
TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L8.1

Software Design and

SOLID Principles

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 360: SOFTWARE DEVELOPMENT

AND QUALITY ASSURANCE

SessionMgrSessionMgr

DatabaseDatabase

read_from_db()
store_in_db()
read_from_db()
store_in_db()

SessionMgrSessionMgr

get_session()
store_session()
get_session()
store_session()

«interface»

SessionStore
«interface»

SessionStore

DatabaseDatabase

� From chapter 11: Engineering SaaS

�SOLID Design Principles

�Design Patterns

�Software Metrics

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.2

OBJECTIVES

� Single Responsibil ity

� A class should have one and only one reason to change

� Open/Closed

� Classes should be open for extension but closed for modification

� Liskov Substitution

� Substituting a subclass for a class should preserve correct program

behavior

� Interface Segregation

� No client should depend on methods it does not use

� Injecting Dependencies

� Collaborating classes who implementation may vary at runtime

should depend on an intermediate “injected” dependency

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.3

SOLID DESIGN GUIDELINES

� A class should have one and only one responsibil ity

� Example: class named “Reviewers” in CoffeeFinder which

defines information about users who review coffee shops

� A “sign-on” operation could be added to “Reviewers”

to enable a reviewer to log in

� This does not separate responsibil ity!

� Single Responsibil ity: Use a “Sessions” class

� Decouples the design of logging-in from the Reviewers Class

� What if the authentication strategy changes?

� Reviewers class would need to change

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.4

SINGLE RESPONSIBILITY PRINCIPLE

� “Sign-on” operation added to “Reviewers” Class

� How do other classes of users sign-on?

� Does each user class implement their own?

� Decouple key features/functions into reusable classes

� MVC: Controllers

� Each controller provides business logic for system components

� Components

� ReviewerController: User who contributes coffee shop reviews

� UserController: General system user

� AdminController: Admin user that performs DB maintenance

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.5

SINGLE RESPONSIBILITY - 2

�Classes should be: open for extension,

but closed for modification

� Extending a class shouldn’t require modifying existing

code

� Case statement code smell:

� Factory pattern

� Template pattern

� Strategy pattern

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.6

OPEN/CLOSED PRINCIPLE (OCP)

Class Report
def output
formatter =
case @format
when :html
HtmlFormatter.new(self)

when :pdf
PdfFormatted.new(self)
. . . Etc

end
end

end

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L8.2

� Class subtypes can substitute for base types

� Current formulation attributed to (Turing Award winner)

Barbara Liskov

Type/subtype != Class/subclass

All of T’s subtypes should preserve T’s

contract…

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.7

LISKOV SUBSTITUTION PRINCIPLE (LSP)

“A method that works on an instance of
type T, should also work on any
subtype of T”

� Clients should not be forced to depend on methods

they do not use…

� Split large interfaces into smaller, more specific ones

� ISP reduces coupling

� High code coupling is

correlates with higher

software maintenance

costs

� Code is harder to modify,

refactor, extend

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.8

INTERFACE SEGREGATION PRINCIPLE (ISP)

�Coupling measures dependencies between

subsystems

�High coupling: changes to one subsystem will have

high impact on the other subsystem – BAD!!

� Require change of model, massive compilation

� Low coupling: change in one subsystem does not

affect any other subsystem - - GOOD!!

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.9

ISP: COUPLING SUMMARY

� Also called dependency injection…

� If two classes depend on each other, but their

implementations may change, it is better if they depend on an

abstract interface that is “ injected” dynamically

� Enables interface to change with changing original class

� Code is not statically bound to the external dependency

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.10

DEPENDENCY INVERSION PRINCIPLE (DIP)

� Example: one class (user code), makes use of a 3 rd party
l ibrary or framework (e.g. logging API)

� Without dependency injection, the user class is dependent
(coupled) to the 3 rd party l ibrary or framework

� “Coupling” becomes pandemic throughout the code

� It ’s everywhere…

� If the 3 rd party l ibrary goes defunct (company or group
disbands), program code is now dependent on an unsupported
library

� Solution: Inject an abstract logging interface
(which a 3 rd party l ibrary or framework implements)

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.11

DIP: EXAMPLE

� Traditional coupling to logging class (API)

� Program must have access to a specific 3 rd party l ibrary

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.12

DIP: JAVA EXAMPLE

package com.example.e4.rcp.todo.parts;

import java.util.logging.Logger;

public class MyClass {

private final static Logger logger;

public MyClass(Logger logger) {
this.logger = logger;
// write an info log message
logger.info("This is a log message.")

}
}

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L8.3

� Using Java annotations to inject to dependent logger

� Enables use of “mock objects” for testing

� Can inject a “mock object” of a l ibrary not yet available

� Another developer may be completing the code

� Mock object implements generic interface

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.13

DIP: JAVA EXAMPLE - 2

public class MyPart {

@Inject private Logger logger;

// inject class for database access
@Inject private DatabaseAccessClass dao;

@Inject

public void createControls(Composite parent) {

logger.info("UI will start to build");

Label label = new Label(parent, SWT.NONE);
label.setText("Eclipse 4");

Text text = new Text(parent, SWT.NONE);

text.setText(dao.getNumber());

}

}

� Annotation location – where the dependency is injected

� Constructor of the class (construction injection)

� Field variable (field injection)

� Parameters of a method (method injection)

� Dependency injection occurs

in same order: constructor,

fields, method parameters

� Frameworks exist to assist

native dependency injection

� AspectJ

Aspect Oriented Programming

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.14

DIP: JAVA ANNOTATIONS

� Language extension for dynamic dependency injection (AspectJ)

� Less coupl ing that with Java annotations (inter face)

� Programming paradigm to increase modularity by separating cross-

cutting concerns.

� Behavior is declared into “adv ices”, similar to a classes - they

define behavior (e.g. logging) without modifying main program.

� Pointcut specif ications define where adv ices are to be

automatical ly “weaved” into the main program…

� Example pointcut: log al l function cal ls when the function's name

begins with 'set' .

� Behaviors not central to the business logic (such as logging) can be

added to a program without changing or cluttering main program

� AOP forms the basis for aspect-oriented sof tware development.

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.15

DIP: ASPECT ORIENTED PROGRAMMING

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.16

COUPLING LEVELS

� Content: one module relies on internal
workings or data of another. One class reads/depends on
another internal variables

� Common: two modules share global data; all modules using
the global data are impacted by a change

� External: two modules share an externally imposed data
format, communication protocol, device interface

� Control: one module controls the flow of another by passing
it information on what to do

� Stamp: modules share a common data structure, though may
only sparsely use some of its fields

� Data: modules share data through parameters passing

� Message: modules communicate through message passing
code not explicitly coupled, messages come through channels

AspectJ (functionality injected at joinpoints)

Java annotations (interface coupling)

�Alternate solution to dependency inversion

�Define an “Adapter” class

�Serves to convert an existing API into one that’s

compatible with an existing caller

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.17

DIP: ADAPTER PATTERN

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L8.18

DIP: ADAPTER PATTERN

public interface MediaPlayer {
public void play(String audioType, String fileName);

}

public interface AdvancedMediaPlayer {
public void playVlc(String fileName);
public void playMp4(String fileName);

}

public class VlcPlayer implements AdvancedMediaPlayer ... {}

public class MediaAdapter implements MediaPlayer {
AdvancedMediaPlayer advancedMusicPlayer;
public MediaAdapter(String audioType){

if(audioType.equalsIgnoreCase("vlc")){
advancedMusicPlayer = new VlcPlayer();

}else if (audioType.equalsIgnoreCase("mp4")){
advancedMusicPlayer = new Mp4Player();

}
}

@Override
public void play(String audioType, String fileName) {

if(audioType.equalsIgnoreCase("vlc")){
advancedMusicPlayer.playVlc(fileName);

}
else if(audioType.equalsIgnoreCase("mp4")){

advancedMusicPlayer.playMp4(fileName);
}

}
}

Adapter
Class

Adapter pattern:
Supports adding new media player features
without changing dependent code…

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L8.4

� Single Responsibil ity

� A class should have one and only one reason to change

� Open/Closed

� Classes should be open for extension but closed for modification

� Liskov Substitution

� Substituting a subclass for a class should preserve correct program

behavior

� Interface Segregation

� No client should depend on methods it does not use

� Injecting Dependencies

� Collaborating classes who implementation may vary at runtime

should depend on an intermediate “injected” dependency

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.19

SOLID DESIGN GUIDELINES

�Postgresql database persistence, heroku…

� http://faculty.washington.edu/wlloyd/courses/tcss360/tutori

als/TCSS360_w2017_Tutorial_3.pdf

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.20

TUTORIAL #3

QUESTIONS

February 1, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.21

