
TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.1Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization
with Segments,

Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 11/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

November 23, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

November 23, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.4

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.98 ( - previous 6.08)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.41 ( - previous 5.20)

November 23, 2021
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 What data structures lend themselves to our goals for
address spaces?

 Goals for OS Memory Virtualization:

▪ Transparency

▪ Protection (Security/Isolation)

▪ Efficiency (Time & Space)

 Some data structures may be more compact (space)
with lower memory virtualization overhead (time)

▪ SPACE: consider a statically declared multi-dimensional
array vs. a linked list

▪ One has a huge up-front cost, while the other grows
incrementally

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

FEEDBACK

1 2

3 4

5 6

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.2Slides by Wes J. Lloyd

 TIME: Arrays vs. linked list for sequential traversal

 The page translation cache (TLB) improves performance (TIME)

when traversing ARRAYS sequentially –

▪ Adjacent elements produce many consecutive cache hits (ch 22)

 The nodes in a LINKED LIST could be scattered anywhere in

memory

▪ They can be allocated dynamically on the heap at any time

▪ Traversal may be slower than with arrays

 What about random access to array elements and members of

a linked list ?

▪ Accessing a middle member of a list with only a head/tail pointer

requires significant traversal

▪ Array access should be easier

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK - 2

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 11/23

CHAPTER 14: THE

MEMORY API

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.12

7 8

9 10

11 12

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.3Slides by Wes J. Lloyd

 Chapter 13: Introduction to memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

OBJECTIVES – 5/18

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

REALLOC()

 Can’t deallocate twice

 Second call core dumps

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory

for a user program

 See man page

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

SYSTEM CALLS

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

OBJECTIVES – 11/23

CHAPTER 15: ADDRESS

TRANSLATION

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.18

13 14

15 16

17 18

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.4Slides by Wes J. Lloyd

 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

OBJECTIVES – 5/18

 64KB

Address space

example

 Translation:

mapping

vir tual to

physical

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in

bounds

Translation circuitry, check limits

Privileged instruction(s) to

update base / bounds regs

Instructions for modifying base/bound

registers

Privileged instruction(s)

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

19 20

21 22

23 24

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.5Slides by Wes J. Lloyd

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

OS SUPPORT FOR MEMORY

VIRTUALIZATION

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

DYNAMIC RELOCATION

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.3
0

25 26

27 28

29 30

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.6Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

OBJECTIVES – 11/23

CHAPTER 16:

SEGMENTATION

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.32

 Address space

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

BASE AND BOUNDS INEFFICIENCIES

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

MULTIPLE SEGMENTS

 Consider 3 segments:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

31 32

33 34

35 36

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.7Slides by Wes J. Lloyd

 Heap star ts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – vir t heap star t)

 Physical address = 104 + 34816 (of fset + heap base)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.  Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104 (isolates segment offset)

 OFFSET < BOUNDS : 104 < 2048

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

SHARED CODE SEGMENTS

37 38

39 40

41 42

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.8Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.4
3

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms:

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

COMPACTION

WE WILL RETURN AT

4:50PM

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.48

43 44

45 46

47 48

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.9Slides by Wes J. Lloyd

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

OBJECTIVES – 11/23

CHAPTER 17: FREE

SPACE MANAGEMENT

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.50

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

OBJECTIVES – 5/18

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

FREE SPACE MANAGEMENT

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

FRAGMENTATION

49 50

51 52

53 54

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.10Slides by Wes J. Lloyd

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-f ree 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

MEMORY HEADERS

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

MEMORY HEADERS - 3

55 56

57 58

59 60

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.11Slides by Wes J. Lloyd

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

THE FREE LIST

 Create and initialize free- list “heap”

 Heap layout:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384

+ 108 (end of 1 st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

FREE LIST:

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
star t of chunk

 External fragmentat ion

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

FREE LIST- FREE ALL CHUNKS

61 62

63 64

65 66

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.12Slides by Wes J. Lloyd

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

MEMORY ALLOCATION STRATEGIES - 2

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7
1

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “ slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

SEGREGATED LISTS

67 68

69 70

71 72

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.13Slides by Wes J. Lloyd

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

BUDDY ALLOCATION - 2

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7
5

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7
6

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.77

OBJECTIVES – 11/23

CHAPTER 18:

INTRODUCTION TO

PAGING

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.78

73 74

75 76

77 78

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.14Slides by Wes J. Lloyd

 Questions from 5/19

 Tuesday Class Activity: (Submit by May 22 11:59pm AOE)

 Tutorial 2 posted (pthreads, locks, conditions)

 Quiz 3 posted – Active Reading Chapter 19

 Assignment 2 - Dec 3 (based on Ch. 30)

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Tradeoffs, Context Switch

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Hybrid Tables, Multi -level Page Tables

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

OBJECTIVES – 5/21

 Split up address space of process into fixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page f rames.

 Each process has a page table which translates vir tual

addresses to physical addresses

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

79 80

81 82

83 84

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.15Slides by Wes J. Lloyd

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.87

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef f icient?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

PAGE TABLE ENTRY

85 86

87 88

89 90

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.16Slides by Wes J. Lloyd

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dir ty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit) : Indicating that a page has been

accessed

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.91

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.94

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.95

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.96

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

91 92

93 94

95 96

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.17Slides by Wes J. Lloyd

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
7

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
8

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
9

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
00

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
01

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

PAGING SYSTEM EXAMPLE

97 98

99 100

101 102

TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.18Slides by Wes J. Lloyd

QUESTIONS

103

