
TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.1Slides by Wes J. Lloyd

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 11/18

1

2

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

November 18, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

ONLINE DAILY FEEDBACK SURVEY

November 18, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.4

3

4

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (19 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.08 ( - previous 5.81)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.2 ( - previous 5.46)

November 18, 2021
TCSS422: Computer Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

MATERIAL / PACE

 ?

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

FEEDBACK

5

6

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.4Slides by Wes J. Lloyd

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

OBJECTIVES – 11/18

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

OBJECTIVES – 11/18

7

8

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.5Slides by Wes J. Lloyd

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

OBJECTIVES – 11/18

CHAPTER 30 –

CONDITION VARIABLES

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.1
0

9

10

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.6Slides by Wes J. Lloyd

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

OBJECTIVES – 11/18

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

COVERING CONDITIONS

11

12

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.7Slides by Wes J. Lloyd

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory: (bytesLeft <

size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

COVER CONDITIONS - 3

13

14

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.8Slides by Wes J. Lloyd

 Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous

▪ For this reason, with limited time in a
10-week quarter, we do not cover

 Ch. 31.6 – Dining Philosophers Problem

▪ Classic computer science problem about
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher
that grabs forks in opposite order

November 18, 2021 L13.15

CHAPTER 31: SEMAPHORES

TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

OBJECTIVES – 11/18

15

16

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.9Slides by Wes J. Lloyd

CHAPTER 32 –

CONCURRENCY

PROBLEMS

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.17

 “Learning from Mistakes – A Comprehensive Study on

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and

Operating Systems (ASPLOS 2008), Seattle WA

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

17

18

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.10Slides by Wes J. Lloyd

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

OBJECTIVES – 11/18

Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition

before use

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

NON-DEADLOCK BUGS

19

20

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.11Slides by Wes J. Lloyd

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among

separate threads is not enforced (e.g. non-atomic)

 Simple example: proc_info deleted

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.21

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

ATOMICITY VIOLATION - SOLUTION

21

22

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.12Slides by Wes J. Lloyd

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

ORDER VIOLATION BUGS

 Use condition & signal to enforce order

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

ORDER VIOLATION - SOLUTION

23

24

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.13Slides by Wes J. Lloyd

 Use condition & signal to enforce order

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

ORDER VIOLATION – SOLUTION - 2

97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

NON-DEADLOCK BUGS - 1

25

26

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.14Slides by Wes J. Lloyd

Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless

one manages to acquire both locks

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

DEADLOCK BUGS

27

28

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.15Slides by Wes J. Lloyd

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

OBJECTIVES – 11/18

 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time

deadlock could result

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

REASONS FOR DEADLOCKS

29

30

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.16Slides by Wes J. Lloyd

Four conditions are required for dead lock to occur

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

CONDITIONS FOR DEADLOCK

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

OBJECTIVES – 11/18

31

32

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.17Slides by Wes J. Lloyd

 Build wait-free data structures

▪ Eliminate locks altogether

▪ Build structures using CompareAndSwap atomic CPU (HW)

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

PREVENTION – MUTUAL EXCLUSION - 2

33

34

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.18Slides by Wes J. Lloyd

Consider list insertion

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

MUTUAL EXCLUSION: LIST INSERTION

Lock based implementation

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

MUTUAL EXCLUSION – LIST INSERTION - 2

35

36

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.19Slides by Wes J. Lloyd

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

Four conditions are required for dead lock to occur

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

CONDITIONS FOR DEADLOCK

37

38

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.20Slides by Wes J. Lloyd

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while

acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

PREVENTION LOCK – HOLD AND WAIT

Four conditions are required for dead lock to occur

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

CONDITIONS FOR DEADLOCK

39

40

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.21Slides by Wes J. Lloyd

When acquiring locks, don’t BLOCK forever if

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel →

always fail to obtain both locks

Fix: add random delay

▪Allows one thread to win the

livelock race!

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

NO PREEMPTION – LIVELOCKS PROBLEM

41

42

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.22Slides by Wes J. Lloyd

Four conditions are required for dead lock to occur

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire

program

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

PREVENTION – CIRCULAR WAIT

43

44

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.23Slides by Wes J. Lloyd

 If any of the following conditions DOES NOT

EXSIST, describe why deadlock can not occur?

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

CONDITIONS FOR DEADLOCK

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.4
6

45

46

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.24Slides by Wes J. Lloyd

WE WILL RETURN AT

5:14PM

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.4
7

Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario:

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

 Lock requirements of threads:

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

47

48

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.25Slides by Wes J. Lloyd

Scheduler produces schedule:

No deadlock can occur

Consider:

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the

difficulty having intimate lock knowledge about every

thread

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

INTELLIGENT SCHEDULING - 3

49

50

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.26Slides by Wes J. Lloyd

 Allow deadlock to occasionally occur and then take some

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and

recovery techniques.

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

DETECT AND RECOVER

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

OBJECTIVES – 11/18

51

52

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.27Slides by Wes J. Lloyd

CHAPTER 13:

ADDRESS SPACES

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.53

 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

OBJECTIVES – 11/18

53

54

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.28Slides by Wes J. Lloyd

 What is memory virtualization?

 This is not “virtual” memory,

▪ Classic use of disk space as additional RAM

▪When available RAM was low

▪ Less common recently

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire

machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

55

56

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.29Slides by Wes J. Lloyd

 Easier to program

▪ Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation

▪ From other processes: easier to code

 Protection

▪ From other processes

▪ From programmer error (segmentation fault)

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

MOTIVATION FOR

MEMORY VIRTUALIZATION

Load one process at a time into memory

Poor memory utilization

 Little abstraction

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

EARLY MEMORY MANAGEMENT

57

58

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.30Slides by Wes J. Lloyd

 Later machines supported running multiple

processes

 Swap out processes during I/O waits to

increase system utilization and efficiency

 Swap entire memory of a process to disk

for context switch

 Too slow, especially for large processes

 Solution→

▪ Leave processes in memory

 Need to protect from errant memory

accesses in a multiprocessing environment

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

MULTIPROGRAMMING

WITH SHARED MEMORY

Easy-to-use abstraction of physical

memory for a process

Main elements:

▪Program code

▪Stack

▪Heap

Example: 16KB address space

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

ADDRESS SPACE

59

60

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.31Slides by Wes J. Lloyd

 Code

▪ Program code

 Stack

▪ Program counter (PC)

▪ Local variables

▪ Parameter variables

▪ Return values (for functions)

 Heap

▪ Dynamic storage

▪ Malloc() new()

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

ADDRESS SPACE - 2

 Program code

▪ Static size

 Heap and stack

▪ Dynamic size

▪ Grow and shrink during program execution

▪ Placed at opposite ends

 Addresses are virtual

▪ They must be physically mapped by the OS

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

ADDRESS SPACE - 3

61

62

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.32Slides by Wes J. Lloyd

Every address is virtual

▪OS translates virtual to physical addresses

▪EXAMPLE: virtual.c

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

VIRTUAL ADDRESSING - 2

location of code: 0x400686

location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

63

64

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.33Slides by Wes J. Lloyd

 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another

(or the OS)

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

GOALS OF

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

GOALS - 2

65

66

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.34Slides by Wes J. Lloyd

 Questions from 11/16

 Tutorial 2 Pthread Tutorial-Nov 30 / Assignment 2-Dec 3

 Quiz 3 – Synchronized Array

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

OBJECTIVES – 11/18

CHAPTER 14: THE

MEMORY API

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma L13.68

67

68

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.35Slides by Wes J. Lloyd

 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

OBJECTIVES – 5/12

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given

datatype or struct is

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

MALLOC

69

70

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.36Slides by Wes J. Lloyd

 Not safe to assume

data type sizes using

different compilers,

systems

 Dynamic array of 10 ints

 Static array of 10 ints

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.71

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

FREE()

71

72

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.37Slides by Wes J. Lloyd

73

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

74

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but

the value has changed!!

Why?

73

74

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.38Slides by Wes J. Lloyd

 Dangling pointers arise when a variable referred (a) goes

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location

of the deallocated memory (a),

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.75

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.76

75

76

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.39Slides by Wes J. Lloyd

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,

calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.78

REALLOC()

77

78

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.40Slides by Wes J. Lloyd

 Can’t deallocate twice

 Second call core dumps

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.79

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory

for a user program

 See man page

November 18, 2021
TCSS422: Operating Systems [Spring 2021]
School of Engineering and Technology, University of Washington - Tacoma

L13.80

SYSTEM CALLS

79

80

TCSS 422 A – Spring 2021
School of Engineering and Technology

11/18/2021

L13.41Slides by Wes J. Lloyd

QUESTIONS

81

