
TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.1Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization
with Segments,

Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 11/23

1

2

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

November 23, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

November 23, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.4

3

4

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.98 (- previous 6.08)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.41 (- previous 5.20)

November 23, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 What data structures lend themselves to our goals for
address spaces?

 Goals for OS Memory Virtualization:

▪ Transparency

▪ Protection (Security/Isolation)

▪ Efficiency (Time & Space)

 Some data structures may be more compact (space)
with lower memory virtualization overhead (time)

▪ SPACE: consider a statically declared multi -dimensional
array vs. a linked list

▪ One has a huge up-front cost, while the other grows
incrementally

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

FEEDBACK

5

6

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.4Slides by Wes J. Lloyd

 TIME: Arrays vs. linked list for sequential traversal

 The page translation cache (TLB) improves performance (TIME)

when traversing ARRAYS sequentially –

▪ Adjacent elements produce many consecutive cache hits (ch 22)

 The nodes in a LINKED LIST could be scattered anywhere in

memory

▪ They can be allocated dynamically on the heap at any time

▪ Traversal may be slower than with arrays

 What about random access to array elements and members of

a linked list ?

▪ Accessing a middle member of a list with only a head/tail pointer

requires significant traversal

▪ Array access should be easier

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK - 2

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

OBJECTIVES – 11/23

7

8

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.5Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

OBJECTIVES – 11/23

9

10

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.6Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 11/23

CHAPTER 14: THE

MEMORY API

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.12

11

12

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.7Slides by Wes J. Lloyd

 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

OBJECTIVES – 5/18

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,

calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

REALLOC()

13

14

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.8Slides by Wes J. Lloyd

 Can’t deallocate twice

 Second call core dumps

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory

for a user program

 See man page

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

SYSTEM CALLS

15

16

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.9Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

OBJECTIVES – 11/23

CHAPTER 15: ADDRESS

TRANSLATION

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.18

17

18

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.10Slides by Wes J. Lloyd

 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

OBJECTIVES – 5/18

 64KB

Address space

example

 Translation:

mapping

virtual to

physical

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

ADDRESS TRANSLATION

Virtual mapping

Address Space

19

20

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.11Slides by Wes J. Lloyd

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (virt addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

INSTRUCTION EXAMPLE

Int x

21

22

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.12Slides by Wes J. Lloyd

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in

bounds

Translation circuitry, check limits

Privileged instruction(s) to

update base / bounds regs

Instructions for modifying base/bound

registers

Privileged instruction(s)

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

23

24

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.13Slides by Wes J. Lloyd

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

OS SUPPORT FOR MEMORY

VIRTUALIZATION

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

OS: WHEN PROCESS STARTS RUNNING

25

26

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.14Slides by Wes J. Lloyd

 OS places memory back on the free list

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

OS: WHEN CONTEXT SWITCH OCCURS

27

28

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.15Slides by Wes J. Lloyd

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

DYNAMIC RELOCATION

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.3
0

29

30

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.16Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

OBJECTIVES – 11/23

CHAPTER 16:

SEGMENTATION

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.32

31

32

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.17Slides by Wes J. Lloyd

 Address space

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

BASE AND BOUNDS INEFFICIENCIES

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

MULTIPLE SEGMENTS

33

34

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.18Slides by Wes J. Lloyd

 Consider 3 segments:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in virtual address space

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

35

36

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.19Slides by Wes J. Lloyd

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – vir t heap start)

 Physical address = 104 + 34816 (of fset + heap base)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

SEGMENTATION FAULT

37

38

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.20Slides by Wes J. Lloyd

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: virtual heap address 4200 (01000001101000)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104 (isolates segment offset)

 OFFSET < BOUNDS : 104 < 2048

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

SEGMENTATION DEREFERENCE

39

40

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.21Slides by Wes J. Lloyd

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

SHARED CODE SEGMENTS

41

42

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.22Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.4
3

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

SEGMENTATION GRANULARITY

43

44

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.23Slides by Wes J. Lloyd

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

MEMORY FRAGMENTATION

45

46

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.24Slides by Wes J. Lloyd

 Supports rearranging memory

 Can we fulfil the request for 20 KB of

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms:

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

COMPACTION

WE WILL RETURN AT

4:50PM

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.48

47

48

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.25Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

OBJECTIVES – 11/23

CHAPTER 17: FREE

SPACE MANAGEMENT

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.50

49

50

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.26Slides by Wes J. Lloyd

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

OBJECTIVES – 5/18

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

FREE SPACE MANAGEMENT

51

52

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.27Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

FRAGMENTATION

53

54

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.28Slides by Wes J. Lloyd

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

ALLOCATION STRATEGY: SPLITTING

55

56

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.29Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

MEMORY HEADERS

57

58

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.30Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

MEMORY HEADERS - 3

59

60

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.31Slides by Wes J. Lloyd

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

THE FREE LIST

 Create and initialize free- list “heap”

 Heap layout:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

FREE LIST - 2

61

62

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.32Slides by Wes J. Lloyd

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

FREE LIST: FREE() CALL

Free this
block

63

64

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.33Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

FREE LIST:

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

FREE LIST- FREE ALL CHUNKS

65

66

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.34Slides by Wes J. Lloyd

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

GROWING THE HEAP

Segmented heapSegmented heap

 Best fit

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst fit

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

MEMORY ALLOCATION STRATEGIES

67

68

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.35Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

EXAMPLES

 First f it

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next fit

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

MEMORY ALLOCATION STRATEGIES - 2

69

70

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.36Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7
1

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

SEGREGATED LISTS

71

72

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.37Slides by Wes J. Lloyd

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

BUDDY ALLOCATION - 2

73

74

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.38Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7
5

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7
6

75

76

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.39Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.77

OBJECTIVES – 11/23

CHAPTER 18:

INTRODUCTION TO

PAGING

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.78

77

78

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.40Slides by Wes J. Lloyd

 Questions from 5/19

 Tuesday Class Activity: (Submit by May 22 11:59pm AOE)

 Tutorial 2 posted (pthreads, locks, conditions)

 Quiz 3 posted – Active Reading Chapter 19

 Assignment 2 - Dec 3 (based on Ch. 30)

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Tradeoffs, Context Switch

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Hybrid Tables, Multi -level Page Tables

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

OBJECTIVES – 5/21

 Split up address space of process into f ixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page frames.

 Each process has a page table which translates virtual

addresses to physical addresses

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

PAGING

79

80

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.41Slides by Wes J. Lloyd

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

PAGING: EXAMPLE
Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5
VP3 → PF2

81

82

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.42Slides by Wes J. Lloyd

 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

PAGING: ADDRESS TRANSLATION

Here program can have

just four pages…

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5

VP3 → PF2

83

84

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.43Slides by Wes J. Lloyd

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

(1) WHERE ARE PAGE TABLES STORED?

85

86

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.44Slides by Wes J. Lloyd

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.87

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this efficient?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

NOW FOR AN ENTIRE OS

87

88

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.45Slides by Wes J. Lloyd

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

PAGE TABLE ENTRY

89

90

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.46Slides by Wes J. Lloyd

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been

accessed

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.91

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

(3) HOW BIG ARE PAGE TABLES?

91

92

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.47Slides by Wes J. Lloyd

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.94

PAGING MEMORY ACCESS

93

94

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.48Slides by Wes J. Lloyd

 Example: Use this Array initialization Code

 Assembly equivalent:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.95

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.96

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

95

96

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.49Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
7

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
8

97

98

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.50Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
9

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
00

99

100

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.51Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
01

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

PAGING SYSTEM EXAMPLE

101

102

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.52Slides by Wes J. Lloyd

QUESTIONS

103

