TCSS 422 A - Fall 2021
School of Engineering a

nd Technology

TCSS 422: OPERATING SYSTEMS

Lock-based data structures, ™
Midterm review

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

dovemben22021 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 11/2

|l Questions from 10/28 |
m Assignment O Update
® Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 28: Locks: RISC atomic lock instructions
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
m 2nd hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

November 2, 2021

Slides by Wes J. Lloyd

11/2/2021

L10.1

TCSS 422 A — Fall 2021

School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus . .
¢ TCSS 422 - Online Daily Feedback Survey - 4/1
™ Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Fall 2021]
Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma L103
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Fall 2021]
Sovembey2202(School of Engineering and Technology, University of Washington - Tacoma L10.4
4

Slides by Wes J. Lloyd

11/2/2021

L10.2

TCSS 422 A — Fall 2021

School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (28 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.50 (- previous 6.66)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.48 (no change - previous 5.48)

TCSS422: Computer Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.5

FEEDBACK

u Sample problem #4 from TCSS 422 CPU Scheduler Examples

® |[ssue with timing graph found
= New solution posted..

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.6

November 2, 2021

Slides by Wes J. Lloyd

11/2/2021

L10.3

TCSS 422 A - Fall 2021
School of Engineering and Technology

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high pricrity jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

Job Arrival Time Job Length

A T=0 Yyfo

B T=0 16 % B

C T=0 & ry (?(5

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

enb
HigH | A |BC
MED i AR B8 CC
Low i AleboD) CccC (88D [| BBBD| &

3 5 4 w0 M k) 12 235 27 13
0

OBJECTIVES - 11/2

® Questions from 10/28
|' Assignment O Update |

® Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 28: Locks: RISC atomic lock instructions
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
m 2" hour: Midterm Review

= Practice Questions

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.8

Slides by Wes J. Lloyd

11/2/2021

L10.4

TCSS 422 A - Fall 2021
School of Engineering a

nd Technology

OBJECTIVES - 11/2

® Questions from 10/28
= Assignment O Update
|' Assignment 1 - Nov 12 |

® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
® Chapter 28: Locks: RISC atomic lock instructions
® Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
m 2nd hour: Midterm Review

= Practice Questions

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.9

OBJECTIVES - 11/2

® Questions from 10/28
m Assignment O Update
® Assignment 1 - Nov 12
|l Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4) |
= Chapter 28: Locks: RISC atomic lock instructions
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
m 2nd hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.10

10

Slides by Wes J. Lloyd

11/2/2021

L10.5

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

QuUIZ 1

m Active reading on Chapter 9 - Proportional Share Schedulers

Posted in Canvas

Due Tuesday Nov 2"? at 11:59pm

m Grace period til Thursday Nov 4th at 11:59 ** AM **
= Late submissions til Saturday Nov 6" at 11:59pm

= Link:

= http://faculty.washington.edu/wlloyd/courses/tcss422/
TCSS422_s2021_quiz_1.pdf

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.11

11

QUIZ 2 - CPU SCHEDULING ALGORITHMS

® Quiz posted on Canvas

® Due Thursday Nov 4 @ 11:59p

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

®= Unlimited attempts allowed

= Multiple choice and fill-in the blank

® Quiz automatically scored by Canvas
= Please report any grading problems

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.12

November 2, 2021

12

Slides by Wes J. Lloyd L10.6

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2021_quiz_1.pdf

TCSS 422 A - Fall 2021
School of Engineering a

nd Technology

OBJECTIVES - 11/2

® Questions from 10/28
= Assignment O Update
m Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
| * Chapter 28: Locks: RISC atomic lock instructions |
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
m 2nd hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.13

13

When implementing locks in a high-level language
(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable
Condition variables
ATOMIC instructions

Fairness

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

14

Slides by Wes J. Lloyd

11/2/2021

L10.7

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

® Cooperative atomic instructions used together to support
synchronization on RISC systems

® |nstructions provided as opposed to: XCHG, CMPXCHG(8B,16B)
= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

Load-linked (LL)

= Loads value into register

= Same as typical load

= Used as a mechanism to track competition

m Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.15

15

LL/SC LOCK

1 int LoadLinked (int *ptr) {

2 *ptr;

3 }

4

5 int StoreConditional (int *ptr, int value) {
6 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 1; // success!

9 } {

10 0; // failed to update
11 }

12}

® LL instruction loads pointer value (ptr)
® SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.16

November 2, 2021

16

Slides by Wes J. Lloyd L10.8

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

LL/SC LOCK - 2

1 void lock (lock_t *lock) {

2 1) {

3 (LoadLinked (&lock->flag) == 1)
4 i // spin until it’s zero
5 (storeConditional (&lock->flag, 1)
3 ; // if set-it-to-1 was
7 othe y

8 }

9 }

10

11 wvoid unlock(lock t *lock) {

12 lock->flag = 0;

13}

® Two instruction lock

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.17

17

OBJECTIVES - 11/2

® Questions from 10/28

m Assignment O Update

® Assignment 1 - Nov 12

® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 28: Locks: RISC atomic lock instructions

|- Chapter 29: Lock Based Data Structures |
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
m 2nd hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.18

November 2, 2021

18

Slides by Wes J. Lloyd L10.9

TCSS 422 A — Fall 2021

School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Fall 2021]

NPT 2, A School of Engineering and Technology, University of Washington -

LOCK-BASED
CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

EConsiderations:

=Correctness
= Performance
=Lock granularity

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.20

20

Slides by Wes J. Lloyd

11/2/2021

L10.10

TCSS 422 A — Fall 2021

School of Engineering and Technology

COUNTER STRUCTURE W/0 LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t {
2 int value;
3 } counter t;
4
5 void init (counter t *c) {
[c->value = 07
7 }
8
9 void increment (counter t *c) {
10 c->value++;
11 1
12
13 vold decrement (counter t *c) {
14 c->value-—;
15 1
16
17 int get(counter t *c) {
13 return c-»value;
19 1
November 2, 2021 TCSS422: Operating Systems [Fall 2021] 11021

School of Engineering and Technology, University of Washington - Tacoma

21

CONCURRENT COUNTER

[R N R N I N

typedef struct _ counter t {
int value;
pthread lock_t lock;
} counter t;

vold init(counter_t *c) {

c->value = 0;

Pthread mutex init(&c->lock, NULL);
}

void increment (counter t *c) {
Pthread mutex lock(ac->lock):
c->value++;
Pthread mutex unlock(&c->lock);

= Add lock to the counter
= Require lock to change data

November 2, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

22

Slides by Wes J. Lloyd

11/2/2021

L10.11

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)
17 void decrement (counter t *c) {
18 Pthread mutex lock(&c->lock):
19 c->value-—;
20 Pthread mutex unlock(&c->lock);
21 }
22
23 int get(counter_t *c) {
24 Pthread mutex lock(&c->lock):
25 int rc = c-»value;
26 Pthread_mutex_unlock(ac->lock):
27 return rc;
28 }

TCSS422: Operating Systems [Fall 2021

bovembenZp02 1L School of E:gineerigngyand Te£hno|ogy,]University of Washington - Tacoma t10.23

23

CONCURRENT COUNTERS - PERFORMANCE

® Concurrent counter is considered a “precise counter”
= iMac: four core Intel 2.7 GHz i5 CPU
® Each thread increments counter 1,000,000 times

157
X Precise
© Approximate
w
T 10
=]
o
2
£
F 5]
0 ¥ ¥ e ?
1 2 3 4

Threads

scales poorly

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.24

24

Slides by Wes J. Lloyd L10.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core

=N =100 tps

= 10 cores (x10)
=N =1000 tps (x10)

= |s parallel counting with a shared counter an embarrassingly
parallel problem?

TCSS422: Operating Systems [Fall 2021]

110.2!
School of Engineering and Technology, University of Washington - Tacoma 0.25

November 2, 2021

25

OBJECTIVES - 11/2

® Questions from 10/28
m Assignment O Update
® Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 28: Locks: RISC atomic lock instructions
= Chapter 29: Lock Based Data Structures
| = Approximate Counter (Sloppy Counter) |
= Concurrent Structures: Linked List, Queue, Hash Table
m 2" hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.26

November 2, 2021

26

Slides by Wes J. Lloyd

11/2/2021

L10.13

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

APPROXIMATE (SLOPPY) COUNTER

® Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically

Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.27

27

APPROXIMATE COUNTER - MAIN POINTS

® |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting

= Instead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

® Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= |t’s approximate because it’s not so accurate (until the end)

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.28

28

Slides by Wes J. Lloyd L10.14

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

APPROXIMATE COUNTER - 2

= Update threshold (S) = 5
®m Synchronized across four CPU cores
= Threads update local CPU counters

Time L, L, Lz Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 520 1 3 4 5 (from L,)
7 0 2 4 520 10 (from L,)

TCSS422: Operating Systems [Fall 2021]

110.2!
School of Engineering and Technology, University of Washington - Tacoma 0.29

November 2, 2021

29

THRESHOLD VALUE S

® Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

154

0 T T T T T T F—F—x
1 2 4 8 16 32 64 128 256 5121024

Approximation Factor (S)

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.30

November 2, 2021

30

Slides by Wes J. Lloyd L10.15

TCSS 422 A — Fall 2021

11/2/2021
School of Engineering and Technology

APPROXIMATE COUNTER - EXAMPLE

= Example implementation - sloppybasic.c

m Also with CPU affinity

November 2, 2021 TCSS422: Operating Systems [Fall 2021]

11031
School of Engineering and Technology, University of Washington - Tacoma 03

31

“n "

@& When poll is active, respond at pollev.com/wesleylloyd641
7 Text WESLEYLLOYDG641 to 22333 once to join

Which of the following is NOT a problem as a
result of having a low S-value for the

approximate counter (Sloppy Counter)
threshold?

The counter overhead is very high.

The counterimplementation performs a very
large number of LOCK/UNLOCK API calls.

The global counter value is highly accurate.

The counter performs very few local to global
counter updates.

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

32

Slides by Wes J. Lloyd L10.16

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

OBJECTIVES - 11/2

® Questions from 10/28
= Assignment O Update
m Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
® Chapter 28: Locks: RISC atomic lock instructions
® Chapter 29: Lock Based Data Structures

= Sloppy Counter

|- Concurrent Structures: Linked ListlQueue, Hash Table
m 2nd hour: Midterm Review

= Practice Questions

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.33

33

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1 // basic node structure
2 typedef struct _ node t {
3 int key:
4 struct _ node t *next;
5 } node_t:
6
7 // basic list structure (one used per list)
g typedef struct _ 1list_t {
9 node_t *head;
10 pthread mutex_t lock:
11 } list_ts
12
13 vold List_Init(list_t *L) {
14 L->head = NULL;
15 pthread mutex init (sL->lock, NULL);
16 }
17
(Cont.)
TCSS422: Operating Systems [Fall 2021
RotembE2 R0 School of Er?gineerigngyand Te£hno|ogy,]University of Washington - Tacoma t1034

34

Slides by Wes J. Lloyd L10.17

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONCURRENT LINKED LIST - 2

® |[nsert - adds item to list
m Everything is critical!
= There are two unlocks

School of Engineering and Technology, University of Washington - Tacoma

(Cont.)
18 int List_ Insert (list t *L, int key) {
19 pthread mutex lock(&L->lock);
20 node t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc")
23 pthread mutex unlock(&L->lock);
24 return -1; // fail }
26 new->key = key;
27 new->next = L->head;
28 L->head = new;
29 pthread mutex unlock(&L->lock);
30 return 0; // success
31 }
(Cont.)
November 2, 2021 TCSS422: Operating Systems [Fall 2021] 110.35

35

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

School of Engineering and Technology, University of Washington - Tacoma

(Cont.)
32
32 int List Lookup (list t *L, int key) {
33 pthread mutex lock(s&L->lock):
34 node t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex unlock(&L->lock);
38 return 0; // success
39 1
40 curr = curr->next;
41 1
42 pthread mutex unlock(&L->1ock);
43 return -1; // failure
44 1
November 2, 2021 TCSS422: Operating Systems [Fall 2021] 110.36

36

Slides by Wes J. Lloyd

11/2/2021

L10.18

TCSS 422 A — Fall 2021

School of Engineering and Technology

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

® Second Implementation ...

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.37

37

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {
2 L->head = NULL:
3 pthread mutex init (aL->lock, NULL);
4 }
5
[3 vold List_Insert(list t *L, int key) {
7 // synchronization not needed
8 node_t *new = malloc(sizeof (node_t));
9 if (new == NULL) {
10 perror ("malloc") ;
11 return;
12 1
13 new->key = key;
14
15 // Jjust lock critical sectior
16 pthread mutex lock(&L->lock);
17 new->next = L->head;
18 L->head = new;
19 pthread mutex unlock(&L->1ock);
20 }
21
TCSS422: Operating Systems [Fall 2021]
November 2, 2021 School of Er?gineerigngyand Technology, University of Washington - Tacoma L10.38

38

Slides by Wes J. Lloyd

11/2/2021

L10.19

TCSS 422 A - Fall 2021
School of Engineering and Technology

= L ookup
(cont.)
22 int List Lookup (list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L—>lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr-skey == key) {
28 rv = 07
29 break;
30 1
31 curr = curr->next;
32 1
33 pthread mutex unlock(&L->1ock);
34 return rv; // now both success and failure
35 1
TCSS422: Operating Systems [Fall 2021
November 2, 2021 School of E:gineerigngyand Te£hno|ogy,]University of Washington - Tacoma L10.39

39

CONCURRENT LINKED LIST PERFORMANCE

m Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

40

Slides by Wes J. Lloyd

11/2/2021

L10.20

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

OBJECTIVES - 11/2

® Questions from 10/28
= Assignment O Update
m Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
® Chapter 28: Locks: RISC atomic lock instructions
® Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Hash Table

m 27 hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.41

41

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Fall 2021]

November 2, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.42

42

Slides by Wes J. Lloyd L10.21

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

@ U W R

L struct _ node t {
int value;
struct _ node t *next:
} node_t;

struct _ queue t {

node_t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex t tailLock;
} queue_t;

void Queue_Init (queue_t *q) {
node t *tmp = malloc(sizeof (node_t)):
tmp-»>next = NULL;
g->head = g->tail = tmp;
pthread mutex_init (&g->headLock, NULL);
pthread mutex init(eg->taillock, NULL);

November 2, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.43

43

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)

d Queue Enqueue(queue t *q, int value) ({
node t *tmp = malloc(sizeof (node t));
assert (tmp != NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(ag->tailLock);
g-»tail->next = tmp;

g->tail = tmp;
pthread mutex unlock(&g->taillLock);

November 2, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.44

44

Slides by Wes J. Lloyd

11/2/2021

L10.22

TCSS 422 A — Fall 2021

School of Engineering and Technology

OBJECTIVES - 11/2

® Questions from 10/28
= Assignment O Update
m Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
® Chapter 28: Locks: RISC atomic lock instructions
® Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue,|Hash Table

m 27 hour: Midterm Review
= Practice Questions

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

L10.45

45

CONCURRENT HASH TABLE

mConsider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 2, 2021

L10.46

46

Slides by Wes J. Lloyd

11/2/2021

L10.23

TCSS 422 A — Fall 2021

School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15 1
O Simple Concurrent List
X Concurrent Hash Table
o
© 10+
Q
o
@
&
]
E 51
=
0 T T

¥ ol
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Fall 2021]

Novemberi2,12021 School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

1 #define BUCKETS (101)
2
3 Cypedef struct _ hash t {
4 list_t 1ists[BUCKETS];
5 } hash_t;
&
7 void Hash Init(hash t *H) {
8 int i;
9 for (1 = 0; 1 < BUCKETS; i++) {
10 List Init (&H->1ists[i]);
11 }
12 1
13
14 int Hash_ Insert(hash t *H, int key) {
15 int bucket = key % BUCKETS;
1é return List_Insert(&H->1ists[bucket], key):
17 1
18
19 int Hash Lookup(hash t *H, int key) {
20 int bucket = key % BUCKETS;
21 return List_Lookup (sH->1lists[bucketl], key):
22 1
November 2, 2021 TCSS422: Operating Systems [Fall 2021] 110.48

School of Engineering and Technology, University of Washington - Tacoma

48

Slides by Wes J. Lloyd

11/2/2021

L10.24

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

.'Which is a major advantage of using concurrent data'.
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

49

LOCK-FREE DATA STRUCTURES

® Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.h

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 2, 2021

50

Slides by Wes J. Lloyd L10.25

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

WE WILL RETURN AT
2:40PM

TCSS422: Operating Systems [Fall 2021]

NPT 2, A School of Engineering and Technology, University of Washington -

OBJECTIVES - 11/2

® Questions from 10/28
m Assignment O Update
® Assignment 1 - Nov 12
® Quiz 1 (Due Tue Nov 2) - Quiz 2 (Due Thur Nov 4)
= Chapter 28: Locks: RISC atomic lock instructions
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table
= 27d hour: Midterm ReviewI

= Practice Questions

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.52

| November 2, 2021

52

Slides by Wes J. Lloyd L10.26

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

MIDTERM
REVIEW

TCSS422: Operating Systems [Fall 2021]

NPT 2, A School of Engineering and Technology, University of Washington -

MIDTERM

= Thursday November 4th

® |n Class in BHS 104 (2.0 hrs 1:30 - 3:30p)

= Test designed to take less than 2 hours

= Two pages of notes, double-sided, any-size paper permitted
= No book, other notes, cell phones, or internet

= Basic calculators OK

= Individual work

® Coverage: all content up through Chapter 29, sloppy counter

= Preparation:
= Practice quiz: Quiz 2: CPU scheduling (posted)

= Auto grading w/ multiple attempts allowed as study aid
= Practice- second hour of lecture

= Series of problems presented with some time to solve

= Will then work through solutions

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1054

November 2, 2021

54

Slides by Wes J. Lloyd L10.27

TCSS 422 A — Fall 2021

11/2/2021
School of Engineering and Technology

FIFO EXAMPLE

= Operation of CPU schedulers can be visualized with timing
graphs.

= The graph below depicts a FIFO scheduler where three jobs
arrive in the sequence A, B, C, where job A runs for 10 time
slices, job B for 5 time slices, and job C for 10 time slices.

I
FIFO |AAAAAAAAAABBBBBCCCCCCCCC
I
0 10 15 25

November 2, 2021 TCSS422: Operating Systems [Fall 2021]

L10.
School of Engineering and Technology, University of Washington - Tacoma 055

55

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15
|
|
SJF |
|
|
0
November 2, 2021 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.56

56

Slides by Wes J. Lloyd L10.28

TCSS 422 A — Fall 2021

School of Engineering and Technology

Q1 - SJF-2

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C: TT Job C:

What is the average response time for all jobs?

What is the average turnaround time for all jobs? ___________

TCSS422: Operating Systems [Fall 2021]

L10.57
School of Engineering and Technology, University of Washington - Tacoma 0.5

November 2, 2021

57

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
Cc T=10 15
|
|
CPU I
|
|
0

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

November 2, 2021 110.58

58

Slides by Wes J. Lloyd

11/2/2021

L10.29

TCSS 422 A — Fall 2021

School of Engineering and Technology

® What is the average response time for all jobs?

® What is the average turnaround time for all jobs?

Q2 - STCF - 2

® What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C: TT Job C:

November 2, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

59

Q3 - OPERATING SYSTEM APIs

1. Provide a definition for what is a blocking API call

2. Provide a definition for a non-blocking API call

3. Provide an example of a blocking API call.
Consider APIs used to manage processes and/or threads.

4. Provide an example of a non-blocking API call.
Consider APIs used to manage processes and/or threads.

November 2, 2021

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.60

60

Slides by Wes J. Lloyd

11/2/2021

L10.30

TCSS 422 A — Fall 2021

School of Engineering and Technology

Q4 - OPERATING SYSTEM APIs - 11

1. When implementing memory synchronization for a
multi-threaded program list one advantage of combining the use
of a condition variable with a lock variable via the Linux C
thread API calls: pthread mutex_lock () and pthread_cond_wait ()

2. When implementing memory synchronization for a
multi-threaded program using locks, list one disadvantage of
using blocking thread API calls such as the Linux C thread API
calls for: pthread_mutex_lock()and pthread cond_wait ()

3. List (2) factors that cause Linux blocking API calls to
introduce overhead into programs:

TCSS422: Operating Systems [Fall 2021]

L10.61
School of Engineering and Technology, University of Washington - Tacoma 06

November 2, 2021

61

Q5 - PERFECT MULTITASKING

OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly 1/nt" of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user voluntarily yielding the CPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.62

November 2, 2021

62

Slides by Wes J. Lloyd

11/2/2021

L10.31

TCSS 422 A — Fall 2021

School of Engineering and Technology

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
c T=10 15
|
|
RR I
|
|
0

TCSS422: Operating Systems [Fall 2021]

L10.
School of Engineering and Technology, University of Washington - Tacoma 0.63

November 2, 2021

63

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

(X 2:)?

ne Y ol

Where n is the number of jobs, and x; is the time share of each

process Jain’s fairness index=1 for best case fairness, and 1/n for
worst case fairness.

J(xlij!"‘ixﬂ) =

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?

With these values, calculate Jain’s fairness index from t=10 to t=50.

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.64

November 2, 2021

64

Slides by Wes J. Lloyd

11/2/2021

L10.32

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following

tradeoffs:

1. High number of Global Updates 2. High Performance
3. High Overhead 4. High Accuracy

5. Low number of Global Updates 6. Low Performance

7. Low Overhead 8. Low Accuracy

Low sloppy threshold (S) High sloppy threshold (S)

TCSS422: Operating Systems [Fall 2021]

L10.
School of Engineering and Technology, University of Washington - Tacoma 065

November 2, 2021

65

MULTI-LEVEL FEEDBACK QUEUE

= Review the bonus lecture for scheduling examples
including several Multi-level-feedback-queue problems (MLFQ)

shttps://tinyurl.com/cxtau9zw

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L10.66

November 2, 2021

66

Slides by Wes J. Lloyd L10.33

https://tinyurl.com/y8ucda5z

TCSS 422 A - Fall 2021 11/2/2021
School of Engineering and Technology

QUESTIONS

67

Slides by Wes J. Lloyd L10.34

