TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Memory Virtualization
with Segments,
Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

November2sa202L School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 11/23

| * Questions from 11/18 |
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
® Chapter 14: The Memory API
® Chapter 15: Address Translation
= Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.2

Slides by Wes J. Lloyd L14.1

TCSS 422 A — Fall 2021

School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus . .
¢ TCSS 422 - Online Daily Feedback Survey - 4/1
™ Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Fall 2021]
November;23;2021 School of Engineering and Technology, University of Washington - Tacoma L14.3
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Fall 2021]
Noxembeij2si2024 School of Engineering and Technology, University of Washington - Tacoma L14.4
4

Slides by Wes J. Lloyd

11/23/2021

L14.2

TCSS 422 A — Fall 2021

School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (29 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.98 ({ - previous 6.08)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.41 (T - previous 5.20)

TCSS422: Computer Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.5

FEEDBACK

= What data structures lend themselves to our goals for
address spaces?

® Goals for OS Memory Virtualization:
= Transparency
= Protection (Security/Isolation)
= Efficiency (Time & Space)

® Some data structures may be more compact (space)
with lower memory virtualization overhead (time)
= SPACE: consider a statically declared multi-dimensional
array vs. a linked list

= One has a huge up-front cost, while the other grows
incrementally

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.6

November 23, 2021

Slides by Wes J. Lloyd

11/23/2021

L14.3

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

FEEDBACK - 2

= TIME: Arrays vs. linked list for sequential traversal

= The page translation cache (TLB) improves performance (TIME)
when traversing ARRAYS sequentially -
= Adjacent elements produce many consecutive cache hits (ch 22)

® The nodes in a LINKED LIST could be scattered anywhere in
memory
= They can be allocated dynamically on the heap at any time
= Traversal may be slower than with arrays

= What about random access to array elements and members of
a linked list ?
= Accessing a middle member of a list with only a head/tail pointer
requires significant traversal

= Array access should be easier

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021

L14.7

OBJECTIVES - 11/23

® Questions from 11/18
| = Assignment 2 - Dec 3 |

® Quiz 3 - Synchronized Array - Dec 2

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
® Chapter 14: The Memory API

® Chapter 15: Address Translation

= Chapter 16: Segmentation

® Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.8

Slides by Wes J. Lloyd L14.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 11/23

® Questions from 11/18
® Assignment 2 - Dec 3
|I Quiz 3 - Synchronized Array - Dec 2 |

= Chapter 14: The Memory API

® Chapter 15: Address Translation

® Chapter 16: Segmentation

= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.9

OBJECTIVES - 11/23

® Questions from 11/18
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2

|I Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30 |

® Chapter 14: The Memory API

® Chapter 15: Address Translation

= Chapter 16: Segmentation

® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.10

10

Slides by Wes J. Lloyd

11/23/2021

L14.5

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 11/23

® Questions from 11/18

® Assignment 2 - Dec 3

® Quiz 3 - Synchronized Array - Dec 2

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
| = Chapter 14: The Memory API |

® Chapter 15: Address Translation

® Chapter 16: Segmentation

= Chapter 17: Free Space Management

® Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

November 23, 2021

11

CHAPTER 14: THE

MEMORY API

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington -

12

Slides by Wes J. Lloyd L14.6

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 13: Introduction to memory virtualization
= The address space
= Goals of OS memory virtualization

= Chapter 14: Memory API
= Common memory errors

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.13 |

13

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size t size)

® Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

® void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

" size_t size: New size for the memory block(in bytes)

EXAMPLE: realloc.c
EXAMPLE: nom.c

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.14

November 23, 2021

14

Slides by Wes J. Lloyd L14.7

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

DOUBLE FREE

int *x = (int *)malloc(sizeof(int)); // allocated
free(x); // Ir
free(x); // fr

= Can’t deallocate twice
®m Second call core dumps

e allocated [} 2Ke freed <

l Heap i l Heap i
| free(x) | free(x) Undefined
i i naetrine

(free) H > (free) 1 >

: ! Error

T Stack i T Stack i

16K8 2KB € *x 16KB 2KB(invalid) oy
Address Space Address Space
TCSS422: Operating Systems [Fall 2021]
November;23;2021 School of Engineering and Technology, University of Washington - Tacoma L14.15

15

SYSTEM CALLS

= brk(), shrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

EMmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.16 |

16

Slides by Wes J. Lloyd L14.8

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 11/23

® Questions from 11/18
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
| = Chapter 15: Address Translation |
® Chapter 16: Segmentation
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.17

17

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington -

18

Slides by Wes J. Lloyd L14.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

November 23, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.19

19

= 64KB
Address space
example

= Translation:
mapping
virtual to
physical

Virtual mapping
KB

Program Code

Heap

!

heap

(free)

stack

[

Stack

16KB

Address Space

0KB

16KB

32k ™

48K8 .

64KB

ADDRESS TRANSLATION

Operating System

(not in use)

Code

Heap

(allocated
but not in use)

Stack

(not in use)

Physical Memory

Relocated Process

November 23, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.20

20

Slides by Wes J. Lloyd

11/23/2021

L14.10

TCSS 422 A - Fall 2021
School of Engineering and Technology

BASE AND BOUNDS

= Dynamic relocation
= Two registers base & bounds: on the CPU

®m OS places program in memory

m Sets base register

{ physical address = virtual address + base }

= Bounds register
= Stores size of program address space (16KB)
m OS verifies that every address:

[0 < virtual address < bounds }

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.21

21

INSTRUCTION EXAMPLE

128 : movl 0x0(%ebx), %eax ‘ OKB 10
1KB 155
= Base = 32768 e
= Bounds =16384 Ke

= Fetch instruction at 128 (virt addr) 1 4B
= Phy addr = virt addr + base reg
= 32896 = 128 + 32768 (base)
®m Execute instruction
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) -- found x...
® Bounds register: terminate process if

= ACCESS VIOLATION: Virtual address > bounds reg 14KB
15KB
[physical address = virtual address + base J 16K8

movl 0x0(%ebx),$eax
Addl 0x03, teax
movl feax,0x0(%ebx)

Program Code

Heap

|

heap

(free)

stack

3000 Intx
Stack

TCSS422: Operating Systems [Fall 2021]

| November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.22

22

Slides by Wes J. Lloyd

11/23/2021

L14.11

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

MEMORY MANAGEMENT UNIT

= MMU
= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physical Address

(0] 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021 114.23 |

23

DYNAMIC RELOCATION OF PROGRAMS

= Hardware requirements:

| Requirements __| ______HWsupport _

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation
Translate virtual addr; check if in Translation circuitry, check limits

bounds

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s) Set code pointers to OS code to handle faults

to register exception handlers

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.24

November 23, 2021

24

Slides by Wes J. Lloyd L14.12

TCSS 422 A — Fall 2021

School of Engineering and Technology

OS SUPPORT FOR MEMORY

VIRTUALIZATION

® For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

= When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.25

25

0S: WHEN PROCESS STARTS RUNNING

m OS searches for free space for new process
= Free list: data structure that tracks available memory slots

0KB
Operating System
The OS lookup the free list
) 16KB
Free list
(not in use)
16KB 32KB Code
Hefp
¢ (allocated but not in use)
48Ks 48KB Stack
(not in use)
64KB

Physical Memory

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021

L14.26

26

Slides by Wes J. Lloyd

11/23/2021

L14.13

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

m 0S places memory back on the free list
0KB Free list OKB
l Operating System l Operating System
16KB
16K3 168 16KB
(not in use) (not in use)
L 39KB ¢ 32k8
48KB Process A 32KB (not in use)
48KB $ 48KB
(not in use) (not in use)
64KB 48KB 64KB
Physical Memory Physical Memory
TCSS422: Operating Systems [Fall 2021]
November;23;2021 School of Engineering and Technology, University of Washington - Tacoma L14.27

27

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB

base : 32KB
OKB Context Switching KB bounds ; 48KB
Operating System B Operating System
16KB 16KB
(not in use) base (not in use) base
32K8 —-1 32KB 32K8 — 48KB
Process A : bounds Process A bounds
Currently Running
48KB 48kB A8KB 64KB
b B Process B |
rocess Currently Running |
64KB 64KB |-
Physical Memory Physical Memory

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021 114.28

28

Slides by Wes J. Lloyd L14.14

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

DYNAMIC RELOCATION

= 0S can move process data when not running

OS un-schedules process from scheduler

0OS copies address space from current to new location
OS updates PCB (base and bounds registers)

OS reschedules process

e

= When process runs new base register is restored to CPU

= Process doesn’t know it was even moved!

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

November 23, 2021

29

.'Consider a 64KB computer the loads a program. The'.
BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory
address translation for a virtual address of 6000 ?

34768
38768
32769
36864
Out of bounds

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

30

Slides by Wes J. Lloyd L14.15

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 11/23

® Questions from 11/18
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
® Chapter 15: Address Translation
| = Chapter 16: Segmentation |
= Chapter 17: Free Space Management
® Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.31

31

CHAPTER 16:
SEGMENTATION

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington -

November 23, 2021

32

Slides by Wes J. Lloyd L14.16

TCSS 422 A - Fall 2021
School of Engineering and Technology

= Address space
= Contains significant unused memory
= |s relatively large
= Preallocates space to handle stack/heap growth

= | arge address spaces
= Hard to fit in memory

® How can these issues be addressed?

OKB
1KB

2KB
3KB
4KB
5KB
6KB

14KB
15KB
16KB

BASE AND BOUNDS INEFFICIENCIES

Program Code

Heap

(free)

Stack

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.33

33

MULTIPLE SEGMENTS

®E Memory segmentation

= Each is a contiguous address space

® Each segment can placed separately

® Manage the address space as (3) separate segments

= Provides logically separate segments for: code, stack, heap

= Track base and bounds for each segment (registers)

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.34

34

Slides by Wes J. Lloyd

11/23/2021

L14.17

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

SEGMENTS IN MEMORY

® Consider 3 segments:

0KB
Operating System _m
16KB — ‘
(not in use)
1 Segment Base Size
Stack Code 32K 2K
32KB {notc |r:juse) Heap 34K 2K
Hoan Stack 28K 2K
48KB (not in use)
64KB -
Physical Memory
TCSS422: Operating Systems [Fall 2021]
November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma L14.35

35

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base J

® Code segment - physically starts at 32KB (base)
® Starts at “0” in virtual address space

Base

Bounds check:
wa™m s virtual address within 2KB
i add ress Space? address

%Mm

4KB

(not in use)

Virtual Address Space Physi

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.36

| November 23, 2021

36

Slides by Wes J. Lloyd L14.18

TCSS 422 A - Fall 2021
School of Engineering and Technology

SesEnt Base Size
Heap 34K 2K
(not in use)
Code
KB | s
4200| asta
Heap Heap
6KB T l
(not in use)
Address Space

Physical Memory

32KB

kg | 104+ 34K or 34920
feenf is the desired

26KB physical address

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

® Heap starts at virtual address 4096
= The data is at 4200

= Offset= 4200 - 4096 = 104
® Physical address = 104 + 34816 (offset + heap base)

(virt addr - virt heap start)

November 23, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.37

37

® Access beyond the address space

= Heap starts at virtual address: 4096
® Data pointer is to 7KB (7168)
® |s data pointer valid?

SEGMENTATION FAULT

® Heap starts at 4096 + 2 KB seg size = 6144
m Offset= 7168 > 4096 + 2048 (6144)

6KB
7KB
8KB

Heap

I

(not in use)

Address Space

November 23, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.38

38

Slides by Wes J. Lloyd

11/23/2021

L14.19

TCSS 422 A - Fall 2021
School of Engineering and Technology

SEGMENT REGISTERS

m Used to dereference memory during translation

13 12 11 10 5 8 7 6 5 4 3 2 1 0

| I I

I I
Segment Offset

First two bits identify segment type
B Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Segment bits
| 001 0 0 0 0 0 1 1 0 1 0 0 0 | Code 00

Heap 01
K T . T l Stack 10
Segment Offset - 11

TCSS422: Operating Systems [Fall 2021]

L14.
School of Engineering and Technology, University of Washington - Tacoma 39

| November 23, 2021

39

SEGMENTATION DEREFERENCE

// get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
// now get offset
offset = VirtualAddress & OFFSET MASK
if (offset >= Bounds[Segment])
RaiseException (PROTECTION FAULT)
else
PhysAddr = Base[Segment] + Offset
Register = AccessMemory (PhysAddr)

R

= VIRTUAL ADDRESS = 01000001101000 (on heap)
® SEG_MASK = 0x3000 (11000000000000)

= SEG_SHIFT = 01 > heap (mask gives us segment code)
= OFFSET_MASK = OxFFF (00111111111111)

® OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.40

November 23, 2021

40

Slides by Wes J. Lloyd

11/23/2021

L14.20

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

STACK SEGMENT

mStack grows backwards (FILO)
® Requires hardware support:
® Direction bit: tracks direction segment grows

(not in use)
26KB T Segment Register(with Negative-Growth Support)
Stack
28KB Segment Base Size Grows Positive?
(not in use) Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Physical Memory

TCSS422: Operating Systems [Fall 2021]

L14.41
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021

41

SHARED CODE SEGMENTS

®m Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
B DLL: dynamic linked library

® 50 (linux): shared object in Linux (under /usr/lib)

= Many programs can access them

® Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Ceode 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.42

November 23, 2021

42

Slides by Wes J. Lloyd L14.21

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

Consider a program with 2KB of code, a 1 KB stack,
and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32 KB
56 KB
24 KB
4 KB
0 KB

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

43

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
"Heap segment
=Stack segment

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.44

November 23, 2021

44

Slides by Wes J. Lloyd L14.22

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

® Fine-grained
= Manage memory as list of segments

® Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

SEGMENTATION GRANULARITY - 2

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.45

45

= Consider how much free space? Not compacted
= We'll say about 24 KB oke
8KB | Operating System
®m Request arrives to allocate a 20 KB heap 16KB
segment (not in use)
24KB
Allocated
= Can we fulfil the request for 20 KB of 3206
contiguous memory? 40KB Allocated
48KB _
(not in use)
56KB
Allocated
64KB
TCSS422: Operating Systems [Fall 2021]
ety o, AV School of Engineering and Technology, University of Washington - Tacoma L1446

46

Slides by Wes J. Lloyd

L14.23

TCSS 422 A - Fall 2021
School of Engineering and Technology

COMPACTION

®m Supports rearranging memory

= Can we fulfil the request for 20 KB of
contiguous memory?

= Drawback: Compaction is slow
= Rearranging memory is time consuming
= 64KB is fast
= 4GB+ ... slow

= Algorithms:

= Best fit: keep list of free spaces, allocate the
most snug segment for the request

= Others: worst fit, first fit... (in future chapters)

0KB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Compacted

Operating System

Allocated

(not in use)

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.47 |

47

WE WILL RETURN AT

4:50PM

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington -

48

Slides by Wes J. Lloyd

11/23/2021

L14.24

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 11/23

® Questions from 11/18
® Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
® Chapter 15: Address Translation
® Chapter 16: Segmentation
| = Chapter 17: Free Space Management |
® Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021]

L14.:
School of Engineering and Technology, University of Washington - Tacoma 4.49

November 23, 2021

49

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington -

50

Slides by Wes J. Lloyd L14.25

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Fall 2021]

L14.51
School of Engineering and Technology, University of Washington - Tacoma 5

November 23, 2021

51

FREE SPACE MANAGEMENT

® How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.52

November 23, 2021

52

Slides by Wes J. Lloyd L14.26

TCSS 422 A - Fall 2021
School of Engineering and Technology

® Management of memory using

® Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

FREE SPACE MANAGEMENT

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.53

53

FRAGMENTATION

= Consider a 30-byte heap

30-byte heap: | free | used | free |
0 10 20 30

®m Request for 15-bytes

addr:0 addr:20

= Free space: 20 bytes

No available contiguous chunk - return NULL

free listt. head —» ;...10 —® 1en:10 — > NULL

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.54

54

Slides by Wes J. Lloyd

11/23/2021

L14.27

TCSS 422 A - Fall 2021
School of Engineering and Technology

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:

returns NULL
= Memory is externally fragmented - - Compaction can fix!

= Internal: Jost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Fall 2021]

L14.55

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

55

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: free | used | free |
0 10 20 30
. ddr:0 ddr:20

free list. head —» ;enflo ?_en:lo — NULL

m OS locates a free chunk to satisfy request

® Splits chunk into two, returns first chunk

| used | free |
10 20 21 30

free

30-byte heap: ‘
0

addr:0 addr:21
— NULL

free list. head —* 1...10 —® 1en:o

L14.56

TCSS422: Operating Systems [Fall 2021]
November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

56

Slides by Wes J. Lloyd

11/23/2021

L14.28

TCSS 422 A — Fall 2021

School of Engineering and Technology

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head len:10 Len:10 len:10

—* NULL

m Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
® Coalescing regroups chunks into contiguous chunk

addr:0

head len:30

— NULL

= Allocation can now proceed
® Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.57

57

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

® How does the OS know how much memory to free?

= Header block
= Small descriptive block of memory at start of chunk

:|» The header used by malloc library

ptr —>

The 20 bytes returned to caller

An Allocated Region Plus Header

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021 114.58

58

Slides by Wes J. Lloyd

11/23/2021

L14.29

TCSS 422 A — Fall 2021

School of Engineering and Technology

hptr —>

ptr —>

MEMORY HEADERS - 2

size:

20

magic: 1234567

The 20 bytes
returned to caller

Specific Contents Of The Header

® Contains size

® Pointers: for faster memory access
® Magic number: integrity checking

typedef struct _ header t {
int size;
int magic;

} header t;

A Simple Header

November 23,

2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

59

MEMORY HEADERS - 3

= Size of memory chunk is:
® Header size + user malloc size
= N bytes + sizeof(header)

m Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (void *)ptr - sizeof (header_t);:

November 23,

2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

60

Slides by Wes J. Lloyd

11/23/2021

L14.30

TCSS 422 A - Fall 2021
School of Engineering and Technology

THE FREE LIST

® Simple free list struct

type

Y

} nodet t;

struct _ node_t {
int size;
struct _ node t *next;

= Use mmap to creat

e free list

= 4kb heap, 4 byte header, one contiguous free chunk

head-»size
head->next

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap (NULL, 409&, PROT_READ|PROT_WRITE,

MAP ANON|MAP_ PRIVATE, -1,

4096 - sizeof(node t):
NULL;

0y

November 23, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

61

FREE LIST - 2

® Create and initialize free-list “heap”

node t *head

// mmap () returns a p

ointer to a chunk of free space
= mmap (NULL, 4096, PROT_READ|PROT WRITE,
MAP ANON|MAP_ PRIVATE, -1,

0):

head->»size = 4096 - sizeof(node t);
head-»next = NULL;
= Heap layout:
[virtual address: 16KB]
. header: size field
size: 4088
head —>»| next 0 | header: next field(NULL is 0)

e the rest of the 4KB chunk

N

November 23, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

62

Slides by Wes J. Lloyd

11/23/2021

L14.31

TCSS 422 A - Fall 2021
School of Engineering and Technology

Slides by Wes J.

FREE LIST: MALLOC() CALL

® Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 pbytes for size, 4 bytes for magic number
= Split the heap - header goes with each block U

A 4KB Heap With One Free Chunk A Heap : After One Allocation :
head ——> e
size: 4088 Stz 100
magic: 1234567
ptr —> 1
the rest of FI.rSt- block the 100 bytes now allocated
the 4KB chunk is used
head — E
size: 3980
next: 0
the free 3980 byte chunk
TCSS422: Operating Systems [Fall 2021]
November;23;2021 School of Engineering and Technology, University of Washington - Tacoma L14.63

63

FREE LIST: FREE() CALL

® Addresses of chunks

size: 100 [virtual address: 16KB]
8 bytes header { magic: 1234567

= Start=16384 100 bytes still allocated

+ 108 (end of 15t chunk) size 100
+ 108 (end of 2" chunk) sptr —madic 199507
Free this } 100 bytes still allocated

+ 108 (end of 3rd Chunk) block (but about to be freed)
= 16708 size: 100

magic: 1234567

100 bytes still allocated

head size: 3764
next: 0
The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.64

64

Lioyd

11/23/2021

L14.32

TCSS 422 A - Fall 2021
School of Engineering and Technology

FREE LIST

= Free(sptr)
® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

FREE() CHUNK #2

size: 100
magic: 1234567

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of
memory)

= addr - sizeof(node_t)

® Actual start of chunk #2

head size: 100
: 16708
= Free chunk #2 - sptr sptr —> et
Block
= Sptr = 16500 Now Free
size: 100

magic: 1234567

100 bytes still allocated

School of Engineering and Technology, University of Washington - Tacoma

size: 3764
= 16492 next: 0
The free 3764-byte chunk
November 23, 2021 TCSS422: Operating Systems [Fall 2021] 114,65

65

= Now free remaining chunks:

o size: 100
" Free(16392) T
= Free(16608)
size: 100
= Walk back 8 bytes for actual next. 16708
start of chunk
head = e 1m0
= External fragmentation next 16384
® Free chunk pointers
out of order
size: 3764
= Coalescing of next HIEX: L
pointers is needed
L

FREE LIST- FREE ALL CHUNKS

[virtual address: 16KB]

—

(now free)

-— |

(now free)

(now free)

—

The free 3764-byte chunk

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L14.66

66

Slides by Wes J. Lloyd

11/23/2021

L14.33

TCSS 422 A — Fall 2021

School of Engineering and Technology

GROWING THE HEAP

m Start with small sized heap
® Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
- l break sbrk() s
break— 7 . _‘ (not in use)
(not in use) AN
S
Address Space Address Space Heap

Physical Memory

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.67

67

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.68

68

Slides by Wes J. Lloyd

11/23/2021

L14.34

TCSS 422 A — Fall 2021

11/23/2021
School of Engineering and Technology

EXAMPLES

m Allocation request for 15 bytes

head —» 10 ——> 30 ——> 20 ——> NULL

® Result of Best Fit

head —> 10 —» 30 —> 3 —> NULL

® Result of Worst Fit

head —> 10 ——> 15 ——> 20 ——> NULL

TCSS422: Operating Systems [Fall 2021]
November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.69 |

69

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit

= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

November 23, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.70

70

Slides by Wes J. Lloyd L14.35

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

Which memory allocation strategy is more likely to
distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit
Worst Fit
First Fit

None of the above

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

71

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

® |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.72

November 23, 2021

72

Slides by Wes J. Lloyd L14.36

TCSS 422 A — Fall 2021

School of Engineering and Technology

BUDDY ALLOCATION

= Binary buddy allocation
= Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small...

® Consider a 7KB request

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

64KB free space for 7KB request

November 23, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

73

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

® Coalescing is simple
= Two adjacent blocks are promoted up

November 23, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

74

Slides by Wes J. Lloyd

11/23/2021

L14.37

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

.ﬁ computer system manages program memory using'.
three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation

Internal fragmentation

Coalescing
Splitting
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
75
A request is made to store 1 byte. For this scenario,
which memory allocation strategy will always locate
memory the fastest?
Best fit
Worst fit
Next fit
None of the above
All of the above
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
76

Slides by Wes J. Lloyd L14.38

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 11/23

® Questions from 11/18

® Assignment 2 - Dec 3

® Quiz 3 - Synchronized Array - Dec 2

® Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API

® Chapter 15: Address Translation

® Chapter 16: Segmentation

= Chapter 17: Free Space Management

|I Chapter 18: Introduction to Paging |
—
TCSS422: Operating Systems [Fall 2021]
| November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma L14.77

77

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington -

78

Slides by Wes J. Lloyd L14.39

TCSS 422 A - Fall 2021
School of Engineering a

nd Technology

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
= Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19
= Assignment 2 - Dec 3 (based on Ch. 30)
= Chapter 17: Free Space Management
[= Chapter 18: Introduction to Paging |
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Fall 2021]

L14.7!
School of Engineering and Technology, University of Washington - Tacoma o

November 23, 2021

79

PAGING

® Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.80

November 23, 2021

80

Slides by Wes J. Lloyd

11/23/2021

L14.40

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages

= No need to track direction of HEAP / STACK growth
Just add more pages...

= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCSS422: Operating Systems [Fall 2021]

Novemben23a202L School of Engineering and Technology, University of Washington - Tacoma

L14.81 |

81

P Table:
PAGING: EXAMPLE oy

VP1 > PF7

VP2 > PF5

= Consider a 128 byte (27) address space VP3 - PF2
with 16-byte (24) pages 0

page frame 0 of
physical memory

® Consider a 64-byte (26) (unused) page frame 1
program address space

reserved for OS

page 3 of AS page frame 2

page 0 of AS | page frame 3

0 64
(page 0 of (unused) page frame 4
16 the address space) 20
(page 1) page 2 of AS page frame 5
32 96
(page 2) (unused) page frame 6
48 112
(page 3) page 1 of AS | page frame 7
64 128
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
ety o, AV ;E:zzlzgf g:;f:;:?nzy::\edniiiﬂlolzt?gzy],.]University of Washington - Tacoma L14.82

82

Slides by Wes J. Lloyd L14.41

TCSS 422 A - Fall 2021
School of Engineering and Technology

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)

VPN offset
f ‘ 10 ']

Va5 | Va4 | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes (24),
Program Address Space: 64-bytes (2°)

VPN offset
)) Here program can have

Jjust four pages...

0 1 0 1 0 1

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.83

83

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>22)
= Stored in 128-byte (27) physical memory (8 frames—> 23)

. VPN fset
= Offset is preserved — ° fe
= 4 bits indexes any byte Virtual
f f 4 Address 0 1 0 1 0 1
= Page size is 16 bytes (24)
= Page table translates a vV
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: J, 1« 1«
VPO = PF3 Physical
VP1 > PF7 Adiress ‘1‘1‘1‘0‘1‘0‘1
VP2 - PF5 I ‘ T :
VP3 > PF2 PFN offset
CSS422: O ing S [Fall 2021]
ety o, AV ;chool of E:;T:L:?ngy::\ednic;iology, University of Washington - Tacoma L14.84

84

Slides by Wes J. Lloyd

11/23/2021

L14.42

TCSS 422 A — Fall 2021

School of Engineering and Technology

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?

® (2) What are the typical contents of the page table?

® (3) How big are page tables?

® (4) Does paging make the system too slow?

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.85

85

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 220 translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021 114.86

86

Slides by Wes J. Lloyd

11/23/2021

L14.43

TCSS 422 A — Fall 2021

School of Engineering and Technology

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
VPN,

®m Each entry requires 4 bytes (32 hits)

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved
= (note we have no status bits, so this is

unrealistically small) VPN 048576

= How much memory is required to store the page table
for 1 process?
= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.87

87

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

® |s this efficient?

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 23, 2021 114.88

88

Slides by Wes J. Lloyd

11/23/2021

L14.44

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFEN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

30XV BHTX5A4822019181716154B30211109 87 6543

2
PEN ol|o|<|55|2

a a|a

R/AW |+
P

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.89

89

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

30XV BHTX5A4822019181716154B30211109 87 6543

R/AW |+
P

2
PEN ol|o|<|55|2

a a|a

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Fall 2021]

November 23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L14.90

90

Slides by Wes J. Lloyd L14.45

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been
accessed

TCSS422: Operating Systems [Fall 2021]

L14.91
School of Engineering and Technology, University of Washington - Tacoma 9

November 23, 2021

91

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

® Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.92

November 23, 2021

92

Slides by Wes J. Lloyd L14.46

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

E Translation

= |[ssue #1: Starting location of the page table is

heeded
= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP13 PF7
: VP2 > PF5
Stored in RAM > VP3 - PE2

m |ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.93 |

93

PAGING MEMORY ACCESS

1. // Extract the VPN from the virtual address
2. VPN = (virtualAddress & VPN_MASK) >> SHIFT
3
4. // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))
6
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // Check if process can access the page
11 if (PTE.valid == False)
12 RaiseException(SEGMENTATION_FAULT)
13 else if (canAccess(PTE.ProtectBits) == False)
14 RaiseException(PROTECTION_FAULT)
15 else
16 // Access is OK: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19 Register = AccessMemory(PhysAddr)

November 23, 2021 ;E:zzlzgf g:;f:;:?nzy::\edniiiﬂlolzt?gzy],.]University of Washington - Tacoma L14.94

94

Slides by Wes J. Lloyd L14.47

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];

for (1 = 0; 1 < 1000; i++4)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, %eax, 4)
0x1028 incl %$eax

0x102c cmpl $0x03e8, %eax
0x1030 jne 0x1024

TCSS422: Operating Systems [Fall 2021]

November;23;2021 School of Engineering and Technology, University of Washington - Tacoma

L14.95

95

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

= Locations: \ .
= Page table o o o o o - g
= Array Page Table[1] I 1124 é:
= Code \ -0 &

i e S o R 8 o B R o R .

® 50 accesses 40100 — - 7132

< : <
for 5 loop T 40050 - °© -8 3
. . £ n m m H
iterations 40000 ——1m B 7232
1124 4196
: g
£ 1074 4146 8
< S
1024 4096
Memory Access
TCSS422: Operating Systems [Fall 2021]
ety o, AV School of Engineering and Technology, University of Washington - Tacoma L14.96

96

Slides by Wes J. Lloyd L14.48

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2732 /27220 =2M12 pages

2A32 [/ 2A12 =220 pages

2732 /2716 =216 pages

2732 / 2A8 = 2A24 pages

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

97

For the 4GB computer example, how many bits are
required for the VPN?

24 VPN bits (indexes
2724 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

TCSS422: Operating Systems [Fall 2021]
.. November 23243le presentationgp Frs e F i ERSAFIGTE ST AhSErSIEg SSTerpaGsshriRst PollTUERaPP He ..

98

Slides by Wes J. Lloyd L14.49

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

For the 4GB computer example, how many bits are
available for page status bits?

32-12 VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
= 16 status bits

32-20VPN bits
= 12 status bits

None of the
above
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
99
For the 4GB computer, how much space does this
page table require? (number of page table entries x
size of page table entry)
2720 entries x 4b =4 MB
2712 entries x4b =16 KB
27N 16 entries x 4b =256 KB
2724 entries x 4b =64 MB
None of the above
.. November 235202fe mssemauo%g%%?é?@?éﬁ%?ﬁg?ﬁ?ms Falrlsg‘%?gslﬁwéfgiiwmammjmwwmp s
100

Slides by Wes J. Lloyd L14.50

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

For the 4GB computer, how many page tables (for
user processes) would fill the entire 4GB of memory?

4GB /16 KB =65,536
4GB /64 MB =256
4GB/ 256 KB =16,384
4GB /4MB=1,024

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

101

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L14.102

November 23, 2021

102

Slides by Wes J. Lloyd L14.51

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

QUESTIONS

103

Slides by Wes J. Lloyd L14.52

