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OBJECTIVES - 11/23

| = Questions from 11/18 |
= Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Zoom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e
TCSS422: Computer Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L3

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCS$422: Computer Operating Systems [Fall 2021]

R s School of Engineering and Technology, University of Washington - Tacoma L14.4

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (29 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 5.98 (\ - previous 6.08)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.41 (T - previous 5.20)

TCSS422: Computer Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington -Tacoma 14s

FEEDBACK

= What data structures lend themselves to our goals for
address spaces?
= Goals for 0S Memory Virtualization:
= Transparency
= Protection (Security/Isolation)
= Efficiency (Time & Space)

= Some data structures may be more compact (space)
with lower memory virtualization overhead (time)
= SPACE: consider a statically declared multi-dimensional
array vs. a linked list
= One has a huge up-front cost, while the other grows
incrementally

TCS3422: Operating Systems [Fall 2021] e
School of Engineering and Technology, University of Washington - Tacoma

‘ November 23, 2021
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FEEDBACK - 2 OBJECTIVES - 11/23
= TIME: Arrays vs. linked list for sequential traversal = Questions from 11/18
= The page translation cache (TLB) improves performance (TIME) |I Assignment 2 - Dec 3 |

when traversing ARRAYS sequentially -

= Quiz 3 - Synchronized Array - Dec 2
= Adjacent elements produce many consecutive cache hits (ch 22)

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= The nodes in a LINKED LIST could be scattered anywhere in = Chapter 14: The Memory API

memory .

= Ch r 15: Addr Translation
= They can be allocated dynamically on the heap at any time Chapter 15: Address E_‘ slatio
= Traversal may be slower than with arrays = Chapter 16: Segmentation

= Chapter 17: Free Space Management
= What about random access to array elements and members of = Ch 18: 1 d . Pagi
a linked list 2 apter 18: Introduction to Paging

= Accessing a middle member of a list with only a head/tail pointer
requires significant traversal
= Array access should be easier

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma L7 Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L

OBJECTIVES - 11/23 OBJECTIVES - 11/23
= Questions from 11/18 = Questions from 11/18
= Assignment 2 - Dec 3 = Assignment 2 - Dec 3
|' Qulz 3 - Synchronlzed Array - Dec 2 | = Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30 |- Tutorlal 2 - Pthread, locks, condIitlons tutorlal - Nov 30 |
= Chapter 14: The Memory API = Chapter 14: The Memory API
= Chapter 15: Address Translation = Chapter 15: Address Translation
= Chapter 16: Segmentation = Chapter 16: Segmentation
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
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OBJECTIVES - 11/23

® Questions from 11/18

= Assignment 2 - Dec 3

® Quiz 3 - Synchronized Array - Dec 2

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

[= Chapter 14: The Memory API ] CHAPTER 14: THE

= Chapter 15: Address Translation
= Chapter 16: Segmentation M EMORY API
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (U EHETEE IR School of Engineering and Technology, University of Washington - Tacoma L Raseesd a2 School of Engineering and Technology, University of Washington -
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OBJECTIVES - 5/18

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

TCS5422: Operating Systems [Fall 2021]

1413

REALLOC()

#include <stdlib.h>»

*realloc(void *ptr, size_t size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

= void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma La1e

14

‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma.
13
DOUBLE FREE
£ *x = (int *)malloc( (int)):
free(x)
free(x):

= Can’t deallocate twice
= Second call core dumps

* [ located [ W e

Heap

L Hap |

v i free(x) | free(x)

. ] > (e L Undefined
{ i Error

School of Engineering and Technology, University of Washington - Tacoma

4 {
suack | | T Stack
16K8 268 < X 16KB 2KB(invalid) -l "
Address Space Address Space
‘ November 23, 2021 TCSS422: Operating Systems [Fall 2021] 11415

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

TC55422: Operating Systems [Fall 2021]
‘ [November23,12024 School of Engineering and Technology, University of Washington - Tacoma L1416
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OBJECTIVES - 11/23

® Questions from 11/18
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2

= Chapter 14: The Memory API

| = Chapter 15: Address Translation

= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

TCS5422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

11417
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CHAPTER 15: ADDRESS

TRANSLATION

‘TCSS422: Operating Systems [Fall 2021]

loverbenzz 2023 School of Engineering and Technology, University of Washington -

18
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: i
= Chapter 15: Address translation G oxp LVimual mapping | e
= Base and bounds Address space Program Code Opersting yetem
= HW and OS Support example e
Heap -
= Translation: -
. 32¢8 “
mapping I fade F
h o ]
virtual to e : 1
physical free) but not in use) 3
]
o 48KE. Stack 2
not in use)
Stack
16KB ’ ey )
‘Address Space hysical Memory
TCSS422: Oy ating Syste [Fall 2021] TCS5422: O iting Syste [Fall 2021]
‘ (Lo School of Enginering and Technology, Uriverity of Washington - Tacoma Lo ‘ (I R ‘ S TP e e ey Ay s e a0

19 20

BASE AND BOUNDS INSTRUCTION EXAMPLE

= Dynamic relocation 128 : movl O0x0(%ebx), %eax |
= Two registers base & bounds: on the CPU = Base = 32768 e | Program Code
® Bounds =16384 e hese
gaCellaceslproe e miinime meny = Fetch instruction at 128 (virt addr) 1 4KE
= Sets base register = Phy addr = virt addr + base reg
p = 32896 = 128 + 32768 (base) hess
l physical address = virtual address + base ] = Execute instruction

= Bounds register = Load from address (var x is @ 15kb=15360)
0 = 48128 = 15360 + 32768 (base) -- found x... stack
= Stores size of program address space (16KB) 0 B (AR O pees
= OS verifies that every address: :
y = ACCESS VIOLATION: Virtual address > bounds reg K8
0 < virtual address < bounds ( ) 15€8 [aco IntX
| physical address = virtual address + base 5 Stack
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (B R Schol of Engineering and Technology, University of Washington - Tacoma a2l ‘ W28, A7) School of Exgineering and Technology, Uriversiy of Washington - Tacoma a2

21 22

MEMORY MANAGEMENT UNIT DYNAMIC RELOCATION OF PROGRAMS

= MMU
= Portion of the CPU dedicated to address translation

| Requiemens __|_____Hwsuppot _|
= Contains base & bounds registers q

= Hardware requirements:

Privileged mode CPU modes: kernel, user
= Base & Bounds Example: Base / bounds registers Registers to support address translation
= Consider address translation Translate virtual addr; check if in Translation circuitry, check limits
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location bounds
Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs reisters
o 16384 Privileged instruction(s) Set code pointers to 0S code to handle faults
1024 17408 to register exception handlers
3000 19384 Ability to raise exceptions For out-of-bounds memory access, or
FAULT 4400 20784 (out of bounds) attempts to access privileged instr.
[ ovemberzsaon [0 oo s (208 iin s [ vovemberzsaon [ 502 e s (208 gt s

23 24
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0S SUPPORT FOR MEMORY

VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

= When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at 0OS boot time

TCS5422: Operating Systems [Fall 2021]

(AR kel School of Engineering and Technology, University of Washington - Tacoma

1425

0S: WHEN PROCESS STARTS RUNNING

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

KB
Operating System
The OS lookup the free list
) 16k
Free list
(not in use)
ED R — . —
Heap
e 48KB i
(not in use)
6aKke
Physical Memory
TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L1426

25

26

= 0S places memory back on the free list
s Free list s
l Operating System Operating System
16¢8 168
16K8
e (ot in use) (not in use)
i Process A 32K (not in use)
a8¢s l aaes
(ot in use) (not in use)
64KD 48KB GNB B
Physical Memary Physical Memory
TCS5422: Operating Systems [Fall 2021]
‘ November 23,2021 School of Engineering and Technology, University of Washington - Tacoma .27

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

oa Context Switching T8
Operating System — Operating System

16K8 16K8

Process A PCH

{net in use) (ot in use) base

3B

32K8

Pracess A bounds
aeKa s 64k8
Pracess B mcess B
Curmantly Running
(20:] sy
Physical Memory Physical Memory
TC55422: Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma .28

27

DYNAMIC RELOCATION

= 0S can move process data when not running
. 0S un-schedules process from scheduler

. 0S updates PCB (base and bounds registers)

1
2.
S
4. OS reschedules process

= Process doesn’t know it was even moved!

0S copies address space from current to new location

= When process runs new base register is restored to CPU

TCS3422: Operating Systems [Fall 2021]

‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma

11429

29
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BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory
address translation for a virtual address of 6000 ?

34768

38768

32769

36864

Out of bounds
- — - n

[ | |
"Consider a 64KB computer the loads a program. The'

30

L14.5



TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

OBJECTIVES - 11/23

= Questions from 11/18
= Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2

= Chapter 14: The Memory API
= Chapter 15: Address Translation
| = Chapter 16: Segmentation |
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

TCS5422: Operating Systems [Fall 2021]

l (AR kel School of Engineering and Technology, University of Washington - Tacoma.

L1431

CHAPTER 16:

SEGMENTATION

TCSS422: Operating Systems [Fall 2021)

ctemben2aianzt School of Engineering and Technology, University of Washington -

31

oKB

= Address space 1%8
. . e 268

= Contains significant unused memory x8

= Is relatively large poe

= Preallocates space to handle stack/heap growth &

= Large address spaces
= Hard to fit in memory

= How can these issues be addressed?

14K8
158
16K8

BASE AND BOUNDS INEFFICIENCIES

Program Code

free)

TCS5422: Operating Systems [Fall 2021]

l [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma

33

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System
16K8 ‘
(net in use)
i Segment Base Size
e Code 32K 2K
Tith (not in use) Heap e —
Fiean Stack  2BK 2K
B notin use)
64KB -
Physical Memaory

TCS5422: Operating Systems [Fall 2021]

l e School of Engineering and Technology, University of Washington - Tacoma

u43s

35
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MULTIPLE SEGMENTS

= Memory segmentation

= Manage the address space as (3) separate segments
= Each is a contiguous address space
= Provides logically separate segments for: code, stack, heap

= Each segment can placed separately

= Track base and bounds for each segment (registers)

|

TCSS422: Operating Systems [Fall 2021]

[November23,12024 School of Engineering and Technology, University of Washington - Tacoma

L1434

34

ADDRESS TRANSLATION: CODE SEGMENT

physical address = of fset + base ‘

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Bounds check:
Is virtual address within 2KB

address space?

| (notinuse) |

|
Virtual Address Space Physical Address Space

|

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

11436

November 23, 2021 [

36
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ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Sequent  mase  size
=3 ETar
inot in use)
| Cade
B ¢
-
Heso Heap
8 T
(notin use)
Address Space

Physical Memory

TCS5422: Operating Systems [Fall 2021]

‘ November 23, 2021

School of Engineering and Technology, University of Washington - Tacoma

11437

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) Jl —
BKE T
KB | mot in use)
8KB

Address Space

TCSS422: Operating Systems [Fall 2021)

‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma

L1438

37

38

SEGMENT REGISTERS

= Used to dereference memory during translation

13 12 11 10 8 8 7 & 5 4 3 2 1 0

|
| |

T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment bits

‘ ¢ 1 0 0 0 0 0 1 1 0 1 0 0 0 | Code 00
i ) ] Heap 01

T T stack 10
Segment Offset - 11

TCSS422: Operating Systems [Fall 2021]

‘ November 23,2021 School of Engineering and Technology, University of Washington - Tacoma

11439

SEGMENTATION DEREFERENCE

1 4
: seqment = (virtualaddress MASK) >> SEG_SHIFT
1

5 i

€ RaiseException (PROTEC]

7

i eqment] + Offset

o ssMemory (hyshddr)

= VIRTUAL ADDRESS = 01000001101000

= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
= OFFSET_MASK = OxFFF (001111411411111)
= OFFSET = 000001101000 = 104
= OFFSET < BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

TCSS422: Operating Systems [Fall 2021]

‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L1440
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STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
2653 # Segment Register(with Negative-Growth Support)
Stack
28K8 Se: mt Base Size Grows Positive?
¢ i 5 Coda 32K 2K
(not in use)
Heap 34K 2K 1
Stack 28K 2K a

Physical Memary

TCS3422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L441

41
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SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

= .so (linux): shared object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K ] Read-Write

TCS5422: Operating Systems [Fall 2021]

‘ (U GREE R School of Engineering and Technology, University of Washington -Tacoma

1442

42
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.'Considera program with 2KB of code, a1 KB stack,'.

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4 KB
0KB

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TC55422; Operating Systems [Fall 2021]
l Eesnisie poal [ School of Engineering and Technology, University of Washington - Tacoma Lia.aa
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SEGMENTATION GRANULARITY -2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

TCS5422: Operating Systems [Fall 2021]
l [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L1445

MEMORY FRAGMENTATION

= Consider how much free space? Mot compacted
= We'll say about 24 KB ke
8KB | Opsrating System
= Request arrives to allocate a 20 KB heap 16K8
segment {not in use)
24x8
Allocated
= Can we fulfil the request for 20 KB of 3K R
i 2
contiguous memory? 40¢8 Allocated
BB ot inuse)
SEKE
Allocated
84K8
TCSS422: Oy ting Systems [Fall 2021]
l [November23,12024 School of Erp;i:ele':igng andmrsechnology, University of Washington - Tacoma L1446

WE WILL RETURN AT

4:50PM

‘TCSS422: Operating Systems [Fall 2021]
loverbenzz 2023 School of Engineering and Technology, University of Washington -

= Supports rearranging memory Compacted
o8
= Can we fulfil the request for 20 KB of 83 | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow s
= Rearranging memory is time consuming Aliocated
= 64KB is fast a8
= 4GB+ ... slow 40K8
= Algorithms: a8
X . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) Bace
TCSS422: Operatir e [Fall 2021]
l (U EHETEE IR e e e e e e L
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OBJECTIVES - 11/23

= Questions from 11/18

= Assignment 2 - Dec 3

= Quiz 3 - Synchronized Array - Dec 2

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= Chapter 14: The Memory API CHAPTER 17: FREE

= Chapter 15: Address Translation
= Chapter 16: Segmentation SPACE MANAGEM ENT

| = Chapter 17: Free Space Management |
= Chapter 18: Introduction to Paging

TC55422; Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ W R R School of Engineering and Technology, University of Washington - Tacoma. L1449 ctemben2aianzt School of Engineering and Technology, University of Washington - Tl L1450

49 50

OBJECTIVES - 5/18 FREE SPACE MANAGEMENT

= Chapter 17: Free Space Management
= Fr ation, Splitting, coalesci
= The Free List
= Memory Allocation Strategies

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma. L1451 [November23,12024 School of Engineering and Technology, University of Washington - Tacoma L1452

51 52

FREE SPACE MANAGEMENT FRAGMENTATION

= Management of memory using = Consider a 30-byte heap

30-byte heap: [ free [ used | free

= Only fixed-sized units ° w @ 3
= Easy: keep a list
= Memory request - return first free entry = Request for 15-bytes

Simple search addr:0 addr:20

free list head —»fon;gp —™ lemszg > NULL

= With variable sized units
= More challenging
= Results from variable sized malloc requests = Free space: 20 bytes

= Leads to fragmentation
= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma Las3 e Lase

School of Engineering and Technology, University of Washington - Tacoma

53 54
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FRAGMENTATION - 2 ALLOCATION STRATEGY: SPLITTING

= External: OS can compact = Request for 1 byte of memory: malloc(1)
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: | free [LUsedl] free
0 10 20

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

addr:0 addr:20

free list [head —* S..tip —* emsao —* NULL

= Internal: lost space - OS can’t compact = 0S locates a free chunk to satisfy request
= 0S returns memory units that are too large = Splits chunk into two, returns first chunk
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: [ free  TSRINIGY free |
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk free list  head — poarit — S s UL

= Memory is lost, and unaccounted for - can't compact

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ W R R School of Engineering and Technology, University of Washington - Tacoma L5 Eesnisie poal L1456

School of Engineering and Technology, University of Washington - Tacoma

55 56

ALLOCATION STRATEGY: COALESCING MEMORY HEADERS

= Consider 30-byte heap

= free(void *ptr): Does not require a size parameter
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

e — T = How does the OS know how much memory to free?
head —* e~ femiio > temio —* NULL
= Request arrives: malloc(30) = Header block
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists! = Small descriptive block of memory at start of chunk

= Coalescing regroups chunks into contiguous chunk ]_ The header used by ma1oc fibrary
mallo

7 —

head —» So0a0 —» NULL o

The 20 bytes returned to caller
= Allocation can now proceed

= Coalescing is defragmentation of the free space list An Allocated Region Flus Header
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L7 ‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma Lua.se

57 58

hptr = o = Size of memory chunk is:
N [magic: 1234567 | ot _header ¢ ( = Header size + user malloc size
il magies = N bytes + sizeof(header)
The 20 bytes } header_t;
returned to caller
S E—— A Simple Header = Easy to determine address of header
Specific Contents Of The Header
i fres(void *ptr) {
n Contains SiZe header_t *hptr = ( *)ptr - (header_t):
N 1
= Pointers: for faster memory access
= Magic number: integrity checking
TCSS422: Operating Syste [Fall 2021] TCSS422: O iting Syste [Fall 2021]

59 60
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THE FREE LIST

= Simple free list struct

} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

LL, 4096, PROT_READ|PRGT_WRITE,
MAP_AN(

MAP_PRIVATE, -1, 0)i

TCS5422: Operating Systems [Fall 2021]

‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma

L1461

FREE LIST - 2

= Create and initialize free-list “heap”

node_t *head = mmap(NULL, 4036, PROT_READ|PI
L, 0
head->size 6
head->next =
= Heap layout:
[virtual address: 16KB]
- header: size field
size: 4088
head —»| next 0 | header: next field(NULL is 0}
b the rest of the 4KB chunk
TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal ‘ School of Engineering and Technology, University of Washington - Tacoma a6z
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FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation

head —>

the rest of
the 4KB chunk |

the 100 bytes now allocsted

the free 3980 byte chunk

TCSS422: Operating Systems [Fall 2021]

‘ November 23,2021 School of Engineering and Technology, University of Washington - Tacoma
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FREE LIST: FREE() CALL

= Addresses of chunks

100 bytes still allocated

virtual adcress: 16K8)
8 bytes haader {

= Start=16384
+ 108 (end of 15t chunk)
+ 108 (end of 2" chunk) sptr o0t —
ytes still allocate

+ 108 (end of 3" chunk) {but about o be freed)
= 16708

[ magic: 1234567

100 bytes stil allocated
Pesd —me e
next:
The free 3764-byte chunk
Free Space With Three Chunks Allccated
TCSS422: Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineeing and Technology, Universty of Washington ~Tacoma Lia.ea
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FREE LIST:

FREE() CHUNK #2

= Free(sptr)
(e 100
= Qur 3 chunks start at 16 KB

(@ 16,384 bytes)

= Free chunk #2 - sptr
= Sptr = 16500
= addr - sizeof(node_t)

100
= Actual start of chunk #2 Sze 3764 |-
« 16492 oot 0

[virtual address: 16K8]

100 bytes still allocated

(now a free chunk of

memory)

bytes still allocated

The free 3763-byte chunk

TCS3422: Operating Systems [Fall 2021]
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FREE LIST- FREE ALL CHUNKS

= Now free remaining chunks: virtusl address: 16KB]

- 5 [ -
= Free(16392)
= Free(16608) {now free)
size: 100
= Walk back 8 bytes for actual next. 16708
start of chunk
- (now free)
head —| oo
= External fragmentation et TR
= Free chunk pointers
out of order (now free)
= Coalescing of next

pointers is needed The free 3764-byte chunk

7CS5422: Operating Systems [Fall 2021]
‘ (U GREE R School of Engineering and Technology, University of Washington -Tacoma Lase
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GROWING THE HEAP MEMORY ALLOCATION STRATEGIES

= Start with small sized heap = Best fit
= Request more memory when full
= sbrk(), brk()

= Traverse free list
= |dentify all candidate free chunks

= Note which is smallest (has best fit)
Segmented hea e « "o
g! P = When splitting, “leftover” pieces are small
(not in use) {not in use) (and potentially less useful -- fragmented)
Heap Heap Heap Heap
l brosk ek = Worst fit
break —H— N
. t .
(not in use) | N B = Traverse free list
Address Space Address Space | Heap = |ldentify largest free chunk
Physical Memory = Split largest free chunk, leaving a still large free chunk
TCSS422: Oy ing Sy [Fall 2021] TCSS422: Oy ling Sy [Fall 2021]
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EXAMPLES MEMORY ALLOCATION STRATEGIES - 2

= Allocation request for 15 bytes = First fIt

= Start search at beginning of free list

= Find first chunk large enough for request

= Split chunk, returning a “fit” chunk, saving the remainder
= Result of Best Fit = Avoids full free list traversal of best and worst fit

head —> 10 —» 30 —> 20 —> NULL

head —» 10 —> 30 —s 5 —> NULL = Next flt

= Similar to first fit, but start search at last search location

) = Maintain a pointer that “cycles” through the list

® Result of Worst Fit = Helps balance chunk distribution vs. first fit

head —>L 20— 18—l 20— oL = Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

School of Engineering and Technology, University of Washington - Tacoma
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[ | |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could SEGREGATED LISTS
help when coalescing the free space list?

= For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.
Best Fit = Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

Worst Fit = How much memory should be dedicated for specialized
requests (object caches)?

First Fit

= |f a given cache is low in memory, can request “slabs” of
None of the above memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

All of the above

.. vy . — n ‘ P A 7CS5422: Operating Systems [Fall 2021] an

School of Engineering and Technology, University of Washington - Tacoma
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BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

| 64 KB ‘

| |

| 32K | 32KB ‘
|

B KB

64KE free space for 7KB request

TCS5422: Operating Systems [Fall 2021] 1473
School of Engineering and Technology, University of Washington - Tacoma

l November 23, 2021

73

three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation
Internal fragmentation
Coalescing

Splitting

.'A computer system manages program memory using'.

75

OBJECTIVES - 11/23

® Questions from 11/18
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
|l Chapter 18: Introduction to Paging |

School of Engineering and Technology, University of Washington - Tacoma

l November23, 2021 TCS5422: Operating Systems [Fall 2021] arr
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BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

= Coalescing is simple
= Two adjacent blocks are promoted up

TC55422; Operating Systems [Fall 2021]
l Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma aze
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.'A request is made to store 1 byte. For this scenario,

which memory allocation strategy will always locate
memory the fastest?

Best fit

Worst fit

Next fit

None of the above

All of the above
- "

76

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Fall 202

1
Rorenbres 2021 School of Engineering and Technology, University of Washington -
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OBJECTIVES - 5/21 PAGING

= Questions from 5/19

= Split up address space of process into fixed sized pieces

= Tuesday Class Activity: (Submit by May 22 11:59pm AOE) called pages

= Tutorial 2 posted (pthreads, locks, conditions)

= Quiz 3 posted - Active Reading Chapter 19 = Alternative to variable sized pieces (Segmentation) which
= Asslgnment 2 - Dec 3 (based on Ch. 30) suffers from significant fragmentation

= Chapter 17: Free Space Management

= Physical memory is split up into an array of fixed-size slots

| = Chapter 18: Introduction to Paging | called page frames.
= Chapter 19: Translatlon Lookaslde Buffer (TLB)
* TLB Algorithm, Tradeoffs, Context Switch = Each process has a page table which translates virtual

= Chapter 20: Paging: Smaller Tables addresses to physical addresses
= Smaller Tables, Hybrld Tables, Multl-level Page Tables

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma. L7 Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma Lia.80
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Page Table:

ADVANTAGES OF PAGING PAGING: EXAMPLE VPO > PF3

VP1 > PF7
VP2 > PF5
= Flexibility = Consider a 128 byte (27) address space VP3 > PF2
= Abstracts the process address space into pages with 16-byte (2¢) pages ¢ TIga| peoe fiame 0 of
= No need to track direction of HEAP / STACK growth 16 Physies| memory
= Consider a 64-byte (2°) (unused) | page frame 1

Just add more pages...
= No need to store unused space
As with segments...

program address space poge 3 of A5 | page frame 2

page D of AS | page frame 3

[

(page 0 of {unused) page frame 4
16 | the address space) :
= Simplicity (page 1) psge 2 of AS | page frame 5
2
= Pages and page frames are the same size (page 2) (unused) | page frame &
48 ¢ i
= Easy to allocate and keep a free list of pages o (page 3) psge 1o AS | page frame7
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L8 ‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma .82
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EXAMPLE:
PAGING: ADDRESS TRANSLATION P
PAGING ADDRESS TRANSLATION
= PAGE: Has two address components = Consider a 64-byte (2°) program address space (4 pages—>22?)
= VPN: Virtual Page Number (serves as the page ID) = Stored in 128-byte (27) physical memory (8 frames—>2%)

VPN offset
| N —

= Offset: Offset within a Page (indexes any byte in the page) = Offset is preserved

WEN offset = 4 bits indexes any byte Virtual .
i : e address | 0 |10t et
= Page size is 16 bytes (24) _1
Vas |Vad Va3 | Va2 | Val | Va0 = Page table translates a U
= Example: Virtual Page Number (VPN) to Address
Page Size: 16-bytes (2%), a Physical Frame Number (PFN) Translation
Program Address Space: 64-bytes (2°) Page Table: [
VPN ffset VPO > PF3 . .
o Here program can have VP1 > PF7 Physical ‘ 1011 ‘ ] ‘ 10 | 1
— —— Address :
: Justfour pages... VP2 > PF5 T - i
o1 o101 VP3 > PF2 o offsct
N e— I Bl o

Slides by Wes J. Lloyd L14.14
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PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

® (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

TC55422; Operating Systems [Fall 2021]
(AR kel School of Engineering and Technology, University of Washington - Tacoma L14ss
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PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
. a VPN,

= Each entry requires 4 bytes (32 bits) 2

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPNq4g576

= How much memory is required to store the page table
for 1 process?
= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TC55422; Operating Systems [Fall 2021]
November 23,2021 School of Engineering and Technology, University of Washington - Tacoma L487
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NVNBYBXEMNBRADPBUBBUB LU0 8 7 6543210
| PFN -g’gn‘<§§£§a
An %86 Page Table Entry(PTE)
TC55422: Operating Systems [Fall 2021]
‘ November23, 2021 | 50/ of engineering and Technology, University of Washington - Tacoma L1489
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(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 bytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L1486
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NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficlent?

TC55422: Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma Lia.ss
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PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

o [alg]e
PFN B “|t";' 2

An x86 Page Table Entry(PTE)

89
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PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TC55422; Operating Systems [Fall 2021]
‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma L1
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(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TC55422; Operating Systems [Fall 2021]
Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma .02

91

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?
= Translation

= |ssue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:

stores active process VPO > PF3

m . VP1 > PF7
Facilitates translation

Stored in RAM > VP2 > PF5

VP3 > PF2

= |ssue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Fall 2021] L1483
School of Engineering and Technology, University of Washington - Tacoma

‘ November 23, 2021
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PAGING MEMORY ACCESS

1 // extract the vPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
Elo
4, // Form the address of the page-table entry (PTE)
5s PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // check if process can access the page
11. if (PTE.valid == False)
12. RaiseException(SEGMENTATION_FAULT)
13. else 1f (canAccess(PTE.ProtectBits) == False)
14. RafseExcept{on(PROTECTION_FAULT)
15. else
16. // Access 1s ok: form physical address and fetch {1t
17. offset = virtualAddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
TCS5422; Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma L1a.04
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COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

array (100017

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

0x1024 movl $0x0, (4edi, beax, 41
o p
0x10

Dx10

x
1 50%03s8, %eax
ne 0x1024

TCSS422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 145

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Tabla(29]
= Locations: N 1224
= Page table o o B o =} w2
= Array Page Tablel1] 1124 3','
 Code “\‘_‘ 1074 %

00000 0000-DoL0— 00000001 102

= 50 accesses

2

for 5 loop 0sp - *© . }»'ze:

N . L} 2232

iterations 0 = n 32
e
a6 3
T LESET LI T LB

0 30 40 50
Memory Access
TCS5422: Operating Systems [Fall 2021]
‘ (U GREE R School of Engineering and Technology, University of Washington - Tacoma L
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Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2432 /2A20 = 2712 pages

2/32 [ 2A12 = 2720 pages

2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

") ove comtent. X hely L

11/23/2021

[ | |
"For the 4GB computer example, how many bits are”

required for the VPN?

24 VPN bits (indexes
2°24 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

) lovember 2352024,

TCSS422: Operating Systems [Fall 2021]
L] i

L14m
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[ | |
"For the 4GB computer example, how many bits are”

available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

98

[ | |
" Forthe 4GB computer, how much space does this "

page table require? (number of page table entries x
size of page table entry)

2A20 entries x4b=4 MB

2712 entries x 4b = 16 KB

2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

) lovember 2352024,

TCSS422: Operating Systems [Fall 2021] L14m
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None of the
above
.. fove comtent. ..
99
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|
* For the 4GB computer, how many page tables (for "
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB=65,536
4GB/64MB=256
4GB/ 256 KB = 16,384
4GB/ 4MB=1,024

None of the above

100

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
# of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

7CS5422: Operating Systems [Fall 2021]
‘ (U GREE R School of Engineering and Technology, University of Washington - Tacoma L0z
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QUESTIONS
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