TCSS 422 A Fall 2021 - BONUS SESSION

CPU SCHEDULER EXAMPLE PROBLEMS

October 27, 2021

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

1

Draw a scheduling graph for the FIFO CPU scheduler.

Use the scheduling graph to calculate the average turnaround time (ATT), and the average response time (ART) .

 Job
 Arrival Time
 Job Length

 A
 T=0
 400

 B
 T=0
 100

 C
 T=0
 200

$$ART = 0 + 400 + 500 = \frac{900}{3} = 300$$

Draw a scheduling graph for the SJF CPU scheduler.

Use the scheduling graph to calculate the average turnaround time (ATT), and the average response time (ART) .

$$\frac{ATT = 100 + 300 + 760}{3} = \frac{1100}{3} = 366.66$$

$$4RT = \frac{300 + 0 + 100}{3} = \frac{400}{3} = 133.3\overline{3}$$

3

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium priority, and 4 for low priority. This MLFQ scheduler does NOT priority boost. When a new job arrives the scheduler is not pre-empted, but the new job is added to the end of the work queue.

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Please draw clearly. An unreadable graph will loose points.

5

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium priority, and 4 for low priority. This MLFQ scheduler performs a <u>Priority Boost every 6 timer units</u>. When the priority boost fires, the current job is preempted, and the next scheduled job is run in round-robin order.

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Please draw clearly. An unreadable graph will loose points.

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units. When the priority boost fires, the current job is preempted, but is rescheduled to run next in the top-level queue.

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Please draw clearly. An unreadable graph will loose points.

7

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units. When the priority boost fires, the current job is preempted, and the runqueue is reset so that the first job in the runqueue is run next.

Job A B C	Arrival Time	Job Length	ABC
Α	T=0	* 0 * 15 8 4	√
В	T=0	16 15 8 9	1
С	T=0	8620	

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Please draw clearly. An unreadable graph will loose points.

