TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

TCSS 422: OPERATING SYSTEMS

Memory Virtualization
with Segments,
Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

W EE) Gk School of Engineering and Technology, University of Washington

OBJECTIVES - 11/23

| = Questions from 11/18 |
= Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Zoom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e
TCSS422: Computer Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L3

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCS$422: Computer Operating Systems [Fall 2021]

R s School of Engineering and Technology, University of Washington - Tacoma L14.4

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (29 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 5.98 (\ - previous 6.08)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.41 (T - previous 5.20)

TCSS422: Computer Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington -Tacoma 14s

FEEDBACK

= What data structures lend themselves to our goals for
address spaces?
= Goals for 0S Memory Virtualization:
= Transparency
= Protection (Security/Isolation)
= Efficiency (Time & Space)

= Some data structures may be more compact (space)
with lower memory virtualization overhead (time)
= SPACE: consider a statically declared multi-dimensional
array vs. a linked list
= One has a huge up-front cost, while the other grows
incrementally

TCS3422: Operating Systems [Fall 2021] e
School of Engineering and Technology, University of Washington - Tacoma

‘ November 23, 2021

Slides by Wes J. Lloyd

L14.1

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

FEEDBACK - 2 OBJECTIVES - 11/23
= TIME: Arrays vs. linked list for sequential traversal = Questions from 11/18
= The page translation cache (TLB) improves performance (TIME) |I Assignment 2 - Dec 3 |

when traversing ARRAYS sequentially -

= Quiz 3 - Synchronized Array - Dec 2
= Adjacent elements produce many consecutive cache hits (ch 22)

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= The nodes in a LINKED LIST could be scattered anywhere in = Chapter 14: The Memory API

memory .

= Ch r 15: Addr Translation
= They can be allocated dynamically on the heap at any time Chapter 15: Address E_‘ slatio
= Traversal may be slower than with arrays = Chapter 16: Segmentation

= Chapter 17: Free Space Management
= What about random access to array elements and members of = Ch 18: 1 d . Pagi
a linked list 2 apter 18: Introduction to Paging

= Accessing a middle member of a list with only a head/tail pointer
requires significant traversal
= Array access should be easier

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma L7 Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L

OBJECTIVES - 11/23 OBJECTIVES - 11/23
= Questions from 11/18 = Questions from 11/18
= Assignment 2 - Dec 3 = Assignment 2 - Dec 3
|' Qulz 3 - Synchronlzed Array - Dec 2 | = Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30 |- Tutorlal 2 - Pthread, locks, condIitlons tutorlal - Nov 30 |
= Chapter 14: The Memory API = Chapter 14: The Memory API
= Chapter 15: Address Translation = Chapter 15: Address Translation
= Chapter 16: Segmentation = Chapter 16: Segmentation
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
‘ (B R ;f:i:wzsfg::‘\::e':‘\gniy:.ﬁEﬂlﬁ:ﬁ,‘bnmmworWasningmn - Tacoma Lo ‘ (UL R g:i‘olzz:l?rp:il:eﬁe':ignzv:;mrsec[hhntlzo?y,nl;mvemtynfmsh‘mg«on - Tacoma Lo
9 10

OBJECTIVES - 11/23

® Questions from 11/18

= Assignment 2 - Dec 3

® Quiz 3 - Synchronized Array - Dec 2

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

[= Chapter 14: The Memory API] CHAPTER 14: THE

= Chapter 15: Address Translation
= Chapter 16: Segmentation M EMORY API
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (U EHETEE IR School of Engineering and Technology, University of Washington - Tacoma L Raseesd a2 School of Engineering and Technology, University of Washington -

11 12

Slides by Wes J. Lloyd L14.2

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

OBJECTIVES - 5/18

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

TCS5422: Operating Systems [Fall 2021]

1413

REALLOC()

#include <stdlib.h>»

*realloc(void *ptr, size_t size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

= void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma La1e

14

‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma.
13
DOUBLE FREE
£ *x = (int *)malloc((int)):
free(x)
free(x):

= Can’t deallocate twice
= Second call core dumps

* [located [W e

Heap

L Hap |

v i free(x) | free(x)

.] > (e L Undefined
{ i Error

School of Engineering and Technology, University of Washington - Tacoma

4 {
suack | | T Stack
16K8 268 < X 16KB 2KB(invalid) -l "
Address Space Address Space
‘ November 23, 2021 TCSS422: Operating Systems [Fall 2021] 11415

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

TC55422: Operating Systems [Fall 2021]
‘ [November23,12024 School of Engineering and Technology, University of Washington - Tacoma L1416

15

OBJECTIVES - 11/23

® Questions from 11/18
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2

= Chapter 14: The Memory API

| = Chapter 15: Address Translation

= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

TCS5422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

11417

17

Slides by Wes J. Lloyd

16

CHAPTER 15: ADDRESS

TRANSLATION

‘TCSS422: Operating Systems [Fall 2021]

loverbenzz 2023 School of Engineering and Technology, University of Washington -

18

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

: i
= Chapter 15: Address translation G oxp LVimual mapping | e
= Base and bounds Address space Program Code Opersting yetem
= HW and OS Support example e
Heap -
= Translation: -
. 32¢8 “
mapping I fade F
h o]
virtual to e : 1
physical free) but not in use) 3
]
o 48KE. Stack 2
not in use)
Stack
16KB ’ ey)
‘Address Space hysical Memory
TCSS422: Oy ating Syste [Fall 2021] TCS5422: O iting Syste [Fall 2021]
‘ (Lo School of Enginering and Technology, Uriverity of Washington - Tacoma Lo ‘ (I R ‘ S TP e e ey Ay s e a0

19 20

BASE AND BOUNDS INSTRUCTION EXAMPLE

= Dynamic relocation 128 : movl O0x0(%ebx), %eax |
= Two registers base & bounds: on the CPU = Base = 32768 e | Program Code
® Bounds =16384 e hese
gaCellaceslproe e miinime meny = Fetch instruction at 128 (virt addr) 1 4KE
= Sets base register = Phy addr = virt addr + base reg
p = 32896 = 128 + 32768 (base) hess
l physical address = virtual address + base] = Execute instruction

= Bounds register = Load from address (var x is @ 15kb=15360)
0 = 48128 = 15360 + 32768 (base) -- found x... stack
= Stores size of program address space (16KB) 0 B (AR O pees
= OS verifies that every address: :
y = ACCESS VIOLATION: Virtual address > bounds reg K8
0 < virtual address < bounds () 15€8 [aco IntX
| physical address = virtual address + base 5 Stack
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (B R Schol of Engineering and Technology, University of Washington - Tacoma a2l ‘ W28, A7) School of Exgineering and Technology, Uriversiy of Washington - Tacoma a2

21 22

MEMORY MANAGEMENT UNIT DYNAMIC RELOCATION OF PROGRAMS

= MMU
= Portion of the CPU dedicated to address translation

| Requiemens __|_____Hwsuppot _|
= Contains base & bounds registers q

= Hardware requirements:

Privileged mode CPU modes: kernel, user
= Base & Bounds Example: Base / bounds registers Registers to support address translation
= Consider address translation Translate virtual addr; check if in Translation circuitry, check limits
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location bounds
Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs reisters
o 16384 Privileged instruction(s) Set code pointers to 0S code to handle faults
1024 17408 to register exception handlers
3000 19384 Ability to raise exceptions For out-of-bounds memory access, or
FAULT 4400 20784 (out of bounds) attempts to access privileged instr.
[ovemberzsaon [0 oo s (208 iin s [vovemberzsaon [502 e s (208 gt s

23 24

Slides by Wes J. Lloyd L14.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

0S SUPPORT FOR MEMORY

VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

= When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at 0OS boot time

TCS5422: Operating Systems [Fall 2021]

(AR kel School of Engineering and Technology, University of Washington - Tacoma

1425

0S: WHEN PROCESS STARTS RUNNING

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

KB
Operating System
The OS lookup the free list
) 16k
Free list
(not in use)
ED R — . —
Heap
e 48KB i
(not in use)
6aKke
Physical Memory
TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L1426

25

26

= 0S places memory back on the free list
s Free list s
l Operating System Operating System
16¢8 168
16K8
e (ot in use) (not in use)
i Process A 32K (not in use)
a8¢s l aaes
(ot in use) (not in use)
64KD 48KB GNB B
Physical Memary Physical Memory
TCS5422: Operating Systems [Fall 2021]
‘ November 23,2021 School of Engineering and Technology, University of Washington - Tacoma .27

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

oa Context Switching T8
Operating System — Operating System

16K8 16K8

Process A PCH

{net in use) (ot in use) base

3B

32K8

Pracess A bounds
aeKa s 64k8
Pracess B mcess B
Curmantly Running
(20:] sy
Physical Memory Physical Memory
TC55422: Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma .28

27

DYNAMIC RELOCATION

= 0S can move process data when not running
. 0S un-schedules process from scheduler

. 0S updates PCB (base and bounds registers)

1
2.
S
4. OS reschedules process

= Process doesn’t know it was even moved!

0S copies address space from current to new location

= When process runs new base register is restored to CPU

TCS3422: Operating Systems [Fall 2021]

‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma

11429

29

Slides by Wes J. Lloyd

28

BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory
address translation for a virtual address of 6000 ?

34768

38768

32769

36864

Out of bounds
- — - n

[| |
"Consider a 64KB computer the loads a program. The'

30

L14.5

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

OBJECTIVES - 11/23

= Questions from 11/18
= Assignment 2 - Dec 3
= Quiz 3 - Synchronized Array - Dec 2

= Chapter 14: The Memory API
= Chapter 15: Address Translation
| = Chapter 16: Segmentation |
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

TCS5422: Operating Systems [Fall 2021]

l (AR kel School of Engineering and Technology, University of Washington - Tacoma.

L1431

CHAPTER 16:

SEGMENTATION

TCSS422: Operating Systems [Fall 2021)

ctemben2aianzt School of Engineering and Technology, University of Washington -

31

oKB

= Address space 1%8
. . e 268

= Contains significant unused memory x8

= Is relatively large poe

= Preallocates space to handle stack/heap growth &

= Large address spaces
= Hard to fit in memory

= How can these issues be addressed?

14K8
158
16K8

BASE AND BOUNDS INEFFICIENCIES

Program Code

free)

TCS5422: Operating Systems [Fall 2021]

l [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma

33

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System
16K8 ‘
(net in use)
i Segment Base Size
e Code 32K 2K
Tith (not in use) Heap e —
Fiean Stack 2BK 2K
B notin use)
64KB -
Physical Memaory

TCS5422: Operating Systems [Fall 2021]

l e School of Engineering and Technology, University of Washington - Tacoma

u43s

35

Slides by Wes J. Lloyd

32

MULTIPLE SEGMENTS

= Memory segmentation

= Manage the address space as (3) separate segments
= Each is a contiguous address space
= Provides logically separate segments for: code, stack, heap

= Each segment can placed separately

= Track base and bounds for each segment (registers)

|

TCSS422: Operating Systems [Fall 2021]

[November23,12024 School of Engineering and Technology, University of Washington - Tacoma

L1434

34

ADDRESS TRANSLATION: CODE SEGMENT

physical address = of fset + base ‘

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Bounds check:
Is virtual address within 2KB

address space?

| (notinuse) |

|
Virtual Address Space Physical Address Space

|

TCS5422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

11436

November 23, 2021 [

36

L14.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Sequent mase size
=3 ETar
inot in use)
| Cade
B ¢
-
Heso Heap
8 T
(notin use)
Address Space

Physical Memory

TCS5422: Operating Systems [Fall 2021]

‘ November 23, 2021

School of Engineering and Technology, University of Washington - Tacoma

11437

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) Jl —
BKE T
KB | mot in use)
8KB

Address Space

TCSS422: Operating Systems [Fall 2021)

‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma

L1438

37

38

SEGMENT REGISTERS

= Used to dereference memory during translation

13 12 11 10 8 8 7 & 5 4 3 2 1 0

|
| |

T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment bits

‘ ¢ 1 0 0 0 0 0 1 1 0 1 0 0 0 | Code 00
i)] Heap 01

T T stack 10
Segment Offset - 11

TCSS422: Operating Systems [Fall 2021]

‘ November 23,2021 School of Engineering and Technology, University of Washington - Tacoma

11439

SEGMENTATION DEREFERENCE

1 4
: seqment = (virtualaddress MASK) >> SEG_SHIFT
1

5 i

€ RaiseException (PROTEC]

7

i eqment] + Offset

o ssMemory (hyshddr)

= VIRTUAL ADDRESS = 01000001101000

= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
= OFFSET_MASK = OxFFF (001111411411111)
= OFFSET = 000001101000 = 104
= OFFSET < BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

TCSS422: Operating Systems [Fall 2021]

‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma

L1440

39

STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
2653 # Segment Register(with Negative-Growth Support)
Stack
28K8 Se: mt Base Size Grows Positive?
¢ i 5 Coda 32K 2K
(not in use)
Heap 34K 2K 1
Stack 28K 2K a

Physical Memary

TCS3422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L441

41

Slides by Wes J. Lloyd

40

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

= .so (linux): shared object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K] Read-Write

TCS5422: Operating Systems [Fall 2021]

‘ (U GREE R School of Engineering and Technology, University of Washington -Tacoma

1442

42

L14.7

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

.'Considera program with 2KB of code, a1 KB stack,'.

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4 KB
0KB

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TC55422; Operating Systems [Fall 2021]
l Eesnisie poal [School of Engineering and Technology, University of Washington - Tacoma Lia.aa

43

44

SEGMENTATION GRANULARITY -2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

TCS5422: Operating Systems [Fall 2021]
l [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L1445

MEMORY FRAGMENTATION

= Consider how much free space? Mot compacted
= We'll say about 24 KB ke
8KB | Opsrating System
= Request arrives to allocate a 20 KB heap 16K8
segment {not in use)
24x8
Allocated
= Can we fulfil the request for 20 KB of 3K R
i 2
contiguous memory? 40¢8 Allocated
BB ot inuse)
SEKE
Allocated
84K8
TCSS422: Oy ting Systems [Fall 2021]
l [November23,12024 School of Erp;i:ele':igng andmrsechnology, University of Washington - Tacoma L1446

WE WILL RETURN AT

4:50PM

‘TCSS422: Operating Systems [Fall 2021]
loverbenzz 2023 School of Engineering and Technology, University of Washington -

= Supports rearranging memory Compacted
o8
= Can we fulfil the request for 20 KB of 83 | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow s
= Rearranging memory is time consuming Aliocated
= 64KB is fast a8
= 4GB+ ... slow 40K8
= Algorithms: a8
X . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) Bace
TCSS422: Operatir e [Fall 2021]
l (U EHETEE IR e e e e e e L

Slides by Wes J. Lloyd

48

L14.8

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 11/23

= Questions from 11/18

= Assignment 2 - Dec 3

= Quiz 3 - Synchronized Array - Dec 2

= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30

= Chapter 14: The Memory API CHAPTER 17: FREE

= Chapter 15: Address Translation
= Chapter 16: Segmentation SPACE MANAGEM ENT

| = Chapter 17: Free Space Management |
= Chapter 18: Introduction to Paging

TC55422; Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ W R R School of Engineering and Technology, University of Washington - Tacoma. L1449 ctemben2aianzt School of Engineering and Technology, University of Washington - Tl L1450

49 50

OBJECTIVES - 5/18 FREE SPACE MANAGEMENT

= Chapter 17: Free Space Management
= Fr ation, Splitting, coalesci
= The Free List
= Memory Allocation Strategies

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma. L1451 [November23,12024 School of Engineering and Technology, University of Washington - Tacoma L1452

51 52

FREE SPACE MANAGEMENT FRAGMENTATION

= Management of memory using = Consider a 30-byte heap

30-byte heap: [free [used | free

= Only fixed-sized units ° w @ 3
= Easy: keep a list
= Memory request - return first free entry = Request for 15-bytes

Simple search addr:0 addr:20

free list head —»fon;gp —™ lemszg > NULL

= With variable sized units
= More challenging
= Results from variable sized malloc requests = Free space: 20 bytes

= Leads to fragmentation
= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma Las3 e Lase

School of Engineering and Technology, University of Washington - Tacoma

53 54

Slides by Wes J. Lloyd L14.9

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

FRAGMENTATION - 2 ALLOCATION STRATEGY: SPLITTING

= External: OS can compact = Request for 1 byte of memory: malloc(1)
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: | free [LUsedl] free
0 10 20

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

addr:0 addr:20

free list [head —* S..tip —* emsao —* NULL

= Internal: lost space - OS can’t compact = 0S locates a free chunk to satisfy request
= 0S returns memory units that are too large = Splits chunk into two, returns first chunk
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: [free TSRINIGY free |
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk free list head — poarit — S s UL

= Memory is lost, and unaccounted for - can't compact

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ W R R School of Engineering and Technology, University of Washington - Tacoma L5 Eesnisie poal L1456

School of Engineering and Technology, University of Washington - Tacoma

55 56

ALLOCATION STRATEGY: COALESCING MEMORY HEADERS

= Consider 30-byte heap

= free(void *ptr): Does not require a size parameter
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

e — T = How does the OS know how much memory to free?
head —* e~ femiio > temio —* NULL
= Request arrives: malloc(30) = Header block
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists! = Small descriptive block of memory at start of chunk

= Coalescing regroups chunks into contiguous chunk]_ The header used by ma1oc fibrary
mallo

7 —

head —» So0a0 —» NULL o

The 20 bytes returned to caller
= Allocation can now proceed

= Coalescing is defragmentation of the free space list An Allocated Region Flus Header
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L7 ‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma Lua.se

57 58

hptr = o = Size of memory chunk is:
N [magic: 1234567 | ot _header ¢ (= Header size + user malloc size
il magies = N bytes + sizeof(header)
The 20 bytes } header_t;
returned to caller
S E—— A Simple Header = Easy to determine address of header
Specific Contents Of The Header
i fres(void *ptr) {
n Contains SiZe header_t *hptr = (*)ptr - (header_t):
N 1
= Pointers: for faster memory access
= Magic number: integrity checking
TCSS422: Operating Syste [Fall 2021] TCSS422: O iting Syste [Fall 2021]

59 60

Slides by Wes J. Lloyd L14.10

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/23/2021

THE FREE LIST

= Simple free list struct

} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

LL, 4096, PROT_READ|PRGT_WRITE,
MAP_AN(

MAP_PRIVATE, -1, 0)i

TCS5422: Operating Systems [Fall 2021]

‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma

L1461

FREE LIST - 2

= Create and initialize free-list “heap”

node_t *head = mmap(NULL, 4036, PROT_READ|PI
L, 0
head->size 6
head->next =
= Heap layout:
[virtual address: 16KB]
- header: size field
size: 4088
head —»| next 0 | header: next field(NULL is 0}
b the rest of the 4KB chunk
TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal ‘ School of Engineering and Technology, University of Washington - Tacoma a6z

61

62

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation

head —>

the rest of
the 4KB chunk |

the 100 bytes now allocsted

the free 3980 byte chunk

TCSS422: Operating Systems [Fall 2021]

‘ November 23,2021 School of Engineering and Technology, University of Washington - Tacoma

11463

FREE LIST: FREE() CALL

= Addresses of chunks

100 bytes still allocated

virtual adcress: 16K8)
8 bytes haader {

= Start=16384
+ 108 (end of 15t chunk)
+ 108 (end of 2" chunk) sptr o0t —
ytes still allocate

+ 108 (end of 3" chunk) {but about o be freed)
= 16708

[magic: 1234567

100 bytes stil allocated
Pesd —me e
next:
The free 3764-byte chunk
Free Space With Three Chunks Allccated
TCSS422: Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineeing and Technology, Universty of Washington ~Tacoma Lia.ea

63

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
(e 100
= Qur 3 chunks start at 16 KB

(@ 16,384 bytes)

= Free chunk #2 - sptr
= Sptr = 16500
= addr - sizeof(node_t)

100
= Actual start of chunk #2 Sze 3764 |-
« 16492 oot 0

[virtual address: 16K8]

100 bytes still allocated

(now a free chunk of

memory)

bytes still allocated

The free 3763-byte chunk

TCS3422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L1465

65

Slides by Wes J. Lloyd

64

FREE LIST- FREE ALL CHUNKS

= Now free remaining chunks: virtusl address: 16KB]

- 5 [-
= Free(16392)
= Free(16608) {now free)
size: 100
= Walk back 8 bytes for actual next. 16708
start of chunk
- (now free)
head —| oo
= External fragmentation et TR
= Free chunk pointers
out of order (now free)
= Coalescing of next

pointers is needed The free 3764-byte chunk

7CS5422: Operating Systems [Fall 2021]
‘ (U GREE R School of Engineering and Technology, University of Washington -Tacoma Lase

66

L14.11

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

GROWING THE HEAP MEMORY ALLOCATION STRATEGIES

= Start with small sized heap = Best fit
= Request more memory when full
= sbrk(), brk()

= Traverse free list
= |dentify all candidate free chunks

= Note which is smallest (has best fit)
Segmented hea e « "o
g! P = When splitting, “leftover” pieces are small
(not in use) {not in use) (and potentially less useful -- fragmented)
Heap Heap Heap Heap
l brosk ek = Worst fit
break —H— N
. t .
(not in use) | N B = Traverse free list
Address Space Address Space | Heap = |ldentify largest free chunk
Physical Memory = Split largest free chunk, leaving a still large free chunk
TCSS422: Oy ing Sy [Fall 2021] TCSS422: Oy ling Sy [Fall 2021]
‘ (AR kel school ofE:;r::e’:\gngy:‘nemesech:qugv, University of Washington - Tacoma L1467 ‘ Eesnisie poal School of E::i’:e(e’fngv::m'secnnalagy, University of Washington - Tacoma Lia.e8

67 68

EXAMPLES MEMORY ALLOCATION STRATEGIES - 2

= Allocation request for 15 bytes = First fIt

= Start search at beginning of free list

= Find first chunk large enough for request

= Split chunk, returning a “fit” chunk, saving the remainder
= Result of Best Fit = Avoids full free list traversal of best and worst fit

head —> 10 —» 30 —> 20 —> NULL

head —» 10 —> 30 —s 5 —> NULL = Next flt

= Similar to first fit, but start search at last search location

) = Maintain a pointer that “cycles” through the list

® Result of Worst Fit = Helps balance chunk distribution vs. first fit

head —>L 20— 18—l 20— oL = Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

School of Engineering and Technology, University of Washington - Tacoma

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L1469 November23, 2021 .70

69 70

[| |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could SEGREGATED LISTS
help when coalescing the free space list?

= For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.
Best Fit = Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

Worst Fit = How much memory should be dedicated for specialized
requests (object caches)?

First Fit

= |f a given cache is low in memory, can request “slabs” of
None of the above memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

All of the above

.. vy . — n ‘ P A 7CS5422: Operating Systems [Fall 2021] an

School of Engineering and Technology, University of Washington - Tacoma

71 72

Slides by Wes J. Lloyd L14.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

| 64 KB ‘

| |

| 32K | 32KB ‘
|

B KB

64KE free space for 7KB request

TCS5422: Operating Systems [Fall 2021] 1473
School of Engineering and Technology, University of Washington - Tacoma

l November 23, 2021

73

three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation
Internal fragmentation
Coalescing

Splitting

.'A computer system manages program memory using'.

75

OBJECTIVES - 11/23

® Questions from 11/18
= Assignment 2 - Dec 3
® Quiz 3 - Synchronized Array - Dec 2
= Tutorial 2 - Pthread, locks, conditions tutorial - Nov 30
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
|l Chapter 18: Introduction to Paging |

School of Engineering and Technology, University of Washington - Tacoma

l November23, 2021 TCS5422: Operating Systems [Fall 2021] arr

77

Slides by Wes J. Lloyd

11/23/2021

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

= Coalescing is simple
= Two adjacent blocks are promoted up

TC55422; Operating Systems [Fall 2021]
l Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma aze

74

.'A request is made to store 1 byte. For this scenario,

which memory allocation strategy will always locate
memory the fastest?

Best fit

Worst fit

Next fit

None of the above

All of the above
- "

76

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Fall 202

1
Rorenbres 2021 School of Engineering and Technology, University of Washington -

78

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

OBJECTIVES - 5/21 PAGING

= Questions from 5/19

= Split up address space of process into fixed sized pieces

= Tuesday Class Activity: (Submit by May 22 11:59pm AOE) called pages

= Tutorial 2 posted (pthreads, locks, conditions)

= Quiz 3 posted - Active Reading Chapter 19 = Alternative to variable sized pieces (Segmentation) which
= Asslgnment 2 - Dec 3 (based on Ch. 30) suffers from significant fragmentation

= Chapter 17: Free Space Management

= Physical memory is split up into an array of fixed-size slots

| = Chapter 18: Introduction to Paging | called page frames.
= Chapter 19: Translatlon Lookaslde Buffer (TLB)
* TLB Algorithm, Tradeoffs, Context Switch = Each process has a page table which translates virtual

= Chapter 20: Paging: Smaller Tables addresses to physical addresses
= Smaller Tables, Hybrld Tables, Multl-level Page Tables

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma. L7 Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma Lia.80

79 80

Page Table:

ADVANTAGES OF PAGING PAGING: EXAMPLE VPO > PF3

VP1 > PF7
VP2 > PF5
= Flexibility = Consider a 128 byte (27) address space VP3 > PF2
= Abstracts the process address space into pages with 16-byte (2¢) pages ¢ TIga| peoe fiame 0 of
= No need to track direction of HEAP / STACK growth 16 Physies| memory
= Consider a 64-byte (2°) (unused) | page frame 1

Just add more pages...
= No need to store unused space
As with segments...

program address space poge 3 of A5 | page frame 2

page D of AS | page frame 3

[

(page 0 of {unused) page frame 4
16 | the address space) :
= Simplicity (page 1) psge 2 of AS | page frame 5
2
= Pages and page frames are the same size (page 2) (unused) | page frame &
48 ¢ i
= Easy to allocate and keep a free list of pages o (page 3) psge 1o AS | page frame7
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ [Novermber23)12020 School of Engineering and Technology, University of Washington - Tacoma L8 ‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma .82

81 82

EXAMPLE:
PAGING: ADDRESS TRANSLATION P
PAGING ADDRESS TRANSLATION
= PAGE: Has two address components = Consider a 64-byte (2°) program address space (4 pages—>22?)
= VPN: Virtual Page Number (serves as the page ID) = Stored in 128-byte (27) physical memory (8 frames—>2%)

VPN offset
| N —

= Offset: Offset within a Page (indexes any byte in the page) = Offset is preserved

WEN offset = 4 bits indexes any byte Virtual .
i : e address | 0 |10t et
= Page size is 16 bytes (24) _1
Vas |Vad Va3 | Va2 | Val | Va0 = Page table translates a U
= Example: Virtual Page Number (VPN) to Address
Page Size: 16-bytes (2%), a Physical Frame Number (PFN) Translation
Program Address Space: 64-bytes (2°) Page Table: [
VPN ffset VPO > PF3 . .
o Here program can have VP1 > PF7 Physical ‘ 1011 ‘] ‘ 10 | 1
— —— Address :
: Justfour pages... VP2 > PF5 T - i
o1 o101 VP3 > PF2 o offsct
N e— I Bl o

Slides by Wes J. Lloyd L14.14

TCSS 422

A — Fall 2021

School of Engineering and Technology

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

® (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

TC55422; Operating Systems [Fall 2021]
(AR kel School of Engineering and Technology, University of Washington - Tacoma L14ss

85

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
. a VPN,

= Each entry requires 4 bytes (32 bits) 2

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPNq4g576

= How much memory is required to store the page table
for 1 process?
= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TC55422; Operating Systems [Fall 2021]
November 23,2021 School of Engineering and Technology, University of Washington - Tacoma L487

87

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NVNBYBXEMNBRADPBUBBUB LU0 8 7 6543210
| PFN -g’gn‘<§§£§a
An %86 Page Table Entry(PTE)
TC55422: Operating Systems [Fall 2021]
‘ November23, 2021 | 50/ of engineering and Technology, University of Washington - Tacoma L1489

11/23/2021

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 bytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TC55422; Operating Systems [Fall 2021]
‘ Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma L1486

86

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficlent?

TC55422: Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma Lia.ss

88

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

o [alg]e
PFN B “|t";' 2

An x86 Page Table Entry(PTE)

89

Slides by Wes J. Lloyd

7CS5422: Operating Systems [Fall 2021]
‘ (U GREE R ‘ School of Engineering and Technology, University of Washington -Tacoma Lo

90

TCSS 422 A - Fall 2021
School of Engineering and Technology

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TC55422; Operating Systems [Fall 2021]
‘ (AR kel School of Engineering and Technology, University of Washington - Tacoma L1

11/23/2021

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TC55422; Operating Systems [Fall 2021]
Eesnisie poal School of Engineering and Technology, University of Washington - Tacoma .02

91

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?
= Translation

= |ssue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:

stores active process VPO > PF3

m . VP1 > PF7
Facilitates translation

Stored in RAM > VP2 > PF5

VP3 > PF2

= |ssue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Fall 2021] L1483
School of Engineering and Technology, University of Washington - Tacoma

‘ November 23, 2021

92

PAGING MEMORY ACCESS

1 // extract the vPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
Elo
4, // Form the address of the page-table entry (PTE)
5s PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // check if process can access the page
11. if (PTE.valid == False)
12. RaiseException(SEGMENTATION_FAULT)
13. else 1f (canAccess(PTE.ProtectBits) == False)
14. RafseExcept{on(PROTECTION_FAULT)
15. else
16. // Access 1s ok: form physical address and fetch {1t
17. offset = virtualAddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
TCS5422; Operating Systems [Fall 2021]
‘ November23, 2021 School of Engineering and Technology, University of Washington - Tacoma L1a.04

93

94

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

array (100017

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

0x1024 movl $0x0, (4edi, beax, 41
o p
0x10

Dx10

x
1 50%03s8, %eax
ne 0x1024

TCSS422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 145

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Tabla(29]
= Locations: N 1224
= Page table o o B o =} w2
= Array Page Tablel1] 1124 3','
 Code “\‘_‘ 1074 %

00000 0000-DoL0— 00000001 102

= 50 accesses

2

for 5 loop 0sp - *© . }»'ze:

N . L} 2232

iterations 0 = n 32
e
a6 3
T LESET LI T LB

0 30 40 50
Memory Access
TCS5422: Operating Systems [Fall 2021]
‘ (U GREE R School of Engineering and Technology, University of Washington - Tacoma L

95

Slides by Wes J. Lloyd

96

L14.16

TCSS 422 A - Fall 2021
School of Engineering and Technology

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2432 /2A20 = 2712 pages

2/32 [2A12 = 2720 pages

2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

") ove comtent. X hely L

11/23/2021

[| |
"For the 4GB computer example, how many bits are”

required for the VPN?

24 VPN bits (indexes
2°24 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

) lovember 2352024,

TCSS422: Operating Systems [Fall 2021]
L] i

L14m
s W

97

[| |
"For the 4GB computer example, how many bits are”

available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

98

[| |
" Forthe 4GB computer, how much space does this "

page table require? (number of page table entries x
size of page table entry)

2A20 entries x4b=4 MB

2712 entries x 4b = 16 KB

2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

) lovember 2352024,

TCSS422: Operating Systems [Fall 2021] L14m
[} i oo M

None of the
above
.. fove comtent. ..
99
n

|
* For the 4GB computer, how many page tables (for "
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB=65,536
4GB/64MB=256
4GB/ 256 KB = 16,384
4GB/ 4MB=1,024

None of the above

100

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

7CS5422: Operating Systems [Fall 2021]
‘ (U GREE R School of Engineering and Technology, University of Washington - Tacoma L0z

101

Slides by Wes J. Lloyd

102

L14.17

TCSS 422 A - Fall 2021 11/23/2021
School of Engineering and Technology

QUESTIONS

103

Slides by Wes J. Lloyd L14.18

