TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

TCSS 360: SOFTWARE DEVELOPMENT
AND QUALITY ASSURANCE

SessionMgr

Software Design and B
SOLID Principles Database

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

SessionMgr
9
store_session()

«interface»
SessionStore

7

1/23/2017

OBJECTIVES

= From chapter 11: Engineering SaaS

=SOLID Design Principles

=Design Patterns

=Software Metrics

February 1, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017 ‘ o2 |

Institute of Technology, University of Washington - Tacoma

SOLID DESIGN GUIDELINES

= Single Responslibllity
= A class should have one and only one reason to change
= Open/Closed
= Classes should be open for extension but closed for modification
= Liskov SubstItutlon
= Substituting a subclass for a class should preserve correct program
behavior
= Interface Segregation
= No client should depend on methods it does not use
= Injecting Dependencies

= Collaborating classes who implementation may vary at runtime
should depend on an intermediate “injected” dependency

TCS5360: Software Development and Quality Assurance [Winter 2017]
T Institute of Technology, University of Washington - Tacoma 83

SINGLE RESPONSIBILITY PRINCIPLE

= A class should have one and only one responsibility

= Example: class named “Reviewers” in CoffeeFinder which
defines information about users who review coffee shops

= A “sign-on” operation could be added to “Reviewers”
to enable a reviewer to log in
= This does not separate responsibility!

= Single Responslblllty: Use a “Sessions” class
= Decouples the design of logging-in from the Reviewers Class
= What if the authentication strategy changes?
= Reviewers class would need to change

T D TC55360: Software Development and Quality Assurance [Winter 2017] ‘ a4 |

Institute of Technology, University of Washington - Tacoma

SINGLE RESPONSIBILITY - 2

“Sign-on” operation added to “Reviewers” Class
= How do other classes of users sign-on?
= Does each user class implement their own?

= Decouple key features/functions into reusable classes

= MVC: Controllers
= Each controller provides business logic for system components
= Components

= ReviewerController: User who contributes coffee shop reviews

= UserController: General system user

= AdminController: Admin user that performs DB maintenance

February1,2017 TCSS360: Software Development and Quality Assurance [Winter 2017] | o5 |

Institute of Technology, University of Washington - Tacoma

OPEN/CLOSED PRINCIPLE (OCP)

= Classes should be: open for extension,
but closed for modification

= Extending a class shouldn’t require modifying existing

code Class Report
def output
= Case statement code smell: formatter =

case @format

when :html
‘\ \) HtmlFormatter.new (self)

when :pdf
PdfFormatted.new (self)
c

= Factory pattern
= Template pattern
= Strategy pattern

end
end
end

February 1, 2017 TCS5360: Software Development and Quality Assurance [Winter 2017] ‘ L85 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L8.1

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

LISKOV SUBSTITUTION PRINCIPLE (LSP)

= Class subtypes can substitute for base types

= Current formulation attributed to (Turing Award winner)
Barbara Liskov

“A method that works on an instance of
type T, should also work on any
subtype of T”

Type/subtype != Class/subclass

All of T's subtypes should preserve T's
contract...

TCS5360: Software Development and Quality Assurance [Winter 2017] | o |

T Institute of Technology, University of Washington - Tacoma

INTERFACE SEGREGATION PRINCIPLE (ISP)

= Clients should not be forced to depend on methods
they do not use...

= Split large interfaces into smaller, more specific ones

= |SP reduces coupling

YOU!RE/GOINGSTOINEED,TO!SHRINK

= High code coupling is [[HANINTEREACE]

correlates with higher

software maintenance

costs

= Code is harder to modify,
refactor, extend

i TC55360: Software Development and Quality Assurance [Winter 2017] ‘ o8 |

Institute of Technology, University of Washington - Tacoma

ISP: COUPLING SUMMARY

= Coupling measures dependencies between
subsystems

= High coupling: changes to one subsystem will have
high impact on the other subsystem - BAD!!
= Require change of model, massive compilation

= Low coupling: change in one subsystem does not
affect any other subsystem - - GOOD!!

February2,2017 TC55360: Software Development and Quality Assurance [Winter 2017] | oo |

Institute of Technology, University of Washington - Tacoma

DEPENDENCY INVERSION PRINCIPLE (DIP)

= Also called dependency Injectlon...

If two classes depend on each other, but their
implementations may change, it is better if they depend on an
abstract interface that is “injected” dynamically

Enables interface to change with changing original class

= Code is not statically bound to the external dependency

‘TCSS360: Software Development and Quality Assurance [Winter 2017]

EskgievRn Y Institute of Technology, University of Washington - Tacoma

DIP: EXAMPLE

= Example: one class (user code), makes use of a 3" party
library or framework (e.g. logging API)

= Without dependency injection, the user class is dependent
(coupled) to the 3" party library or framework

= “Coupling” becomes pandemic throughout the code

= |t's everywhere...

= |f the 3" party library goes defunct (company or group
disbands), program code is now dependent on an unsupported
library

= Solution: Inject an abstract logging interface
(which a 3" party library or framework implements)

TCSS360: Software Development and Quality Assurance [Winter 2017] | 811 |

February 1, 2017 Institute of Technology, University of Washington - Tacoma

DIP: JAVA EXAMPLE

= Traditional coupling to logging class (API)
= Program must have access to a specific 3" party library

package com.example.ed.rcp.todo.parts;
import java.util.logging.Logger;
public class MyClass {
private final static Logger logger;
public MyClass (Logger logger) {
this.logger = logger;

// write an info log message
logger.info("This is a log message.")

TCSS360: Software Development and Quality Assurance [Winter 2017)

Institute of Technology, University of Washington - Tacoma ‘ e |

February 1, 2017

Slides by Wes J. Lloyd

L8.2

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

DIP: JAVA EXAMPLE - 2

= Using Java annotations to inject to dependent logger

= Enables use of “mock objects” for testing

= Can inject a “mock object” of a library not yet available
= Another developer may be completing the code
= Mock object implements generic interface

public class MyPart {
@Inject private Logger logger;

// inject class for database access
@Inject private DatabaseAccessClass dao;

@Inject

public void createControls (Composite parent) {
logger.info ("UI will start to build");
Label label = new Label (parent, SWT.NONE);
label.setText ("Eclipse 4");
Text text = new Text (parent, SWT.NONE);
text.setText (dao.getNumber ());

DIP: JAVA ANNOTATIONS

= Annotation location - where the dependency is injected
= Constructor of the class (construction injection)
= Field variable (field injection)
= Parameters of a method (method injection)

= Dependency injection occurs
in same order: constructor,
fields, method parameters

Dependency Injection

[|

Interface | [service Generic
based locator Injection
injection || Injection

= Frameworks exist to assist
native dependency injection

Constructor
Injection

= Aspect)
Aspect Oriented Programming

TCSS360: Software Development and Quality Assurance [Winter 2017)

February 1, 2017 Institute of Technology, University of Washington - Tacoma

‘ s |

DIP: ASPECT ORIENTED PROGRAMMING

COUPLING LEVELS

Language extension for dynamic dependency injection (Aspect))
Less coupling that with Java annotations (interface)

Programming paradigm to increase modularity by separating cross-
cutting concerns.

Behavior is declared into “advices”, similar to a classes - they
define behavior (e.g. logging) without modifying main program.
Polntcut speclficatlons define where advlces are to be
automatically “weaved” into the main program...

Example polntcut: log all function calls when the function's name
begins with 'set'.

Behaviors not central to the business logic (such as logging) can be
added to a program without changing or cluttering main program
AOP forms the basis for aspect-oriented software development.

February2,2017 TC55360: Software Development and Quality Assurance [Winter 2017] | s |

Institute of Technology, University of Washington - Tacoma

More nercepen e Less neraeperene
Hote conaracian LER oot
Hare e e (25 armaon o]

= Content: one module relies on internal
workings or data of another. One class reads/depends on
another internal variables
= Common: two modules share global data; all modules using
the global data are impacted by a change
= External: two modules share an externally imposed data
format, communication protocol, device interface
= Control: one module controls the flow of another by passing
it information on what to do
= Stamp: modules share a common data structure, though may
only ely use some ot | Java annotations (interface coupling) ‘
= Data: modules share data through parameters passing
= Message: modules communicate through message passing
code not explicitly coupled, messages come through channels
IAspectJ (functionality injected at joinpoints) |
Tz

TCS5360: Software ST Ty ASSUraTCe T e
Institute of Technology, University of Washington - Tacoma ‘

| February 1, 2017

DIP: ADAPTER PATTERN

= Alternate solution to dependency inversion

= Define an “Adapter” class

mServes to convert an existing APl into one that’s
compatible with an existing caller

February 1,2017

TCSS360: Software Development and Quality Assurance [Winter 2017) 817
Institute of Technology, University of Washington - Tacoma

public interface MediaPlayer {
public void play(String audioType, String fileName);
}

public iny Adapter pattern:
Piniic |Supports adding new media player features
) without changing dependent code...

public class VlcPlayer implements AdvancedMediaPlayer ... {}

public class MediaAdapter implements MediaPlayer { =
iaPlayer icPlayer;
public MediaAdapter (String audioType) {
if (audioType.equalsIgnoreCase("vlc")) {
advancedMusicPlayer = new VlcPlayer();
}Jelse if (audioType.equalsIgnoreCase ("mp4")) {
advancedMusicPlayer = new Mp4Player();

}
} L Adapter

@Override Class

public void play(String audioType, String fileName) {
if (audioType.equalsIgnoreCase("vlc")) {
advancedMusicPlayer.playVlc (fileName) ;
}
else if (audioType.equalsIgnoreCase ("mp4")){
advancedMusicPlayer.playMp4 (fileName) ;

} —

Slides by Wes J. Lloyd

L8.3

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

SOLID DESIGN GUIDELINES

| = Single Responsibility |
= A class should have one and only one reason to change

[= open/Closed]

[= Liskov Substitution]

behavior

| = Interface Segregation |
= No client should depend on methods it does not use

| = Injecting Dependencles |

should depend on an intermediate “injected” dependency

= Collaborating classes who implementation may vary at runtime

= Classes should be open for extension but closed for modification

= Substituting a subclass for a class should preserve correct program

1/23/2017

TCSS360: Software Development and Quality Assurance [Winter 2017)

| February1,2017 Institute of Technology, University of Washington - Tacoma

[s

TUTORIAL #3

= Postgresql database persistence, heroku...

= http://faculty.washington.edu/wlloyd/courses/tcss360/tutori
als/TCSS360_w2017_Tutorial_3.pdf

TCSS360: Software Development and Quality Assurance [Winter 2017)

February 1, 2017 Institute of Technology, University of Washington - Tacoma

18.20

QUESTIONS

TCSS360: Software Development and Quality Assurance [Winter 2
Institute of Technology, University of Washington - Tacoma

February 1, 2017

Slides by Wes J. Lloyd

L8.4

