TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Lock-based data structures I, ¢
Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

Eesmbers 202t School of Engine Technology, University of Washingtor

11/9/2021

OBJECTIVES - 11/9

| = Questions from 11/2 & Midterm Review |
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021)

‘ Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma

12

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home

Announcements

Joom * Upcoming Assignments

Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts

Nizerccinne An.r e

TCS5422: Computer Operating Systems [Fall 2021]

‘ [November93i2021 School of Engineering and Technology, University of Washington - Tacoma

114

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o
Question 2 05pes

Piease rate the pace of today's class:

1 2 3 a4 s & 7 8 3 10

TCSS422: Computer Operating Systems [Fall 2021]

icenberpioozl School of Engineering and Technology, University of Washington - Tacoma L11.5

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (29 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.81 ({ - previous 6.50)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.46 (1 - previous 5.48)

TCS5422: Computer Operating Systems [Fall 2021]

‘ e e School of Engineering and Technology, University of Washington -Tacoma

BN

Slides by Wes J. Lloyd

FEEDBACK

= Comment on the practice midterm vs. actual midterm:
t tin, list of tyl tions to help practi

for the midterm

= There were no essay questions on the midterm

= | think what is meant is to post questions that have more
“background” setting up the question.

= Practice midterm Q5 has a lot of narrative, and to a lesser
extent Q4 and Q7. All offer similar examples of questions with
some background/narrative to set up the question

TCS5422: Operating Systems [Fall 2021]

‘ e e School of Engineering and Technology, University of Washington - Tacoma

L)

L11.1

TCSS 422 A - Fall 2021
School of Engineering and Technology

MIDTERM REVIEW

TCS5422: Operating Systems [Fall 2021]

‘ R School of Engineering and Technology, University of Washington - Tacoma

[E0)

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
| = Asslgnment 1 - Nov 12 |

= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

‘ November9; 2021 School of Engineering and Technology, University of Washington - Tacoma.

[EEREY

11

TUTORIAL 2

® Pthread Tutorial
= Practice using:
= pthreads
= Locks
= Condition variables

= To be posted in next couple of days

= Generate and visualize prime number generation in parallel

TCS3422: Operating Systems [Fall 2021]

‘ e e School of Engineering and Technology, University of Washington - Tacoma

1113

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
|= Assignment 0 Grades Posted |

= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2021)

‘ Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma

[EEETY

10

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorlal 2: Pthread Tutorlal - to be posted]
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

‘ November9, 2021 School of Engineering and Technology, University of Washington - Tacoma

u112

12

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
| = Chapter 29: Lock Based Data Structures |
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021]

‘ (Gl 2FE) School of Engineering and Technology, University of Washington - Tacoma

1114

13

Slides by Wes J. Lloyd

14

11/9/2021

L11.2

TCSS 422 A - Fall 2021
School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Fall 2021]

OS5) School of Engineering and Technology, University of Washington -

15

APPROXIMATE (SLOPPY) COUNTER

" Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value
Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter
Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

TCS5422; Operating Systems [Fall 2021]

‘ [November93i2021 School of Engineering and Technology, University of Washington - Tacoma

u117

17

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

|- Concurrent Structures: Linked LIst,lQueue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Fall 20211

‘ e e School of Engineering and Technology, University of Washington - Tacoma

u119

11/9/2021

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Slo Counter;
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021)

‘ Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma

116

16

APPROXIMATE COUNTER - MAIN POINTS

= |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting

= Instead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= It's approximate because it's not so accurate (until the end)

118

TCSS422: Operating Systems [Fall 2021]

‘ [November)i2024 School of Engineering and Technology, University of Washington - Tacoma

18

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1 1

2 __node_t |

3 keyi

4 struct _ node_t *next:
5) node_t;

7

8

13 void List_Init(list t *L) |
14 L->he.
15 pthread mutex_init(si->lock, NULL):

(Cont.}

‘ Novembers, 2021 TCS5422: Operating Systems [Fall 2021]

19

Slides by Wes J. Lloyd

1120

School of Engineering and Technology, University of Washington - Tacoma

20

L11.3

TCSS 422 A — Fall 2021

11/9/2021
School of Engineering and Technology

CONCURRENT LINKED LIST - 2 CONCURRENT LINKED LIST - 3

" Insert - adds item to list
= Everything is critical!
= There are two unlocks

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)

18

19 List_Lookup (list_t *L, int key) {
20 pthread_mutex_lock(sL->lock) ¢
21

(curr->key == key)
Mitex_unlock (8L->10cK) ;

new->key = key:
new->next = >head;

CUrY = CUrr->next;

1
pthread mutex_unlock(sL->lock);

13

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ R School of Engineering and Technology, University of Washington - Tacoma i Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma ui22

21 22

CONCURRENT LINKED LIST CCL - SECOND IMPLEMENTATION

= First Implementation: = Init and Insert

= Lock everything inside Insert() and Lookup() : ListInit (st t
= If malloc() fails lock must be released K . pthread mutex init{fL->lock,
Research has shown “exceptlon-based control flow” to be error ’ . N
& List Insert{list t *L, int key)
prone i
40% of Linux OS bugs occur in rarely taken code paths : ‘;‘“f: sizeof (nade_£1)1
Unlocking in an exception handler is considered a poor coding " (rmarieeTy
practice 12
13
There is nothing specifically wrong with this example however 14
15
16
i 17
= Second Implementation ... 16
9
R
21
TCSS422: Operating Syste [Fall 2021] TCS5422: O iting Syste [Fall 2021]
‘ [November93i2021 School of E:;:ele':\gngy:neﬂsemannlnw University of Washington - Tacoma L2 ‘ November9, 2021 School of E:;:ele':fngv:n:mrsecn:alagy, University of Washington - Tacoma t12e

23 24

CCL - SECOND IMPLEMENTATION - 2 CONCURRENT LINKED LIST PERFORMANCE

= Lookup = Using a single lock for entire list is not very performant
(cont.) = Users must “wait” in line for a single lock to access/modify
22 List_Lookup (list_t *L, key) [any item
2 = Hand-over-hand-locking (lock coupling)
2
2 = Introduce a lock for each node of a list
; v t = Traversal involves handing over previous node’s lock,
2 acquiring the next node’s lock...
31 curr = curr->nexts = Improves lock granularity
3 1 L]
33 pthread_mutex_unlock (éL->lock) ; EeeiEte=hiareiealiperionnance
£ v w E
35 1

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ e e School of Engineering and Technology, University of Washington - Tacoma s e e School of Engineering and Technology, University of Washington - Tacoma e

25 26

Slides by Wes J. Lloyd L11.4

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/9/2021

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TC55422; Operating Systems [Fall 2021]
‘ R School of Engineering and Technology, University of Washington - Tacoma

1127

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TC55422; Operating Systems [Fall 2021]
‘ Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma tL2s

27

28

CONCURRENT QUEUE

= Remove from queue

_ node T *next:

(node_t))

)
Ty

d_mutex_init (sq->tail

TCSS422: Operating Systems [Fall 2021]

November9; 2021 School of Engineering and Technology, University of Washington - Tacoma

1129

CONCURRENT QUEUE - 2

= Add to queue

(Cont.}
value) {
(node_t))+

tnp->value = v
tmp->next =

(Cont.)

TC55422: Operating Systems [Fall 2021]
November9, 2021 School of Engineering and Technology, University of Washington - Tacoma 1130

29

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue,
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]
‘ e e School of Engineering and Technology, University of Washington - Tacoma

131

31

Slides by Wes J. Lloyd

30

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

TCS5422: Operating Systems [Fall 2021]
‘ (Gl 2FE) School of Engineering and Technology, University of Washington -Tacoma L2

32

L11.5

TCSS 422 A - Fall 2021
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
© Simpie Coneurent List
X Cancurrent Hash Table

ES

Time (seconds)
o

10 20 30 40
Inserts (Thousands)

magnificently

November9, 2021

per
ngineering e Technology,

33

structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.1Nhich is a major advantage of using concurrent data'.

WE WILL RETURN AT
2:50PM

TCSS422: Operating Systems [Fall 2021]
Beyembeg 2021 School of Engineering and Technology, University of Washington -

37

Slides by Wes J. Lloyd

11/9/2021

1 BUCKETS (101)
2
3 _hash t {
4 List_t lists(BUCKETS];
5 J hash_t:
7 Hash_Init(hash_t *H} [
8 Tt ir
s ©o(i = 07 & < BUCKETS; i++)
10 List_Init(sH->lists(i]);
1)
12)
13
14 t Hash Insert(hash t *H, int key) {
15 t bucket = key % BUCKETS:
16 turn List_Insert(sH->1ists (bucket], key)s
17)
18
135 t Hash_Lookup(hash_t *H, int key) {
20 Tint bucket = key % BUCKETS;
21 1 List_Lookup (sH->1ists [bucket], key):
22)
TCs5422: Operating Systems [Fall 2021]
l Eoemberdi2028 School of E::ineerigngvand Te(lzhnalagy,]Univers\’ty of Washington - Tacoma tL3e

34

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomicinteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

L] See https:, zzuocs oracle com[en[|ava[|avase[11[docs[agl[

[Tcssa2; opemting Systems (Rl 2021 mzt]
(oG E7E ing and Technology, University of Washington - Tacoma

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review

= Assignment O Grades Posted

= Assignment 1 - Nov 12

= Tutorial 2: Pthread Tutorial - to be posted

= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

l Novembers, 2021 TCS3422: Operating Systems [Fall 2021] i3

School of Engineering and Technology, University of Washington - Tacoma

38

L11.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Fall 2021]

OS5) School of Engineering and Technology, University of Washington -

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert v
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on (FIFOQ) queue to WAIT for signals

= Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

TCS5422: Operating Systems [Fall 2021]

[November93i2021 School of Engineering and Technology, University of Washington - Tacoma

141

41

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?
= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

= All threads woken up in FIFO order - based on when started to wait

TCS5422: Operating Systems [Fall 2021]

e e School of Engineering and Technology, University of Washington - Tacoma

u143

43

Slides by Wes J. Lloyd

11/9/2021

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

= Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCSS422: Operating Systems [Fall 2021)

‘ Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma

140

40

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

pthread_cond_wait (pthread cond_t *c, pthread mutex_t *m);
pthread_cond_signal {pthread_cond_t *c):

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= signal()
= Wakes up thread, awakening thread acquires lock

TCSS422: Operating Systems [Fall 2021]

‘ [November)i2024 School of Engineering and Technology, University of Washington - Tacoma

142

42

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCS5422: Operating Systems [Fall 2021]

‘ e e School of Engineering and Technology, University of Washington -Tacoma

144

44

L11.7

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/9/2021

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
| = Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021] L1145
School of Engineering and Technology, University of Washington - Tacoma.

‘ November 9, 2021

MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Example program: “nosignal.c”

TC55422; Operating Systems [Fall 2021]
Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma Lee

45

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

€ Child calls

ond_signal (sc) 2

€ Parent calls
(done = 0}

3
4
5
3 thr_jein() |
7
g Pthread_cond_waiti&c);
5

= Subtle race condition introduced

= Parent thread calls thr_JoIn() and executes comparison (line 7)

= Context switches to the child

= The chlld runs thr_exIt() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

" The signal Is lost !

= The parent deadlocks

TCS5422: Operating Systems [Fall 2021] 147
School of Engineering and Technology, University of Washington - Tacoma

‘ November 9, 2021

47

PRODUCER / CONSUMER

= Producer
= Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Fall 2021] L1149
School of Engineering and Technology, University of Washington - Tacoma

‘ November 9, 2021

49

Slides by Wes J. Lloyd

46

PRODUCER / CONSUMER

Work Queue

a1l

TC55422: Operating Systems [Fall 2021]
November9, 2021 School of Engineering and Technology, University of Washington - Tacoma tLas

48

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -I

= Synchronized access:
sends output from grep > wc as it is produced

= File stream

7CS5422: Operating Systems [Fall 2021]
(Gl 2FE) School of Engineering and Technology, University of Washington -Tacoma s

50

L11.8

TCSS 422 A - Fall 2021 11/9/2021
School of Engineering and Technology

PUT/GET ROUTINES PRODUCER / CONSUMER - 3

= Buffer is a one element shared data structure (int) = Producer adds data
= Producer “puts” data, Consumer “gets” data = Consumer removes data (busy waiting)
= “Bounded Buffer” shared data structure requires = Without synchronization:
synchronization 1. Producer Function 2. Consumer Function
1 =prod *arg) |
1 buffer; 2
2 count = 0; 3 loops = (int) args
3 4 i i < loopss i+#) {
4 put (value) { 5 i
5 assert (count == 0); &
6 count = 1; 7 }
7 buffer = value; 8
8 } a +consune
9 10
10 get() { 11
11 assert (count == 1); 12
12 count = 0, 3
13 buffer; 14
14 1] 15 }
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021)
‘ R School of Engineering and Technology, Uriversiy of Washington - Tacoma titst ‘ Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma sz

51 52

= The shared data structure needs synchronization! - . :
0 count == 0
. 21 Pthread_cond_wait (&cond, &mutex);
1 cond_t condy 22 tmp = get ()7
z mutex t mutexs 23 Pthread_cond_signal (&cond) ;
E] 24 Pthread mutex_unlock (smutex);
] *producer (Targ) | 25 printf ("$d\n", tmp); Consumer
: A Producer 26 } onsumel
& 7 i< loopss i++) | 27 }
1 _lock{smutex) ;
8 L q q i
9 ond_wait {scond, &mutex); = This code as-is works with just:
10 P
1 cond_signal (seond) s (1) Producer
1 , Pthread_mutex_unlock (smutex): (1) Consumer
3
14]
15 N .
16 *consumer (varg) | = PROBLEM: no while. If thread wakes up it MUST execute
17 iz ‘e i T
I U = 05 1 < loopss 1++1 (= |f we scale to (2+) consumer’s it fails
19 ? Pthread_mutex_lock{smutex); = How can it be fixed ?
TCS5422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ November9; 2021 School of Engineering and Technology, University of Washington - Tacoma LiLss ‘ November9, 2021 School of Engineering and Technology, University of Washington - Tacoma tise

53 54

EXECUTION TRACE: PRODUCER/CONSUMER

NO WHILE, 1 PRODUCER, 2 CONSUMERS SYNCHRONIZATION

T | State [To| state |7, | State | Count Comment
= Two threads 21| Running Ready Resdy f = When producer threads awake, they do not check if there is
€2 | Running Ready Ready i any data in the buffer...
Sleep Ready | p1 | Running | ©
Sleep Ready | p2 | Running 0 = Need “while” statement, “if” statement is insufficient ...
¢2/p2- check var Sleep Ready} p4 | Running 1 Buffer now full
¢3/p3- wait Ready Ready 85 | Running 1 7., awoken
c4- put() Ready Ready p6 | Running 1 = What if T, puts a value, wakes T;; whom consumes the value
p4- get() :“*J’ b sl ol B = Then T, has a value to put, but T.;’s signal on &cond wakes T,
) ey esdy | p2 | Running :)
¢5/p5- signal Reacy Rea P 3 | Sleep | 1| uffer fulh deep = There is nothing for T, consume, so T, sleeps
c6/p6- unlock Ready[iiPcL | Running Sleep. 1 Tz sneaks in O T.,, and T, all sleep forever
Ready | c2 | Running Sleep 1 ey ey P
RescyllPc4 | Running Sleep 0 . and grabs data
Ready | c5 | Running Ready 0 7, awoken = T, needs to wake T, to T,
foscy <6 | Humming Ready 0
‘ <4 | Running Ready Ready 0 Oh ohl No data
TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (UErCiiEa), 2T School of Engineering and Technology, University of Washington - Tacoma ‘i‘ ‘ (Gl 2FE) School of Engineering and Technology, University of Washington - Tacoma ‘ﬂ

55 56

Slides by Wes J. Lloyd L11.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ta State Ta State T' State Count Comment
el | Running Ready Ready 0
<2 | Running Ready Ready 0
o Sleep Ready Ready 0 MNothing to get
Legend Steep | cL | Running Ready 0
c1/p1- lock Sleep €2 | Running Ready [
c2/p2- check var Sleep [€3 [Sleep Ready 0 Nothing to get
c3/p3- wait Sleep. Slesp. pl | Running 0
Sleep Sleep p2 | Rumning 0
c4- put() o - . .
Sleep. Slesp. p4 | Running 1 Buffer now full
p4- QEtQ ’ Ready Slesp 5 | Running 1 7., awaken
c5/p5- signal Reacly Seep | p6 | Runming [1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)
‘ €2 | Running Sleep Sleep 1 Recheck candition
<4 | Running Sleep Sleep [T, grabs data
’ <5 | Running Ready Sleep [Oops! Woke Ty
[evemberszon [T oo s (200 wastingon s

57

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

= Required w/ multiple producer and consumer threads

1 cond_t empty, full;

2 mutex_t mutex;

3

4 i *producer (void *arg) {

5 int i;

6 (i =0; i< loops; i++) {

7 Pthread mutex_lock (smutex) ;
8 (count == 1

9 Pthread cond_wait (sempty, &mutex);
10 put (i) ;

11 Pthread_cond_signal (&full);
12 Pthread_mutex_unlock (smutex) ;

TCSS422: Operating Systems [Fall 2021]

‘ November9; 2021 School of Engineering and Technology, University of Washington - Tacoma

1159

59

FINAL P/C - 2

cond_signal (&full);
“mutex_unlock(smutex):

*consumer (void *arg) {
i
(i =0i i< loops; i+4) {
pthread_mutex_lock (smutex):
while (count 0y
Bthread_cond i
tmp = get ()7

it{ stull, &mutex};

TCS3422: Operating Systems [Fall 2021]

‘ e e School of Engineering and Technology, University of Washington - Tacoma

L6l

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CO

= T, runs, no data to consume

T | sate |r,| sate |7, | sute |count Comment
Legend - . . p—s
cl /p1 - lock 3 Running Ready Sleep 0
c2/p2- check var e | Ruaning Ready Sleep 0
c3/p3- wait € | Running Ready Sleep 0
c4- put() E Sleep Ready Sleep 0 Nothing to get
p4- get() StecpllPcz | Running Sleep a
¢5/p5- signal Sleepiipc3 | Sleep Sleep 0| Everyone aslesp
c6/p6- unlock
I e

58

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

= >> Becomes BOUNDED BUFFER, can store multiple matricies
t buffer[MAx]s

£ fill =
t use

i put{int value) (
buffer(£ill] = value
Fill = (£111 + 1) % MAK:

get) |
tmp = burferfusel:
use = + 1) 8 MAXs
count
tmps
}
TC55422: Operating Systems [Fall 2021]
‘ November9, 2021 School of Engineering and Technology, University of Washington - Tacoma .60

60

FINAL P/C - 3

Pthread_cond_signal [sempty)
Pthread_mutex_unlock (smut
printf(“%d\n", tmp):

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

7CS5422: Operating Systems [Fall 2021]
‘ (Gl 2FE) School of Engineering and Technology, University of Washington -Tacoma e

61

Slides by Wes J. Lloyd

62

11/9/2021

L11.10

TCSS 422 A — Fall 2021

School of

Engineering and Technology

.. ove comtent. X hely L

" Using one condition variable, and no while loop is "
sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

63

[| |
" Using two condition variables, and a while loop is "

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

ove comtent. X hely L

65

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

TCS3422: Operating Systems [Fall 2021]

November9, 2021 School of Engineering and Technology, University of Washington - Tacoma

1167

11/9/2021

[| |
" Using one condition variable, with a while loop is "

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

") ove comtent. X hely L

64

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
| = Covering Conditlons |
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

‘ November9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L1166

66

COVERING CONDITIONS - 2

bytesLeft = MAX HEAD STZE;

cond_t c7
motex_t m:

9 allocate(£
Lo
12

14 bytesLeft -= si
15 pthread_mutex_unlock(sm)s
1 ptr;

Check available memory

_mutex_unLock (am) ;

TCS5422: Operating Systems [Fall 2021]

‘ (Gl 2FE) School of Engineering and Technology, University of Washington -Tacoma

L1168

67

Slides by Wes J. Lloyd

68

L11.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory
= Each thread evaluates if there’s enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

TCS5422: Operating Systems [Fall 2021] L1168
School of Engineering and Technology, University of Washington - Tacoma

‘ November 9, 2021

69

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
|= Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021 in
School of Engineering and Technology, University of Washington - Tacoma

‘ November9, 2021

71

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser a1 16

Open Office Office Suite 6 2
Total 74 31

TCS5422: Operating Systems [Fall 2021]
‘ e e School of Engineering and Technology, University of Washington - Tacoma w7

11/9/2021

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - DIning Phllosophers Problem
= Classic computer science problem about 8/
sharing eating utensils)
= Each philosopher tries to obtain two forks G B
in order to eat N Al
— -~ ~
= Mimics deadlock as there are not enough forks "
= Solution is to have one left-handed philosopher = * =
that grabs forks in opposite order) .
TCSS422: Operating Systems [Fall 2021] 1170
School of Engineering and Technology, University of Washington - Tacoma

‘ November9, 2021

70

CHAPTER 32 -
CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Fall 2021]

over berd 2024 School of Engineering and Technology, University of Washington -

72

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems

| Non-deadlock concurrency bugs I

= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021] 174
School of Engineering and Technology, University of Washington - Tacoma

‘ November 9, 2021

73

Slides by Wes J. Lloyd

74

L11.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Order violation: failure to initialize lock/condition
before use

TCS5422: Operating Systems [Fall 2021]

R School of Engineering and Technology, University of Washington - Tacoma

1175

75

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

1 pthread mutex t lock = PTHREAD MUTEX INITIALIZER:
2

3 Threadl::

4 pthread mutex_lock(slock);

5 (thd->pros o) [

& -

7 fputs(thd->proc_info , .)7

8 -

1
10 pthread_mutex_unlock (slock) i

12 Thread2::

TCSS422: Operating Systems [Fall 2021]

November9; 2021 School of Engineering and Technology, University of Washington - Tacoma

w177

77

ORDER VIOLATION - SOLUTION

= Use condition & signal to enforce order

1 pthread_mut

t mtLock = PTHREAD MUTEX_INITIALIZER:

2 pthread_c mtCond = PTHREAD_COND_INITIALIZER:
3 mtInit = 0
1
Thread 1::
€ init 0

mThread = PR_CreateThread (mMain,..):

_mutex_lock (émtLock) ;

iqnal (& i
itex_unlock (SmELock) &

Thread2: :
mMain (.|
Novembers, 2021 TCS5422: Operating Systems [Fall 2021] 179

School of Engineering and Technology, University of Washington - Tacoma

a

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

" NULLisOinC

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1
2
. 4 fputs (thd->proc_info , .):
Programmer intended 5 ; ress
variable to be accessed ‘ €]
tomically... 7
8
9

TCSS422: Operating Systems [Fall 2021)

Eoemberdi2028 School of Engineering and Technology, University of Washington - Tacoma

1176

76

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
=E.g. something is checked before it is set
= Example:

1 Threadl::

2 init0 [

3 mrthread = PR_CreateThread (mMain, .);
4

6 Thread2::

7 1 mMain..) {

8 mstate = mThread->State

9 1

= What if mThread is not initialized?

TCSS422: Operating Systems [Fall 2021]

November9, 2021 School of Engineering and Technology, University of Washington - Tacoma

1178

78

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

79

Slides by

Wes J. Lloyd

21
22 pthread mute:
23 (mtlgit
24 pth , smtLock) 7|
25 pthread WOPEY
26
21 mState = mThread->State;
28 .
25)
November9, 2021 TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L1180

80

11/9/2021

L11.13

TCSS 422 A — Fall 2021

11/9/2021
School of Engineering and Technology

NON-DEADLOCK BUGS - 1 NON-DEADLOCK BUGS - 2

2 97% of Non-Deadlock Bugs were = Atomicity
= Atomicity = How can we tell if a given variable is shared?
=Order violations Can search the code for uses

= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for X)
= Order violation
= Must consider all variable accesses

= Desire for automated tool support (IDE) o st ey Glesiies) erelen

School of Engineering and Technology, University of Washington - Tacoma

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ R School of Engineering and Technology, University of Washington - Tacoma LiLst Eoemberdi2028 ez

81 82

DEADLOCK BUGS . OBJECTIVES - 11/9

- PriEsaice @ & ale i cote = Questions from 11/2 & Midterm Review
Y = Assignment O Grades Posted
= Thread 1 acquires lock L1, waits for lock L2

= Assignment 1 - Nov 12
= Thread 2 acquires lock L2, waits for lock L1 = Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency blig_s
|_= Deadlock causes |

= Deadlock prevention

TC55422; Operating Systems [Fall 2021] TC55422: Operating Systems [Fall 2021]
‘ [November93i2021 School of Engineering and Technology, University of Washington - Tacoma LiLss November9, 2021 tLea

Thread 1: Thread

lock(L1); Llock(

lock (L2); lock (L1);

= Both threads can block, unless
one manages to acquire both locks

School of Engineering and Technology, University of Washington - Tacoma

83 84

REASONS FOR DEADLOCKS

CONDITIONS FOR DEADLOCK

= Complex code = Four conditions are required for dead lock to occur
= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

Mutual Exclusion | Threads claim exclusive control of resources that they require.
= Programmer doesn’t know they are there
. Threads hold resources allocated to them while waiting for additional
= Consider the Java Vector class: Hold-and-wait | _ 0 e

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

Circular wait There exists a circular chain of threads such that each thread holds one more
o 0 n resources that are being requested by the next thread in the chain
= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCSS422: Operating Systems [Fall 2021] TCSS422: Operating Systems [Fall 2021]
‘ (UErCiiEa), 2T School of Engineering and Technology, University of Washington - Tacoma e (TETnETeL s School of Engineering and Technology, University of Washington - Tacoma e

85 86

Slides by Wes J. Lloyd L11.14

TCSS 422 A - Fall 2021
School of Engineering and Technology

11/9/2021

OBJECTIVES - 11/9

= Questions from 11/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

| = Deadlock prevention |
TC55422; Operating Systems [Fall 2021]
‘ R School of Engineering and Technology, University of Washington - Tacoma L7

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether
= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 CompareAndSwap (*, expected, int new)|
2 (*addres:
3 *a
4
5 b
&
7 |
[owembersaon [IS5 oot s (200 gt T s

87

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

1 AtomicIncrement (*value, int amount) [

ol
{ Compare

*value;
wap(value, old, oldsamount)==0);

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®When it runs it is ALWAYS atomic (at HW level)

TC55422; Operating Systems [Fall 2021]
‘ November9; 2021 School of Engineering and Technology, University of Washington - Tacoma LiLss

89

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

1
3
¢
5
c
8
9]
TCSS422: Operating Systems [Fall 2021]
‘ e e School of Engineering and Technology, University of Washington - Tacoma et

91

Slides by Wes J. Lloyd

88

MUTUAL EXCLUSION: LIST INSERTION

= Consider list insertion

insert(int value){
t*n-=

(sizeof (node_t))

TC55422: Operating Systems [Fall 2021]
November9, 2021 School of Engineering and Technology, University of Washington - Tacoma iLs0

90

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

1 value) {
2 - malloc (sizeof (node_t));

3

4 n->value = val

5 {

6 n->next =

7) (CompareAndswap (shead, n->next, n));

= Assign &head to n (new node ptr)
= Only when head = n->next

7CS5422: Operating Systems [Fall 2021]
(Gl 2FE) School of Engineering and Technology, University of Washington -Tacoma L2

92

L11.15

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

Condition

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Held-and-wait resources

Threads hold resources allocated to them while waiting for additional

= Four conditions are required for dead lock to occur

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Fall 2021]

‘ R School of Engineering and Technology, University of Washington - Tacoma

11193

93

CONDITIONS FOR DEADLOCK

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Held-and-wait resources

Threads hold resources allocated to them while waiting for additional

= Four conditions are required for dead lock to occur

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2021]

‘ November9; 2021 School of Engineering and Technology, University of Washington - Tacoma

L1195

95

= Can lead to livelock

top:

=Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the
livelock race!

NO PREEMPTION - LIVELOCKS PROBLEM

TCS3422: Operating Systems [Fall 2021]

‘ e e School of Engineering and Technology, University of Washington - Tacoma

1197

97

Slides by Wes J. Lloyd

11/9/2021

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) §
lock (LL
lock (L2

unlock{prevention)

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Fall 2021] Li1ss
School of Engineering and Technology, University of Washington - Tacoma

‘ November9, 2021

94

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
= pthread_mutex_timedlock() - try and wait awhile

; Comackd) — -1 b1 NO
STOPPING
ANY
= Eliminates deadlocks TIME

TC55422: Operating Systems [Fall 2021]
‘ November9, 2021 School of Engineering and Technology, University of Washington - Tacoma 198

96

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Held-and-wait

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

*Cuculal wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

7CS5422: Operating Systems [Fall 2021]
‘ (Gl 2FE) School of Engineering and Technology, University of Washington -Tacoma s

98

L11.16

TCSS 422 A - Fall 2021
School of Engineering and Technology

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
= Always acquire locks in same order
=L1, L2, L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

=Must carry out same ordering through entire
program

‘ November 9, 2021

TCS5422: Operating Systems [Fall 2021] L1198
School of Engineering and Technology, University of Washington - Tacoma

99

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

e comtent hel |
™ o comten, . 1

101

INTELLIGENT SCHEDULING - 2

= Scheduler produces schedule:

= No deadlock can occur

11/9/2021

CONDITIONS FOR DEADLOCK

= If any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

“ Threads hold resources allocated to them while waiting for additional
Hold-and-wait y
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireularwait resources that are being requested by the next thread in the chain

TC55422; Operating Systems [Fall 2021]
‘ WISl e), A School of Engineering and Technology, University of Washington - Tacoma L1100

100

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

u yes yas o e
[s yes | yes e |
TC55422: Operating Systems [Fall 2021]
‘ [November)i2024 School of Engineering and Technology, University of Washington - Tacoma L1102

102

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

7CS5422: Operating Systems [Fall 2021]
‘ (Gl 2FE) School of Engineering and Technology, University of Washington - Tacoma Lol

= Consider:
e yes yos yes no
[ves | yes ves | no |
TCSS422: Operating Systems [Fall 2021]
‘ (UErCiiEa), 2T School of Engineering and Technology, University of Washington - Tacoma LL03

Slides by Wes J. Lloyd

104

L11.17

TCSS 422 A - Fall 2021 11/9/2021
School of Engineering and Technology

DETECT AND RECOVER

QUESTIONS

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

Many database systems employ deadlock detection and
recovery techniques.

TCS5422: Operating Systems [Fall 2021]
l L) School of Engineering and Technology, University of Washington - Tacoma Li.105

105 106

Slides by Wes J. Lloyd L11.18

