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TCSS 422: OPERATING SYSTEMS

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.98  ( - previous 6.08) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.41 ( - previous 5.20)
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MATERIAL / PACE

 What data structures lend themselves to our goals for 
address spaces?

 Goals for OS Memory Virtualization:

▪ Transparency

▪ Protection (Security/Isolation)

▪ Efficiency (Time & Space)

 Some data structures may be more compact (space)
with lower memory virtualization overhead (time)

▪ SPACE: consider a statically declared multi-dimensional 
array vs. a linked list

▪ One has a huge up-front cost, while the other grows 
incrementally
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 TIME: Arrays vs. linked list for sequential traversal

 The page translation cache (TLB) improves performance (TIME) 

when traversing ARRAYS sequentially –

▪ Adjacent elements produce many consecutive cache hits (ch 22)

 The nodes in a LINKED LIST could be scattered anywhere in 

memory 

▪ They can be allocated dynamically on the heap at any time

▪ Traversal may be slower than with arrays

 What about random access to array elements and members of 

a linked list ?

▪ Accessing a middle member of a list with only a head/tail pointer 

requires significant traversal

▪ Array access should be easier
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FEEDBACK - 2

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

CHAPTER 14: THE 

MEMORY API

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.12

7 8

9 10

11 12



TCSS 422 A – Fall 2021
School of Engineering and Technology

11/23/2021

L14.3Slides by Wes J. Lloyd

 Chapter 13:  Introduction to  memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14:  Memory API

▪ Common memory errors
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OBJECTIVES – 5/18

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c
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REALLOC()

 Can’t deallocate twice

 Second call core dumps
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DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 

for a user program

 See man page
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SYSTEM CALLS

 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

CHAPTER 15: ADDRESS

TRANSLATION
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 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support
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OBJECTIVES – 5/18

 64KB 

Address space

example

 Translation:

mapping 

vir tual to

physical
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ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:
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BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr )  ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg
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INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers 

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 

bounds

Translation circuitry, check limits

Privileged instruction(s) to

update base / bounds regs

Instructions for modifying base/bound 

registers

Privileged instruction(s) 

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

19 20

21 22

23 24
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 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time
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OS SUPPORT FOR MEMORY 

VIRTUALIZATION

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots
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OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list
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OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)
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OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it  was even moved!
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DYNAMIC RELOCATION
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 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

CHAPTER 16: 

SEGMENTATION
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 Address space 

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?
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BASE AND BOUNDS INEFFICIENCIES

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space 

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)
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MULTIPLE SEGMENTS

 Consider 3 segments:
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SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space
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ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

31 32
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 Heap star ts at vir tual  address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – vir t heap star t)

 Physical  address = 104 + 34816  (of fset + heap base)
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.  Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: vir tual heap address 4200 (01000001101000)
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SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000                     (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap            (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104        ( isolates segment offset)

 OFFSET < BOUNDS :  104 < 2048
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows
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STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so ( linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

November 23, 2021
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SHARED CODE SEGMENTS
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3

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

November 23, 2021
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SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments
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SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?
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MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms: 

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)
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COMPACTION

WE WILL RETURN AT 

4:50PM
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 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

CHAPTER 17: FREE 

SPACE MANAGEMENT
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 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

November 23, 2021
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OBJECTIVES – 5/18

 How should free space be managed, when satisfying 

variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 

approaches?
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FREE SPACE MANAGEMENT

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL
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FRAGMENTATION
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 External: OS can compact

▪ Example: Client asks for 100 bytes:  malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example:  Client asks for 100 bytes:  malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

November 23, 2021
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FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 23, 2021
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ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist  of  3-f ree 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

November 23, 2021
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

November 23, 2021
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MEMORY HEADERS

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 23, 2021
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 23, 2021
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MEMORY HEADERS - 3
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 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

THE FREE LIST

 Create and initialize free- list “heap”

 Heap layout:

November 23, 2021
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FREE LIST - 2

 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

November 23, 2021
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FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 

+ 108 (end of 1 st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708
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FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492
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FREE LIST: 

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual 
star t  of chunk

 External fragmentat ion

 Free chunk pointers 
out  of order

 Coalescing of next  
pointers is needed
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FREE LIST- FREE ALL CHUNKS
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 Start with small sized heap

 Request more memory when full

 sbrk(), brk()
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GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small 

(and potentially less useful  -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk
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MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit
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EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list 

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2
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 For popular sized requests 

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized 

requests (object caches)?

 If  a given cache is low in memory, can request “ slabs” of 

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used
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SEGREGATED LISTS
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 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2
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 Questions from 11/18

 Assignment 2 - Dec 3

 Quiz 3 – Synchronized Array - Dec 2

 Tutorial 2 – Pthread, locks, conditions tutorial - Nov 30

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 11/23

CHAPTER 18:

INTRODUCTION TO

PAGING
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 Questions from 5/19

 Tuesday Class Activity: (Submit by May 22 11:59pm AOE)

 Tutorial 2 posted (pthreads, locks, conditions)

 Quiz 3 posted – Active Reading Chapter 19

 Assignment 2 - Dec 3  (based on Ch. 30)

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Tradeoffs, Context Switch

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Hybrid Tables, Multi -level Page Tables
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OBJECTIVES – 5/21

 Split up address space of process into fixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which 

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots 

called page f rames.

 Each process has a page table which translates vir tual 

addresses to physical addresses
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PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space 

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages
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ADVANTAGES OF PAGING

 Consider a 128 byte (27)  address space 

with 16-byte (24)  pages  

 Consider a 64-byte (26)  

program address space
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PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 PAGE: Has two address components

▪ VPN: Virtual Page Number   (serves as the page ID)

▪ Offset: Offset within a Page  ( indexes any byte in the page)

 Example: 

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)
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PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

 Consider a 64-byte (26)  program address space (4 pages→22)

 Stored in 128-byte (27)  physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual  Page Number (VPN) to 

a Physical  Frame Number (PFN)
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EXAMPLE:

PAGING ADDRESS TRANSLATION 

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2
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 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations 

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot ( i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is 
unrealistically small)

 How much memory is required to store the page table 
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits), 

the page table consumes 10% of memory

400 MB / 4000 GB

 Is  this ef f icient?
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NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page 

numbers (VPN) to the physical address (Physical Frame 

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY
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 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read 

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical 

memory or on disk(swapped out)

 Dir ty Bit: Indicating whether the page has been modified since 

it was brought into memory

 Reference Bit(Accessed Bit) : Indicating that a page has been 

accessed

November 23, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.91

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is 
needed

▪HW Support: Page-table base register

▪ stores active process 

▪Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address 

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.

4. // Form the address of the page-table entry (PTE) 

5. PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.

7. // Fetch the PTE 

8. PTE = AccessMemory(PTEAddr) 

9.

10. // Check if process can access the page 

11. if (PTE.Valid == False) 

12. RaiseException(SEGMENTATION_FAULT) 

13. else if (CanAccess(PTE.ProtectBits) == False) 

14. RaiseException(PROTECTION_FAULT) 

15. else

16. // Access is OK: form physical address and fetch it 

17. offset = VirtualAddress & OFFSET_MASK 

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19. Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
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 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 

VPN?

 If  we assume the use of 4-byte (32 bit)  page table entries, 

how many bits are available for status bits?

 How much space does this page table require?  

# of page table entries x size of page table entry  

 How many page tables (for user processes) 

would fill the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE
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QUESTIONS
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