
TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/8/2017

Slides by Wes J. Lloyd L9.1

Unified Unified Unified Unified

Modeling LanguageModeling LanguageModeling LanguageModeling Language

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 360: TCSS 360: TCSS 360: TCSS 360: SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT

AND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCE

SessionMgrSessionMgr

DatabaseDatabase

read_from_db()
store_in_db()
read_from_db()
store_in_db()

SessionMgrSessionMgr

get_session()
store_session()
get_session()
store_session()

«interface»

SessionStore
«interface»

SessionStore

DatabaseDatabase

� From chapter 11.2: Just Enough UML

�UML uses

�UML diagrams

� Use case

� Class

� State

�Sequence

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.2

OBJECTIVES

� UML: Unified Modeling Language

� Depicts object-oriented software systems visuallyvisuallyvisuallyvisually

� Open standard used most often with plan-and-document

software development processes

� Descriptive language: rigid formal syntax

� But not often rigidly applied

� Use in Agile:

uses UML sparsely to illustrate key aspects of the system

� Use in Plan-and-document:

highly formal processes with complete full set of use case,

class, and sequence diagrams

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.3

WHAT IS UML?

� 1980s1980s1980s1980s :::: object-oriented programming

moved from research labs into the real world

� Popular OO languages: Smalltalk and C++

� Spurred interest in Object-oriented graphical design

languages

� 1988198819881988----1992:1992:1992:1992: originators were Booch, Coad, Jacobson, Odell,

Rumbaugh, Shlaer, Mellor, and Wirfs-Brock

� Basic OO concepts would reappear in very different

notations, causing confusion

� Jim Rumbaugh left GE to join Grady Booch at Rational

� Alliance formed, critical mass of market share followed

� 1997:1997:1997:1997: Rational released UML 1.0

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.4

UML: ORIGINS

� Most common use of UML

� Used to communicate some aspect of a system, to helps
others better understand it

� Used for

� forward engineering: build diagrams before coding

� reverse engineering: build diagrams from existing code

� Strives to be informal and dynamic

� Emphasize only classes, attributes, operations, and
relationships of interest

� More concerned with selective communication
than complete specification

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.5

UML USES: SKETCH

� Goal is completeness

� More definitive, while sketch is explorative

� Describes detailed design to follow in writing source code

� Complete so programmer can follow it

� Can be used to develop blueprint-level models that show
interfaces of subsystems or classes

� Developers then work out the implementation details

� Reversed engineered UML: diagrams convey detail about
source code that is easy for developers to understand

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.6

UML USES: BLUEPRINT

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/8/2017

Slides by Wes J. Lloyd L9.2

� Specifies the complete system in UML so code can be
automatically generated

� Use from the coding perspective, rather than a
conceptual perspective

� Diagrams compiled directly into executable code �
The UML becomes the source code

� Productivity challenge: strive to require less effort than
coding in other programming language(s)

� Model specification challenge: how to formally model
behavioral logic of UML – required for code generation

� Done with interaction, state, and activity diagrams

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.7

UML USES:

AS A PROGRAMMING LANGUAGE

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.8

TYPES OF UML DIAGRAMS

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.9

TYPES OF UML DIAGRAMS - 2

CLASSIFICATION OF DIAGRAM TYPES

Diagram

Behavior
Diagram

Structure
Diagram

Class
Diagram

Composite
Structure Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Component
Diagram

Deployment
Diagram

Package
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram

� Use cases serve as a technique for capturing functional
requirements of a system

� Describes typical interactions between the users and the
system itself; provides a narrative of how a system is used

� Use case consists of a set of one or more scenarios tied
together by a common user goal

� Users are referred to as actors; an actoractoractoractor is a role that carries
out a use case

� An actoractoractoractor need not always be a person; can also be an external
automated or manual system

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.11

USE CASE DIAGRAM

�A use case diagram is like a graphical

“table of contents” of the use cases for a system

� It shows the use cases, the actors, and the relationships

between them

�Use cases represent external view of the system

�No correlation to the classes in the system

� They can serve as a starting point for writing software

validation test cases

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.12

USE CASE DIAGRAM - 2

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/8/2017

Slides by Wes J. Lloyd L9.3

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.13

USE CASE DIAGRAM EXAMPLE

Make automated menu
selections

Order food and drink

Pay for food and drink

Notify customer that
food and drink are ready

Customer

Cook

Payment
System

Expert Menu
System

�Serves as a technique to describe procedural
logic, business process logic, and work flow

� Is similar to a flowchart except that it can also
show parallel behavior

�States the essential sequencing rules to follow,
thereby allowing concurrent algorithms to be used

� Consequently, an activity diagram allows whoever is doing
the process to choose the order in which to do certain
things

�Can be used to describe the actions in a use case

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.14

ACTIVITY DIAGRAM

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.15

ACTIVITY DIAGRAM EXAMPLE

Set counter = positive n
Set accumulator = initial value

n > 1

Set accumulator = accumulator * n
Set n = n - 1

(n mod 5) == 0

Display accumulator value

Return accumulator value

T

F

T

F

� Describes types of objects in the system and the various

kinds of static relationships that exist among them

� Shows properties and operations of a class and

constraints that apply to object connections

� Class box has three parts:

� Name of the class

� Attributes of the class

� Operations of the class

� Properties represent structural features of a class and

consist of attributes and associations

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.16

CLASS DIAGRAMS

Name

Attributes

Operations

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.17

EXAMPLE CLASS DIAGRAM

1..n

Production
Manager

Auditor Record
Keeper

Report
Generator

Transaction
Processor

Account

Accounts
Payable

Accounts
Receivable

Input
Verifier

Error Log Input Handler

Local File
Handler

Remote File
Handler

Account List

Accountant

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.18

CLASS BOX

Name of class

Attributes: object properties

Operations: object methods

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/8/2017

Slides by Wes J. Lloyd L9.4

� Example

+ criticalMsg: String [1] = "Error message" {readonly}

� Syntax

� Visibility marker: public (+) or private (-)

� Name: name of the attribute in the programming language

� Type: Type of the attribute in the programming language

� Multiplicity: how many objects fill the property

� Default: Default value of the attribute at instantiation

� {property-string}: additional properties of the attribute

� Describes a property as a line of text within the class box

� Used for representing value types

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.19

CLASS DIAGRAM: ATTRIBUTE
visibility name: type multiplicity = default {property-string}

� Example:

+ computeTotal (account: Account) : float

� Syntax

� Visibility marker: public (+) or private (-)

� Name: name of the operation in the programming language

� Parameter-list: list of parameters passed to the operation

� Syntax: direction name : type = default-value

� Direction is (in), (out), or (inout); default is (in)

� Return-type: Type of the return value if there is one

� {property-string}: additional properties of the operation

� Portrays actions that a class carries out (e.g. methods)

� Include: queries or modifiers; modifiers change object state

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.20

CLASS DIAGRAM: OPERATION

visibility name (parameter-list) : return-type {property-string}

� Represented by a solid line between two classes directed

from source to target class

� Points to dependent (coupled) classes

� Name of the association goes at the target end

� Target end links the class that is the type of the property

� Multiplicities are shown at both ends but usually at the

target end

� Arrows may be bidirectional

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.21

CLASS DIAGRAM: ASSOCIATION

1..nSource Target

Name

� Aggregation and composition are sometimes viewed as

special types of associations and have their own UML

symbol of a diamond at the source end of a line

� Aggregation is a part-of relationship

� Composition is more restrictive than aggregation

� Diamond is filled in (i.e. shaded)

� Part pointed to doesn’t exist without the whole

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.22

CLASS DIAGRAM:

AGGREGATION AND COMPOSITION

1..nSource Target

Name

� Portrays inheritance between a super class and a

subclass

� Represented by line with triangle at the target end

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.23

CLASS DIAGRAM: GENERALIZATION

Super class

Subclass Subclass

� Dependency:Dependency:Dependency:Dependency: between two elements if changes to the
definition of one element (i.e., the source or supplier)
may cause changes to the other element (i.e., the client)

� Examples

� Class sends a message to another class

� Class mentions another as a parameter to an operation

� If class changes its interface, then messages sent to that
class may no longer be valid

� General rule: minimize dependencies and note cycles

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.24

CLASS DIAGRAM: DEPENDENCY (COUPLING)

Class
Class

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/8/2017

Slides by Wes J. Lloyd L9.5

�Class diagrams are the backbone of UML and are
the most used diagrams

�Normally use only a subset of the notations
available: class box, attributes, operations,
association, aggregation, and generalization

�Class diagrams only model software structure;
it is easy to get too focused on class diagrams and
ignore behavior

�State diagrams support modeling class behavior

�Sequence diagrams model interactions among
objects of various classes

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.25

CLASS DIAGRAMS: WHEN TO USE

� Use Use Use Use case case case case diagramsdiagramsdiagramsdiagrams help describe how people interact with
the system

� Activity diagramsActivity diagramsActivity diagramsActivity diagrams show context for use cases and details
of how complicated use cases work

� Class Class Class Class diagramdiagramdiagramdiagram drawn from conceptual perspectives, helps
build a rigorous vocabulary of the domain

� Shows attributes and operations of interest in domain
classes and relationships among the classes

� State diagramsState diagramsState diagramsState diagrams show various states of a domain class and
events that change that state

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.26

UML: FOR REQUIREMENTS ANALYSIS

� Class diagramsClass diagramsClass diagramsClass diagrams: Show design classes, attributes and

operations, and their relationships with domain classes

� Sequence diagrams:Sequence diagrams:Sequence diagrams:Sequence diagrams: help combine use cases to see what

happens in the software

� Package diagrams:Package diagrams:Package diagrams:Package diagrams: shows large-scale organization of the

software (packages of classes)

� State diagrams:State diagrams:State diagrams:State diagrams: shows various states of objects (classes),

and events that change their state

� Deployment Deployment Deployment Deployment diagramdiagramdiagramdiagram shows the physical layout of the

software

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.27

UML: FOR SOFTWARE DESIGN

� Java data persistence w/ postgreSQL and heroku…

� http://faculty.washington.edu/wlloyd/courses/tcss360/tutori

als/TCSS360_w2017_Tutorial_4.pdf

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.28

TUTORIAL 4

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.29

� Armando Fox, David Patterson, Engineering Software As A

Service: An Agile Approach Using Cloud Computing, 1st

edition (v1.2.1), Strawberry Canyon LLC., 2016. ISBN-13:

978-0984881246. [Chapter 11]

� Martin Fowler, UML Distilled, 3rd edition. Addison-Wesley,

2004. [Chapters 3, 5, 9, 11]

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.30

THE CONTENTS OF THIS SLIDE SET ARE

BASED ON THE FOLLOWING REFERENCES:

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/8/2017

Slides by Wes J. Lloyd L9.6

� Family of graphical notations to help in describing and

designing software systems

� Focuses particularly object-oriented software designs

� Coordinated by the Object Management Group

� International, open membership, not-for-profit technology

standards open consortium of companies

� From the unification of many OO graphical modeling

languages that thrived in the 1980s and early 1990s

February 8, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.31

UML: ORIGINS - 2

