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TCSS 422: OPERATING SYSTEMS

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (24 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.81  (no change - previous 5.81) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.40 ( - previous 5.46)
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MATERIAL / PACE

 Assignment 1 FAQ - Discussion Forum

 Posted on CANVAS at:
https://canvas.uw.edu/courses/1484473/discussion_topics/ 6763128

 Responses to several questions posted
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FEEDBACK
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 Questions from 11/9
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 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

November 16, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L12.7

OBJECTIVES – 11/16

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer
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 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

 Pthread Tutorial

 Practice using:

▪ pthreads

▪ Locks

▪ Condition variables

 Generate and visualize prime number generation in parallel

 To be posted in next couple of days
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TUTORIAL 2

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

CHAPTER 30 –

CONDITION VARIABLES
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 There are many cases where a thread wants to 

wait for another thread before proceeding with 

execution

Consider when a precondition must be fulfilled 

before it is meaningful to proceed …
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CONDITION VARIABLES

 Support a signaling mechanism to alert 

threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or 

respond to state changes in the application

 Threads are placed on (FIFO) queue to WAIT for signals

 Signal: wakes one thread (thread waiting longest)

broadcast wakes all threads (ordering by the OS)
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CONDITION VARIABLES - 2

 Condition variable

▪ Requires initialization

 Condition API calls

 wait() accepts a mutex parameter

▪ Releases lock, puts thread to sleep, thread added to FIFO queue

 signal()

▪ Wakes up thread, awakening thread acquires lock
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CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to put waiting threads on a queue?

why not use a stack?

▪ Queue (FIFO), Stack (LIFO)

 Why do we want to not busily wait for the lock to become 

available?

▪ Using condition variables eliminates busy waiting by putting  threads 

to “sleep” and yielding the CPU.  

 A program has 10-threads, where 9 threads are waiting.  The 

working thread finishes and broadcasts that the lock is 

available.  What happens next?

▪ All threads woken up in FIFO order - based on when started to wait

November 16, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c
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MATRIX GENERATOR

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16
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 The worker thread produces a matrix

▪ Matrix stored using shared global pointer

 The main thread consumes the matrix

▪ Calculates the average element

▪ Display the matrix 

 What would happen if we don’t use a condition variable to 

coordinate exchange of the lock?

 Example program: “nosignal.c”
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MATRIX GENERATOR

 Subtle race condition introduced

 Parent thread calls thr_join() and executes comparison (line 7)

 Context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 

is not waiting yet.  (parent has not reached line 8)

 The s ignal is  lost !

 The parent deadlocks
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ATTEMPT TO USE CONDITION VARIABLE 

WITHOUT A WHILE STATEMENT

 Parent calls

 Child calls
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PRODUCER / CONSUMER

 Producer

▪ Produces items – e.g. child the makes matricies

▪ Places them in a buffer

▪ Example: the buffer size is only 1 element (single array pointer)

 Consumer

▪ Grabs data out of the buffer

▪ Our example: parent thread receives dynamically 

generated matrices and performs an operation on them 

▪ Example: calculates average value of every element (integer)

 Multithreaded web server example

▪ Http requests placed into work queue; threads process
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PRODUCER / CONSUMER

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

▪ Similar to piping output from one Linux process to another

▪ grep pthread signal.c | wc –l

▪ Synchronized access:

sends output from grep → wc as it is produced

▪ File stream
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PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure ( int)

 Producer “puts” data, Consumer “gets” data

 “Bounded Buffer” shared data structure requires 

synchronization
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PUT/GET ROUTINES

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }

19 20

21 22

23 24
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 Producer adds data

 Consumer removes data (busy waiting)

 Without synchronization:

1. Producer Function  2. Consumer Function
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PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!
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PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 PROBLEM: no while. If  thread wakes up it MUST execute

 If we scale to (2+) consumer’s it fails 

▪ How can it be fixed ?
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PRODUCER/CONSUMER - 4

20 if (count == 0) // c2

21 Pthread_cond_wait(&cond, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&cond); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Consumer

 Two threads
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EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 When producer threads awake, they do not check if there is 

any data in the buffer…

▪ Need “while” statement, “if” statement is insufficient …

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1,  Tc2,  and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2
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PRODUCER/CONSUMER 

SYNCHRONIZATION
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EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

25 26

27 28

29 30
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 Tc2 runs, no data to consume
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EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Required w/ multiple producer and consumer threads

 Use two condition variables: empty & full

▪ One condition handles the producer

▪ the other the consumer
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TWO CONDITIONS

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex);

8 while (count == 1)

9 Pthread_cond_wait(&empty, &mutex);

10 put(i);

11 Pthread_cond_signal(&fill);

12 Pthread_mutex_unlock(&mutex);

13 }

14 }

15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

 >> Becomes BOUNDED BUFFER , can store multiple matricies
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FINAL PRODUCER/CONSUMER
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FINAL P/C - 2

full

(&full);

&full,

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty
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FINAL P/C - 3
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WE WILL RETURN AT 

2:45PM
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 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory 
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is 
scarce 

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?
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COVERING CONDITIONS
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COVERING CONDITIONS - 2

Broadcast

Check available memory

37 38

39 40

41 42
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 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory: ( bytesLeft < 

size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to 

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute
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COVER CONDITIONS - 3

 Offers a combined C language construct that can assume the 
role of a lock or a condition variable depending on usage 

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous 

▪ For this reason, with limited time in a 
10-week quarter, we do not cover

 Ch. 31.6 – Dining Philosophers Problem

▪ Classic computer science problem about 
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher 
that grabs forks in opposite order

November 16, 2021 L12.44

CHAPTER 31: SEMAPHORES
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 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

CHAPTER 32 –

CONCURRENCY 

PROBLEMS
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 “Learning from Mistakes – A Comprehensive Study on 

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and 

Operating Systems (ASPLOS 2008), Seattle WA
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CONCURRENCY BUGS IN 

OPEN SOURCE SOFTWARE

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16
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Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition 

before use
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NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among 

separate threads is not enforced  (e.g. non-atomic)

 Simple example: proc_info deleted
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ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically… 

 Add locks for all uses of: thd->proc_info
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ATOMICITY VIOLATION - SOLUTION

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?
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ORDER VIOLATION BUGS

 Use condition & signal to enforce order
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ORDER VIOLATION - SOLUTION

 Use condit ion & signal to enforce order
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ORDER VIOLATION – SOLUTION - 2

49 50
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97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these 

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)
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NON-DEADLOCK BUGS - 1

Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?  

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order
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NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless 

one manages to acquire both locks
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DEADLOCK BUGS

 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time 

deadlock could result

November 16, 2021
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.59

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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 Questions from 11/9

 Assignment 1 - Nov 14

 Tutorial 2 - Pthread Tutorial - Nov 30

 Assignment 2 - Dec 3

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention
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OBJECTIVES – 11/16

 Build wait-free data structures

▪ Eliminate locks altogether 

▪ Build structures using CompareAndSwap atomic CPU (HW) 

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically
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PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until 

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)
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PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion
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MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation
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MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n  (new node ptr)

Only when head = n->next
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MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }
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 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… ( like a guard lock)

 Effective solution – guarantees no race conditions while 

acquiring L1, L2, etc.  

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…
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PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if 

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks
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PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel →

always fail to obtain both locks

 Fix: add random delay

▪Allows one thread to win the 

livelock race!
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NO PREEMPTION – LIVELOCKS PROBLEM

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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Provide total ordering of lock acquisition 

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 

program
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PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT 

EXSIST, describe why deadlock can not occur?
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CONDITIONS FOR DEADLOCK
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Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario: 

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

 Lock requirements of threads:
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DEADLOCK AVOIDANCE 

VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:
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INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 

difficulty having intimate lock knowledge about every 

thread
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INTELLIGENT SCHEDULING - 3
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 Allow deadlock to occasionally occur and then take some 

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and 

recovery techniques.
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DETECT AND RECOVER QUESTIONS
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