}twﬂ" 3980 byte chunk

TC55422; Operating Systems [Fall 2021]
e o021 School of Engineering and Technology, University of Washington - Tacoma Ls.2s

FREE LIST: FREE() CALL

= Addresses of chunks & bytes hesder { tize: [virtual address: 16KB]
100 till allocated

= Start=16384 bytes still allocate
+ 108 (end of 15t chunk) sze. 100
magic: 1234567

+ 108 (end of 2n Gy, " Free this 100 by till allocated
es stil alloca

+ 108 (end of 3" chunk) block (but ot 1 be freed)

= 16708

0|
[magic: 1234567 |

100 bytes still allocated

Pesd —me e

next:

The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCS5422: Operating Systems [Fall 2021] 1526
School of Engineering and Technology, University of Washington - Tacoma

‘ November 30, 2021

25

= Free(sptr)
= Qur 3 chunks start at 16 KB

FREE LIST:

FREE() CHUNK #2

[virtual address: 16K8]

magic: 1234567

(@ 16,384 bytes)

= Free chunk #2 - sptr sptr —>
Block (naw a free chunk of
= Sptr = 16500 memory)

= addr - sizeof(node_t)

100 bytes still allocated

100 bytes still allocated

= Actual start of chunk #2 Sze 3764 |-
* 16492 net O
The free 3764-byts chunk
[
TCSS422: Operating Systems [Fall 2021]
‘ November 30,2021 School of Engineering and Technology, University of Washington - Tacoma Ls.27

27

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (ot in use)
Heap Heap Hesp Heap
[break sbrk(),
(not in use)
(not in use) | .
Address Space Address Space . Heap
Physical Memory
TCSS422: Operating Systems [Fall 2021]
(ErEi e ER School of Engineering and Technology, University of Washington - Tacoma 129

29

Slides by Wes J. Lloyd

26

FREE LIST- FREE ALL CHUNKS

= Now free remaining chunks:

_— 5

[virtual address: 16KB]

=
{now free)
size: 100

= Free(16392)
" Free(16608)

= Walk back 8 bytes for actual next. 16708
start of chunk

(now free)

= External fragmentation
= Free chunk pointers
out of order

{now free)

= Coalescing of next
pointers is needed

The free 3764-byte chunk

TC55422: Operating Systems [Fall 2021]
‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma s.28

28

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCS3422: Operating Systems [Fall 2021] 1530
School of Engineering and Technology, University of Washington - Tacoma

November 30, 2021

30

L15.5

TCSS 422 A — Fall 2021

11/30/2021
School of Engineering and Technology

EXAMPLES

= Allocation request for 15 bytes

head —> 10 —» 30 —> 20 —> NULL
" Result of Best Fit
head —» 180 ——» 30 —> 5 — NULL

= Result of Worst Fit

head —> 10 —> 15 — 20 —> NULL

TC55422; Operating Systems [Fall 2021]
‘ e o021 School of Engineering and Technology, University of Washington - Tacoma Ls.31

31

[| |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit

Worst Fit

First Fit

None of the above

All of the above

™ o comten, . hel

33

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KE free space for 7KB request

TCS5422: Operating Systems [Fall 2021] 1535
School of Engineering and Technology, University of Washington - Tacoma

‘ November 30, 2021

35

Slides by Wes J. Lloyd

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TC55422; Operating Systems [Fall 2021]
‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma s.32

32

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.
= General allocator will reclaim slabs when not used

TC55422: Operating Systems [Fall 2021]
‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma s34

34

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation
= Allocated fragments, typically too large

= Coalescing is simple
= Two adjacent blocks are promoted up

TCS5422: Operating Systems [Fall 2021]
‘ (U GREES R School of Engineering and Technology, University of Washington - Tacoma Ls:30

36

L15.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation
Internal fragmentation
Coalescing

Splitting

.'A computer system manages program memory using'.

37

OBJECTIVES - 11/30

= Questions from 11/23
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
|- Chapter 18: Introduction to Paging |
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCS5422: Operating Systems [Fall 2021]
l Novermber30/2028 School of Engineering and Technology, University of Washington - Tacoma. 11539

39

PAGING

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

l T A TCS5422: Operating Systems [Fall 2021] sar

School of Engineering and Technology, University of Washington - Tacoma

41

Slides by Wes J. Lloyd

11/30/2021

.'A request is made to store 1 byte. For this scenario,'.
which memory allocation strategy will always locate
memory the fastest?

Best fit

Worst fit

Next fit

None of the above

All of the above
- "

38

CHAPTER 18:
INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Fall 2021]

ovembers0;2021 School of Engineering and Technology, University of Washington -

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
= Just add more pages...
= No need to store unused space
= As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TC55422: Operating Systems [Fall 2021]
l e School of Engineering and Technology, University of Washington - Tacoma L4

42

TCSS 422 A — Fall 2021

11/30/2021
School of Engineering and Technology

Page Table:
VPO - PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

PAGING: EXAMPLE

= Consider a 128 byte (27) address space
with 16-byte (24) pages

page fame 0 of
physical memery

|reserved for OS|
= Consider a 64-byte (2°) (unused)
program address space .

page frame 1

page 3 of AS | page frame 2

page D of AS | page frame 3

0

(page O of (unused) page frame 4
16 | the address space) Z

(page 1) page2of AS | page frame s
E

{page 2) (unused) | page frame &
48 :
o (page 3) page 1of AS | page frame7

A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

L1543

TCS5422: Operating Systems [Fall 2021]

‘ e o021 School of Engineering and Technology, University of Washington - Tacoma

43

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>2?)
= Stored in 128-byte (27) physical memory (8 frames—>23)

. BN :
= Offset is preserved v offset
1
= 4 bits indexes any byte Virtual
o N Address | 0|1 |00 |2
= Page size is 16 bytes (24) . _ _
= Page table translates a v
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: [l
VPO > PF3 oyt e
VP1-> PF7 Address ‘ ERE ‘ 0 ‘ B | 1
VP2 > PF5 [—— .)
VP3 > PF2 o offset

TCSS422: Operating Systems [Fall 2021]

November 30,2021 School of Engineering and Technology, University of Washington - Tacoma

45

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=2%2 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCS3422: Operating Systems [Fall 2021]

(EriEE e School of Engineering and Technology, University of Washington - Tacoma

L1547

47

Slides by

Wes J. Lloyd

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)
v:lr\ offset

VaS | Vad Va3 | Va2 | Vsl | Va0
= Example:

Page Size: 16-bytes (24),
Program Address Space: 64-bytes (2°)

VPN offset
- 1

Here program can have
Jjust four pages...
usas

a 1 o 1 0 1

TC55422; Operating Systems [Fall 2021]
‘ EesnissoRoal ‘ School of Engineering and Technology, University of Washington - Tacoma

44

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?
= (2) What are the typical contents of the page table?
= (3) How big are page tables?

= (4) Does paging make the system too slow?

TCSS422: Operating Systems [Fall 2021]

‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma

L1546

46

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
= Each entry requires 4 bytes (32 bits) VPN,
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved
= (note we have no status bits, so this is
unrealistically small) VPNyo48576

= How much memory is required to store the page table
for 1 process?
= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 30, 2021

L1548

48

L15.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

NOW FOR AN ENTIRE OS

= If 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficient?

TC55422; Operating Systems [Fall 2021]
‘ e o021 School of Engineering and Technology, University of Washington - Tacoma Lis.49

49

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

[l
| PFN vz n‘q]

An x86 Page Table Entry(PTE)

‘ November 30, 2021

TCS5422: Operating Systems [Fall 2021] L1551
School of Engineering and Technology, University of Washington - Tacoma

11/30/2021

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table > simple array

= Page-table entry
= 32 bits for capturing state

NN A BT BENBRADPBUBBUB L2109 8 7 654321
PFN |50 <|2|F|5[E]
An %86 Page Table Entry(PTE)
TC55422; Operating Systems [Fall 2021]
‘ EesnissoRoal ‘ School of Engineering and Technology, University of Washington - Tacoma s.s0

50

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protectlon BIt: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been

accessed

TC55422: Operating Systems [Fall 2021]
‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma s.s2

51

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Fall 2021]
‘ (EriEE e School of Engineering and Technology, University of Washington - Tacoma L3

52

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?
= Translation

= [ssue #1.: Starting location of the page table is

needed
=HW Support: Page-table base register Page Table:
stores active process VPO > PF3
- 9 VP1 > PF7
Facilitates translation
Stored in RAM > VP2 > PF5
VP3 > PF2

= |ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Fall 2021]
‘ (U GREES R ‘ School of Engineering and Technology, University of Washington - Tacoma sS4

53

Slides by Wes J. Lloyd

54

L15.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address

2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3

4. // Form the address of the page-table entry (PTE)
5a PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

s

10. // check if process can access the page

11. if (PTE.valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is ok: form physical address and fetch it
17. offset = virtualaddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(Physaddr)

TCS5422: Operating Systems [Fall 2021]

‘ e o021 School of Engineering and Technology, University of Washington - Tacoma

L1555

55

FOR THE FIRST 5 LOOP ITERATIONS

= Locations: o “\':w
= Page table o o o o a
= Array Page Tablef1]
= Code -

= 50 accesses
for 5 loop
iterations

VISUALIZING MEMORY ACCESSES:

10 0 30 40

Memary Access.

CodelPry

4146

209

Page TableiPA)

TCSS422: Operating Systems [Fall 2021]

‘ November 30,2021 School of Engineering and Technology, University of Washington - Tacoma

11/30/2021

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

nt array (100017

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

1 50x0, (4edi, teax, 4)

TCSS422: Operating Systems [Fall 2021)

‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma

L1556

56

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2732 /2720 =2712 pages

2/32 [2A12 = 2720 pages

2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

57

[|
required for the VPN?

24 VPN bits (indexes
2°24 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

M November 3052024,

TCSS422: Operating Systems [Fall 2021]
u i

"For the 4GB computer example, how many bits are”

L15H
o m

o — y ' -
58
[]

"For the 4GB computer example, how many bits are”
available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

None of the
above

™ o comten, . 1

59

Slides by Wes J. Lloyd

60

L15.10

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

For the 4GB computer, how much space does this - "= For the 4GB computer, how many page tables (for -
page table require? (number of page table entries x user processes) would fill the entire 4GB of memory?

size of page table entry)

4GB/ 16 KB=65,536

2420 entries x 4b=4 MB

4GB /64 MB=256
2A12 entries x 4b = 16 KB

. 4GB/ 256 KB = 16,384
2716 entries x 4b =256 KB

224 entries x 4b = 64 MB 4GB/4MB=1,024
None of the above None of the above

TCSS422: Operating Systems [Fall 2021] Lis!
November 30,2024
g o ety n " "

61 62

PAGING SYSTEM EXAMPLE OBJECTIVES - 11/30
= Consider a 4GB Computer: ® Questions from 11/23
= With a 4096-byte page size (4KB) = Assignment 2 - Dec 3
= How many pages would fit in physical memory? = Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Now consider a page table: = Assignment 3 (as a Tutorial) to be posted...
= For the page table entry, how many bits are required for the

= Chapter 17: Free Space Management

VPN?
- i . .
= |f we assume the use of 4-byte (32 bit) page table entries, Chapierkis] Introduc.tlon to Pag.mg
how many bits are available for status bits? | = Chapter 19: Translation Lookaside Buffer (TLB)|
= How much space does this page table require? ® TLB Algorithm, Hit-to-Miss Ratios
of page table entries x size of page table entry = Chapter 20: Paging: Smaller Tables
= How many page tables (for user processes) = Smaller Tables, Multi-level Page Tables, N-level Page Tables

would fill the entire 4GB of memory?

TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
l (e 2R School of Engineering and Technology, University of Washington - Tacoma L8 (LI R School of Engineering and Technology, University of Washington - Tacoma Lses

63 64

LN
' CHAPTER 19:
WE WILL RETURN AT 8. --

TRANSLATION
LOOKASIDE BUFFER
(TLB)

2:40PM \M

TCSS422: Operating Systems [Fall 2021

) TCSS422: Operating Systems [Fall 2021
School of Engineering and Technology, University of Washington -

)]
November 30, 2021 School of Engineering and Technology, University of Washington -

November 30, 2021

65 66

Slides by Wes J. Lloyd L15.11

TCSS 422

A — Fall 2021

School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER

= Legacy name...

= Better name, “Address Translation Cache”

=TLB is an on CPU cache of address translations
=virtual = physical memory

TCS5422: Operating Systems [Fall 2021]

e o021 School of Engineering and Technology, University of Washington - Tacoma

.67

67

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

e
Logical | Leokup TL8 Hit Physical
Address TLB Address
popular v to p
e

Page Table
all v to p entries

Address Translation with MMU Physical Memory

TCSS422: Operating Systems [Fall 2021]

November 30,2021 School of Engineering and Technology, University of Washington - Tacoma

L15.69

69

OBJECTIVES - 11/30

® Questions from 11/23

= Assignment 2 - Dec 3

® Quiz 3 - Synchronized Array - Dec 2

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= Assignment 3 (as a Tutorial) to be posted...

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCS3422: Operating Systems [Fall 2021]

(EriEE e School of Engineering and Technology, University of Washington - Tacoma

us.71

11/30/2021

TRANSLATION LOOKASIDE BUFFER - 2

Page Table(39]
= Goal: AN 1224
Reduce access o o o o a Jien
to the page Page Tablel1] u
tables . 1074
\“I. o000 0poo - nooo- - o0ooo- o0oo 1024
= Example:
50 RAM accesses g w0 4,
for first 5 for-loop T | °
iterations * a0 = - o
= Move lookups 1128 .

from RAM to TLB
by caching page
table entries

Code(va)

" 4196

1072 o - 4146

o Ay gu® ¥ gu®, ga®
o 1 20 » W0 50

Memary Access.

CodelPry

Page Table(h

TCSS422: Operating Systems [Fall 2021)

‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma

68

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)
= Address translation cache

I 1 —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

Page Table ‘ Fage 0
all v to p entries Page L
Page 2

[sagen |

Physical Memory

e T

Address Translation with MMU

TCSS422: Operating Systems [Fall 2021]

‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma

1570

70

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

‘ : VEN = (VirtualAddress &

-b

ASK) >> SHIFT

ctBits) == True){

5 & OFFSET_MASK

T1bEntry.PFN << SHIFT) | Offset
{ Bhyshddr)

CTION ERROR)

| Generate the physical address to access memory |

TCS5422: Operating Systems [Fall 2021]

‘ (U GREES R School of Engineering and Technology, University of Washington -Tacoma

71

Slides by

Wes J. Lloyd

us72

72

L15.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/30/2021

TLB BASIC ALGORITHM - 2

11: [

12: PTERMAr = PTER + (VDN * sizeof(PTE])
13: » PTE = >ry (PTEAdAr)
14: (.) // Check for, and raise exceptions.
15:
16: TLB_Insert(WPN , PTE.PFN , PTE.Protectsits)
17: RetryInstruction ()
1B:
18:)
| Retry the instruction... (requery the TLB) |
[evembersozon [T creant s (208 wntingon s e

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

= For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translatlons go through the TLB

TC55422; Operating Systems [Fall 2021]
‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma s.74

73

74

OBJECTIVES - 11/30

= Questions from 11/23
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
=TLB Algorithm
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TC55422; Operating Systems [Fall 20211
‘ November 30,2021 School of Engineering and Technology, University of Washington - Tacoma. Ls.7s

OBJECTIVES - 5/25

= Questions from 5/25
= Assignment 2
= Activity - Memory Segmentation (available in Canvas)
= Tutorial 2 - Pthread, locks, conditions tutorial
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TC55422: Operating Systems [Fall 2021]
‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma s.76

] sum = 0 ; OFFSET
0w w u
1 (i=07 1<107 i++)] [
2: sum+=a[i]z VPN - 01
3 W -m
= Example: m::
. s - e w [|
Program address space: 256-byte von- o (o [[[
= Addressable using 8 total bits (28) veN - 08 \-m aif] | sl
= 4 bits for the VPN (16 total pages) v
P
= Page size: 16 bytes x:
= Offset is addressable using 4-bits [
e
= Store an array: of (10) 4-byte integers vn -1
[novemberso,aom [T2 Sommim ot 008 gt

77

Slides by Wes J. Lloyd

76

TLB EXAMPLE - 2

0: sum = 0 ; OFFSET
o w e m
1: 1<107 i++) | [
2: +=a il VPN - 01
3 } en
A e
= Consider the code above: -
v -t o [0 [
= |nitially the TLB does not know where a[] is ven -1 [[a | | o
= Consider the accesses: ven-on [e ot
[
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], e
a[8], a[9] [
= How many pages are accessed? e
e
= What happ when a page not P
In the TLB? w1
TCSS422: Oy ing Sy [Fall 2021]
[tovembersn,2om [1552 oremime st B0 oo o s

78

L15.13

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/30/2021

0 sum = O ; OFFSET
o e n
1 (=07 15107 d++)] P
2: sum+=a[i]z VPN - 01
3 v em |
e
= For the accesses: a[0], a[1], a[2], a[3], a[4], ™"
VPH - 08 a0 | alll | stn)
= a[5], a[6], a[7], a[8], a[9] ven -7 [e | |
e o o [atel | oot
. wnem
= How many are hits? J—
= How many are misses? e e
-
= What is the hit rate? (%) -
= 70% (3 misses one for each VP, 7 hits) -
e
[evembersozon [T creant s (208 wntingon s

TLB EXAMPLE - 4

0: sum = O ; OFFSET
1: (i=0; 1<107 i++)(m_mfm .
2: sum+=a[i]z PN - 01
3 w0 |
- 08
. . - 05
= What factors affect the hit/miss rate? I
- a0l | sl | a0
= Page size veni =07 [| e | am | a
. VN - 08 | an | aie | el
= Data/Access locality (howis data accessed?) [!
Sequential array access vs. random array access ‘vm-io
5 e~
= Temporal locality I
= Size of the TLB cache e 12
(how much history can you store?) -
- 13
TCSS422: Oy iting Syste [Fall 2021]
‘ EesnissoRoal School of E:;i’:ee’:igngvaned";'sechnalagm University of Washington - Tacoma L1s.80

79

80

OBJECTIVES - 11/30

= Questions from 11/23
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2

= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
| = Chapter 20: Paging: Smaller Tables |

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCS5422; Operating Systems [Fall 2021]

‘ Novermber30/2028 School of Engineering and Technology, University of Washington - Tacoma.

L1581

CHAPTER 20:

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Fall 2021]

(BT, HIP School of Engineering and Technology, University of Washington -

81

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
=20 bits for VPN
=12 bits for the page offset

TCS5422: Operating Systems [Fall 2021]

‘ (EriEE e School of Engineering and Technology, University of Washington - Tacoma

1583

83

Slides by Wes J. Lloyd

82

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page table size = 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TC55422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington -Tacoma L8

84

L15.14

TCSS 422 A - Fall 2021
School of Engineering and Technology

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TC55422; Operating Systems [Fall 2021]
‘ e o021 School of Engineering and Technology, University of Washington - Tacoma Lis8s

85

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
;—H* 4 = 1MB per page table

= Memory requirement cut to %
= However pages are huge
= [nternal fragmentation results

= 16KB page(s) allocated for small programs with only a
few variables

TC55422; Operating Systems [Fall 2021]
‘ Novermber30/2028 School of Engineering and Technology, University of Washington - Tacoma Lis87

87

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtusl Address

PFN valid prot present dirty

Most of the page table is unused
and full of wasted space. (73%

stack 1 3

— A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages
TCSS422: Operating Systems [Fall 2021]
‘ (EriEE e School of Engineering and Technology, University of Washington -Tacoma L8

89

Slides by Wes J. Lloyd

11/30/2021

OBJECTIVES - 11/30

= Questions from 11/23
= Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables,|Multi-level Page Tables, N-level Page Tables

TC55422; Operating Systems [Fall 2021]
‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma L1s.86

86

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtusl Address

PFN valid prot present dirty

10 1 rx 1 0

- Spe
- 0 - - -
B 0 - - -
B 0 B - -
15 1 - 1 1
1 o
"
1 3 1 ™ 1 1
I 1 1

1 3 1 .

M

stack

— A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCSS422: Operating Systems [Fall 2021]
‘ [November 30,2024 School of Engineering and Technology, University of Washington - Tacoma L1588

88

OBJECTIVES - 11/30

= Questions from 11/23
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables| Multl-level Page Tables| N-level Page Tables

TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1880

90

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

MULTI-LEVEL PAGE TABLES MULTI-LEVEL PAGE TABLES - 2

= Consider a page table: = Add level of indirection, the “page directory”
= 32-bit addressing, 4KB pages Linear Page Table Muld-level Page Table
PETR 200 PEIR[20 |
= 220 page table entries
= Even if memory is sparsely populated the per process page If e § - PN
table requires: == = Y 1 =]
4 ol —?
: £

] - il m = <
. 232 het e 0 ;
Page table size = > * 4Byte = 4MByte T EZ | m
- of -1 -] The Page Directory [Page 1 of PTGt Allocated)

= Often most of the 4MB per process page table is empty

PRNZOZ

= Page table must be placed in 4MB contiguous block of RAM IL 1 a LT
ol - | E 0 — s
=] = £ g
i DIl
= MUST SAVE MEMORY! -
Linear (Left) And Multi-Level (Right) Page Tables
TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ W), A School of Engineering and Technology, University of Washington - Tacoma Lis.o1 ‘ EesnissoRoal School of Engineering and Technology, University of Washington - Tacoma s.02

91 92

MULTI-LEVEL PAGE TABLES - 2 MULTI-LEVEL PAGE TABLES - 3

= Add level of indirection, the “page directory” = Advantages
Linear Page Table Multi-level Page Table

- = = Only allocates page table space in proportion to the

address space actually used
= Can easily grab next free page to expand page table

Two level page table:

220 pages addressed with
two level-indexing
(page directory index, page table index)

= Disadvantages
= Multi-level page tables are an example of a time-space

tradeoff
o -~ 1, = Sacrifice address translation time (now 2-level) for space
% E = Complexity: multi-level schemes are more complex

Linear (Left) And Multi-Level (Right) Page Tables

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ Novermber30/2028 School of Engineering and Technology, University of Washington - Tacoma 11593 [November 30,2024 School of Engineering and Technology, University of Washington - Tacoma L1594

93 94

EXAMPLE EXAMPLE - 2

= 16KB address space, 64byte pages = 256 total page table entries (64 bytes each)

= How large would a one-level page table need to be?

= 214 (address space) / 2° (page size) = 28 = 256 (pages) = 1,024 bytes page table size, stored using 64-byte pages
- = (1024/64) = 16 page directory entries (PDEs)
0000 000! code 3 Oetail

[1618

. 64 byte = Each page directory entry (PDE) can hold 16 page table
Vil e il entries (PTEs) e.g. lookups

VN

tree)

LT R o
ok Foge table entry 2se) = 16 page directory entries (PDE) x 16 page table entries (PTE)
1111 1110 snack A 16-KB Address Space With 64-byte Pages = 256 tota' PTES

[13[12[nfw[ofs]7[6[s[a]3a]2]1]0]
b Offset

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington -Tacoma L9 e School of Engineering and Technology, University of Washington - Tacoma 196

= Key idea: the page table is stored using pages too!

‘ November 30, 2021

95 96

Slides by Wes J. Lloyd L15.16

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

PAGE DIRECTORY INDEX PAGE TABLE INDEX
= Now, let’s split the page table into two: = 4 bits page directory index (PDI - 1t level)

= 8 bit VPN to map 256 pages = 4 bits page table index (PTI - 2" level)
= 4 bits for page directory index (PDI - 1%t level page table) Page Dirsctory Index. . Page Table Index
= 6 bits offset into 64-byte page ‘13'12[11'10‘ 318 | 7 ‘ s ‘ 5 | 2 | 3 ‘ 2 | 1 ‘ Dl

. Page Directory Index VPN Offset

e — 14-bits Virtual address.

B2l s[s[7]6]s][a]3]2]1]0

VPN Offset = To dereference one 64-byte memory page,
14-bits Virtual address = We need one page directory entry (PDE)

= One page table Index (PTI) - can address 16 pages

TCSS422: Oy ating Syste [Fall 2021] TCSS422: Oy iting Syste [Fall 2021]
‘ e e e e e e D D He.97 ‘ WL, 2 School o Engineering and Technology, Universlty of Washington - Tacoma 1898
= For thls example, how much space Is required to store as a = Consider: 32-bit address space, 4KB pages, 22° pages

single-level page table with any number of PTEs? = Only 4 mapped pages
= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= How much space is required for a two-level page table with = Page directory = 20 entries x 4 bytes = 1 x 4 KB page
only 4 page table entrles (PTEs) ? = Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= Page directory = 16 entries x 4 bytes (1 x 64 byte page) = 8KB (8,192 bytes) required

= Page table = 4 entries x 4 bytes (1 x 64 byte page)

= Savings = using just .78 % the space !!!
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!! = 100 sparse processes now require < 1MB for page tables
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ November 30,2021 School of Engineering and Technology, University of Washington - Tacoma L1s.99 ‘ November30, 2021 School of Engineering and Technology, University of Washington - Tacoma Ls.100

OBJECTIVES - 11/30 MORE THAN TWO LEVELS

® Questions from 11/23 = Consider: page size is 2° = 512 bytes

= Assignment 2 - Dec 3 = Page size 512 bytes / Page entry size 4 bytes
® Quiz 3 - Synchronized Array - Dec 2 = VPN is 21 bits

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 17: Free Space Management

3029282726252423222120191817161514131211105 &

LTI T T T T F

= Chapter 18: Introduction to Paging VPN offset
= Chapter 19: Translation Lookaside Buffer (TLB)
- - - - Virtual add 30 bit
= TLB Algorithm, Hit-to-Miss Ratios rrualaceress =2
Page size 512 byte
= Chapter 20: Paging: Smaller Tables VPN 21 bit
= Smaller Tables, Multi-level Page Tables,|N-level Page Tables Offset 9 bit
TCSS422: Oy ing Sy [Fall 2021] TCSS422: Oy Hing Sy [Fall 2021]
‘ (EriEE e School of E::w'::e':wgngyz:'ednzchanolow University of Washington - Tacoma ts10t ‘ Mt e 27 School of E:;?e"e':.gng‘:::mrsecniology, University of Washington - Tacoma 115102

Slides by Wes J. Lloyd L15.17

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/30/2021

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

[T T TTTT S

302928 27262524232221 2019181716 1514131211209 8 76 54 3 21 0
Page Directory Index ;

VPN offset

Virtual address 30 bit
1512 byte
[21bit
[abit

| 128 pTEs

Page size

Page entry per page

TCS5422: Operating Systems [Fall 2021]
‘ (Lol eo School of Engineering and Technology, University of Washington - Tacoma Le03

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

029282726252423222120191817161514131211109 87654 3 21 0
Page Directory index N > i
VPN offset

30 bit
| 512 byte
IET
[ebit
|12 PTEe

Fage entry per page log, 128 =7

TC55422; Operating Systems [Fall 2021]
‘ WIS R School of Engineering and Technology, University of Washington - Tacoma Lis.104

103

104

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Paggmine Gl g

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses
(512 bytes / 32 bytes)

VPN _ZL bit
Offset _Bbil
Fage entry per page | 128 PTEs

TC55422; Operating Systems [Fall 2021]
‘ Novermber30/2028 School of Engineering and Technology, University of Washington - Tacoma Ls.105

log, 128 =7

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (239=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Page size | 512 byte
VAN 21 bit
Offset 9 bit
Fage entry per page | 128 PTES log, 128 =7
TC55422: Operating Systems [Fall 2021]
‘ [November 30,2024 School of Engineering and Technology, University of Washington - Tacoma L15.106

105

106

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

1079 75 275575 24 2322 212019 18 1716 15 14 1 2 11105 8 7 6 5 4 3 21 0
< . e >

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

‘ November 30, 2021 TCS5422: Operating Systems [Fall 2021] 115,107

School of Engineering and Technology, University of Washington - Tacoma

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *pdd;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TC55422: Operating Systems [Fall 2021]
‘ (U GREES R School of Engineering and Technology, University of Washington - Tacoma Ls.108

107

Slides by Wes J. Lloyd

108

L15.18

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

INVERTED PAGE TABLES

ADDRESS TRANSLATION - 2

d d_offset() Tak : dd d th

pgd = pgd_offset (mm, vpage); akes a vpage address and the mm_struct . N .

if (pgd_none (*pgd) || pgd_bad (*pgd))| forthe process, returns the PGD entry that Keep a single page table for each physical page of memory
return 0; covers the requested address...

p4d = pd4d offset(pgd, vpage); 40/ oud)om = Consider 4GB physical memory

i * * . .

if (pdd_none(*pdd) || pdd_bad(*pdd)) Takes a vpage address and the = Using 4KB pages, page table requires 4MB to map all of RAM

i 0;
return pgd/p4d/pud entry and returns the

pud = pud_offset (p4d, vpage);

if (pud_none(*pud) || pud_bad (*pud)) relevant p4d/pud/pmd. = Page table stores

- ‘_’e;:g"ogéset o, o) = Which process uses each page

if (pmd_none (*pmd) || pmd_bad (*pmd)) = Which process virtual page (from process virtual address
return 0; i

b space) maps to the physical page

if (!(pte = pte_offset_map(pmd, vpage))) PO A pag

it (f‘?t:rz 05 o0 D GEOD] pte_unmapQ = All processes share the same page table for memory mapping,
,eiu“ln E-P EEERER release temporary kernel mapping kernel must isolate all use of the shared structure

O ’ qdr = - for the page table entry
gtzs:::aﬁ:i:f ® = BRERO e 6 = Finding process memory pages requires search of 220 pages
U = Hash table: can index memory and speed lookups

return physical_page_addr; // param to send back

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ W), A 115109 WIS R School of Engineering and Technology, University of Washington - Tacoma Lis.110

School of Engineering and Technology, University of Washington - Tacoma

109 110

MULTI-LEVEL PAGE TABLE EXAMPLE MULTI LEVEL PAGE TABLE EXAMPLE - 2

= Consider a 16 MB computer which indexes memory using 4KB = (#5) How many bytes (or KB) are required for a single level
pages page table?

= (#1) For a single level page table, how many pages are = Let's assume a simple HelloWorld.c program.
required to index memory? = HelloWorld.c requires virtual address translation for 4 pages:

= 1 - code page 1 - stack page

= (#2) How many bits are required for the VPN? = 1 - heap page 1 - data segment page

= (#3) Assuming each page table entry (PTE) can index any byte = (#6) Assuming a two-level page table scheme, how many bits
on a 4KB page, how many offset bits are required? are required for the Page Directory Index (PDI)?

= (#4) Assuming there are 8 status bits, how many bytes are = (#7) How many bits are required for the Page Table Index
required for each page table entry? (PTI)?

[evembersozon |52 oot s (208 inon s [nouembersoaon [502 o s 2080 gt s

111 112

MULTI LEVEL PAGE TABLE EXAMPLE - 3 MULTI LEVEL PAGE TABLE EXAMPLE - 4

= Assume each page directory entry (PDE) and page table entry = (#9) Using a single page directory entry (PDE) pointing to a
(PTE) requires 4 bytes: single page table (PT), if all of the slots of the page table (PT)
= 6 bits for the Page Directory Index (PDI) are in use, what is the total amount of memory a two-level
= 6 bits for the Page Table Index (PTI) page table scheme can address?
= 12 offset bits
= 8 status bits = (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme

= (#8) How much total memory is required to index the consume compared to the 1-level scheme?

HelloWorld.c program using a two-level page table when we = HINT: two-level memory use / one-level memory use
only need to translate 4 total pages?
= HINT: we need to allocate one Page Directory and one Page

Table...
= HINT: how many entries are in the PD and PT
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (EriEE e School of Engineering and Technology, University of Washington - Tacoma L1 (U GREES R School of Engineering and Technology, University of Washington - Tacoma e

113 114

Slides by Wes J. Lloyd L15.19

TCSS 422 A - Fall 2021 11/30/2021
School of Engineering and Technology

ANSWERS

QUESTIONS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)
= #10- 512/16384 = .03125 > 3.125%

TCS5422: Operating Systems [Fall 2021]
l W), A School of Engineering and Technology, University of Washington - Tacoma Ls11s

115 116

Slides by Wes J. Lloyd L15.20

