

	OBJECTIVES
From chapt	er 11.2: Just Enough UML
UML uses	
UML diagr Use case	ams
ClassState	
Sequence	e
February 8, 2017	TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma

WHAT IS UML?

- UML: Unified Modeling Language
- Depicts object-oriented software systems visually
- Open standard used most often with plan-and-document software development processes
- Descriptive language: rigid formal syntax
 But not often rigidly applied
- Use in Agile:
- uses UML sparsely to illustrate key aspects of the system
- Use in Plan-and-document: highly formal processes with complete full set of use case, class, and sequence diagrams February 8, 2017 TSS360: Software Development and Quality Assurance [Winter 2017] TSS350: Software 2017 TSS350: Software 2017

UML USES: BLUEPRINT

- Goal is completeness
- More definitive, while sketch is explorative
- Describes detailed design to follow in writing source code
- Complete so programmer can follow it
- Can be used to develop blueprint-level models that show interfaces of subsystems or classes
 Developers then work out the implementation details
- Reversed engineered UML: diagrams convey detail about source code that is easy for developers to understand

February 8, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma

L9.6

TYPES OF UML DIAGRAMS		
Diagram Name	Purpose	
Activity	Models procedural and parallel behavior	
Class	Models classes, attributes, operations and relationships	
Communication	Models interaction between objects	
Component	Models structure and connection of components	
Composite Structu	re Models runtime decomposition of a class	
Deployment	Models deployment of artifacts to nodes	
Interaction overvie	w Mixes the sequence and activity diagram	
L	1	
February 8, 2017	TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma	

Diagram Name	Purpose
Object	Models example configurations of instances
Package	Models compile-time hierarchical structure
Sequence	Models sequence interaction between objects
State Machine	Models how events change an object over its life
Timing	Models timing interaction between objects
Use Case	Models how users interact with a system
	- 1

CLASS DIAGRAMS: WHEN TO USE
Class diagrams are the backbone of UML and are the most used diagrams
Normally use only a subset of the notations available: class box, attributes, operations, association, aggregation, and generalization
 Class diagrams only model software <u>structure</u>; it is easy to get too focused on class diagrams and ignore behavior
State diagrams support modeling class behavior
 Sequence diagrams model interactions among objects of various classes
February 8, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma L925

UML: FOR SOFTWARE DESIGN

- Class diagrams: Show design classes, attributes and operations, and their relationships with domain classes
- Sequence diagrams: help combine use cases to see what happens in the software
- Package diagrams: shows large-scale organization of the software (packages of classes)
- State diagrams: shows various states of objects (classes), and events that change their state

TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma L9.27

Deployment diagram shows the physical layout of the software

THE CONTENTS OF THIS SLIDE SET ARE BASED ON THE FOLLOWING REFERENCES:

- Armando Fox, David Patterson, Engineering Software As A Service: An Agile Approach Using Cloud Computing, 1st edition (v1.2.1), Strawberry Canyon LLC., 2016. ISBN-13: 978-0984881246. [Chapter 11]
- Martin Fowler, UML Distilled, 3rd edition. Addison-Wesley, 2004. [Chapters 3, 5, 9, 11]

February 8, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma

February 8, 2017

L9.30

 Family of graphical notations to help in describing and designing software systems Focuses particularly object-oriented software designs Coordinated by the Object Management Group
 Focuses particularly object-oriented software designs Coordinated by the Object Management Group
Coordinated by the Object Management Group
 International, open membership, not-for-profit technology standards open consortium of companies
From the unification of many 00 graphical modeling languages that thrived in the 1980s and early 1990s

L9.31

February 8, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017] Institute of Technology, University of Washington - Tacoma