
TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L7.1

Software Design andSoftware Design andSoftware Design andSoftware Design and

SOLID PrinciplesSOLID PrinciplesSOLID PrinciplesSOLID Principles

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 360: TCSS 360: TCSS 360: TCSS 360: SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT

AND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCE

SessionMgrSessionMgr

DatabaseDatabase

read_from_db()
store_in_db()
read_from_db()
store_in_db()

SessionMgrSessionMgr

get_session()
store_session()
get_session()

store_session()

«interface»

SessionStore
«interface»

SessionStore

DatabaseDatabase

� From chapter 11: Engineering SaaS

�Software Design & Architecture

�SOLID Design Principles

�Design Patterns

�Software Metrics

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.2

OBJECTIVES

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.3

SOFTWARE DESIGN:

REQUIREMENTS TO CODE

� Software Architecture

� Provides a high-level

framework to build and

evolve the system

� Architecture: provides high-level framework for structuring
application

� Client-server REST web services

� Client-server SOAP web services

� Client-server based on remote procedure calls

� Distributed system based on CORBA

� Defines the system in terms of computational components
and their interactions

� Design Patterns

� Lower level than architecture

� Reusable collaborations that solve sub-problems within an
application

� E.g. How can I decouple subsystem X from subsystem Y?

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.4

ARCHITECTURE VS. DESIGN PATTERNS

� Component based design

� Systems consist of components and connectors

� Components: define the basic computations comprising the

system and their behaviors

� Abstract data types, classes, etc.

� Connectors: define the interconnections between components

� Procedure call, event announcement, asynchronous messages

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.5

SOFTWARE ARCHITECTURE:

100,000 FT VIEW

� Abstract data types provide a model for a certain class of data
structures with similar behavior

� ADTs include

� A collection of data elements

� A set of operations to perform on the data

� ADT specification

� Defines what the operations do, but now how

� ADT implementation

� Provides an implementation for the operations specific to a
particular data structure

� Consider Java’s List Interface

� Provides an abstract definition of List operations

� Java class provide concrete implementations

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.6

ABSTRACT DATA TYPES

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L7.2

� Define the operations

� Define the data

� Provide an implementation

� Why would we like to abstract the

definition of our operations?

� Common interface

� Many implementations

� Backward compatibil ity:

introduce new interfaces while

retaining support for old…

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.7

ABSTRACTION

� SSSS ingle Responsibil ityingle Responsibil ityingle Responsibil ityingle Responsibil ity

� A class should have one and only one reason to change

� OOOO pen/Closedpen/Closedpen/Closedpen/Closed

� Classes should be open for extension but closed for modification

� LLLL iskoviskoviskoviskov SubstitutionSubstitutionSubstitutionSubstitution

� Substituting a subclass for a class should preserve correct program

behavior

� IIII nterface Segregationnterface Segregationnterface Segregationnterface Segregation

� No client should depend on methods it does not use

� Injecting Injecting Injecting Injecting DDDD ependenciesependenciesependenciesependencies

� Collaborating classes who implementation may vary at runtime

should depend on an intermediate “injected” dependency

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.8

SOLID DESIGN GUIDELINES

� A class should have one and only one responsibil ity

� Example: class named “Reviewers” in CoffeeFinder which

defines information about users who review coffee shops

� A “sign-on” operation could be added to “Reviewers”

to enable a reviewer to log in

� This does not separate responsibil ity!

� Single Responsibil ity:Single Responsibil ity:Single Responsibil ity:Single Responsibil ity: Use a “Sessions” class

� Decouples the design of logging-in from the Reviewers Class

� What if the authentication strategy changes?

� Reviewers class would need to change

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.9

SINGLE RESPONSIBILITY PRINCIPLE

� “Sign-on” operation added to “Reviewers” Class

� How do other classes of users sign-on?

� Does each user class implement their own?

� Decouple key features/functions into reusable classes

� MVCMVCMVCMVC: Controllers

� Each controller provides business logic for system components

� Components

� ReviewerController: User who contributes coffee shop reviews

� UserController: General system user

� AdminController: Admin user that performs DB maintenance

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.10

SINGLE RESPONSIBILITY - 2

� MVC: Each controller should specialize in dealing with one

resource

� User session is a distinct resource from Reviewer

� Rule of thumb: if you cannot describe the responsibility of

the class in 25 words or less, it may have more than one

responsibility

� Provides a gauge for when to split into multiple classes

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.11

SINGLE RESPONSIBILITY - 3

� Measuring abuse: Lack of Cohesion Metrics - (LCOM)(LCOM)(LCOM)(LCOM)

� Degree to which the elements of a class are related

� Methods are related if they access the same subset of

instance or class variables – or if one calls the other

� Detects unrelated clusters within a class

� “Data clump” code smell: when a class is evolving towards

multiple responsibilities

� Group of variables/values passed and returned together

� Could values benefit from their own class?

� CKJM Java metrics (Free Tool):

http://www.spinellis.gr/sw/ckjm/

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.12

SRP: COHESION METRICS - 1

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L7.3

� Revised Henderson-Sellers
LCOM=1–(sum(MVi) / M*V) (produces value from 0 to 1)

� M = # instance methods

� V = # instance variables

� MVi = # instance methods that access the i ’th instance

variable (excluding “trivial” getters/setters)

� LCOM-4: counts # of connected components in graph where

related methods are connected by an edge

� High LCOM suggests possible single responsibility violation

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.13

SRP: COHESION METRICS - 2

�Cohesion measures the degree of dependence

among classes/modules in a system

�High cohesion: Classes/modules in the program

perform similar tasks and are related to each

other (via associations) GOOD !

�Low cohesion: Lots of miscellaneous and auxiliary

classes/modules, no associations BAD !

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.14

SRP: COHESION SUMMARY

� Reviewer class:

� Attribute: phone_number

� Attribute: zipcode

� Want ability to check zipcode for accuracy

� Want to normalize phone numbers into standardized

format

� Special methods deal only with specific instance

variables of Reviewer class

� Zipcode and phone number could be separate classes

� Overtime the number of “support” methods tends to grow

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.15

SRP: REFACTORING TO SOLVE

“Extract Class” Refactoring:“Extract Class” Refactoring:“Extract Class” Refactoring:“Extract Class” Refactoring:

Extract new class(es) from the Reviewer

Could refactor as an Address Class, or separate
zipcode and phone number

�Classes should be: openopenopenopen for extension,

but closedclosedclosedclosed for modification

� Extending a class shouldn’t require modifying existing

code

� Case statement code smell:

� Explicit dispatch based

on the report format

� Adding a new output type

requires modifying

Report.output method

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.16

OPEN/CLOSED PRINCIPLE (OCP)

Class Report
def output

formatter =
case @format
when :html

HtmlFormatter.new(self)
when :pdf

PdfFormatted.new(self)
. . . Etc

end
end

end

� Abstract factory design pattern

� Provides a solution in

statically typed

languages

� Provides common

interface for instantiating

an object whose subclass

may not be known until

runtime

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.17

OPEN/CLOSED PRINCIPLE - 2

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L7.18

NonNonNonNon----elegant solution: factory must be changedelegant solution: factory must be changedelegant solution: factory must be changedelegant solution: factory must be changed

public abstract class AbstractFactory {
abstract Color getColor(String color);
abstract Shape getShape(String shape) ;

}

public class ShapeFactory extends AbstractFactory {

@Override
public Shape getShape(String shapeType){

if(shapeType == null){
return null;

}
if(shapeType.equalsIgnoreCase("CIRCLE")){

return new Circle();

}else if(shapeType.equalsIgnoreCase("RECTANGLE")){
return new Rectangle();

}else if(shapeType.equalsIgnoreCase("SQUARE")){
return new Square();

}
return null;

}

@Override
Color getColor(String color) {

return null;
}

}

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L7.4

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.19

OCP:

TEMPLATE METHOD / STRATEGY PATTERN

� Template method: set of stepsset of stepsset of stepsset of steps is the same,

but implementation of steps different

� InheritanceInheritanceInheritanceInheritance: subclasses override abstract “step” methods

� Strategy: task is the same, but many ways to do it

� CompositionCompositionCompositionComposition: component classes implement whole task (delegation)

Delegation

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.20

OCP: REPORT - TEMPLATE PATTERN

class Report
at t r_accessor : t i t le, : text
def output_report

output_t i t le
output_header
output_body

end
end

class HtmlRepor t < Report
def output_t i t le . . . end
def output_header . . . end

end
class PdfReport < Report

def output_t i t le . . . end
def output_header . . . end

end

Template method stays the same;
helpers overridden in subclass

HtmlReportHtmlReport

output_title()
output_header()
output_body()

output_title()
output_header()
output_body()

PdfReportPdfReport

output_title()
output_header()
output_body()

output_title()
output_header()
output_body()

ReportReport

output_report()
output_title()
output_header()
output_body()

output_report()
output_title()
output_header()
output_body()

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.21

OCP: REPORT - STRATEGY PATTERN

class Report
attr_accessor :t it le, : text , : formatter
def output_report

formatter .output_report
end

end

Delegation
(vs. inheritance)

ReportReport

@formatter@formatter

output_report()output_report()

FormatterFormatter

output_report()output_report()

HtmlFormatterHtmlFormatter

output_report()output_report()

PdfFormatterPdfFormatter

output_report()output_report()

“

““

“Prefer composition over inheritance”
””

”

� Multiplication of subclasses

� � favor: composition over inheritance

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.22

OCP - TOO MUCH INHERITANCE

output()

add_watermark()

@base

PdfWithWatermark-
Formatter

output()

protect_with_password()

@base

PdfWithPassword-
Formatter

output()
PdfFormatter

output()
Formatter

output()

PdfWithPassword-
Formatter

output()

PdfWithWatermark-
Formatter

output()

PdfWithPasswordAnd-
WatermarkFormatter

output()
HtmlFormatter

output()
RegularPdfFormatter

output()

PdfFormatter

output()
Formatter

� In some cases it won’t be possible to be “closed”

for all types of modifications

� Design pattern or approach should be chosen

� Agile methods can help determine potential changes early

� Can try to refactor, etc. to keep classes closed to modification

� Can you think of some implications for class modification vs.

extension?

� What about dependent code?

If class behavior changes, potentially affects other code

� Extension is generally harmless

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.23

OPEN/CLOSED PRINCIPLE CONCLUSIONS

� Class subtypes can substitute for base types

� Current formulation attributed to (Turing Award winner)

Barbara Liskov

Type/subtype != Class/subclass

All of T’s subtypes should preserve T’s

contract…

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.24

LISKOV SUBSTITUTION PRINCIPLE (LSP)

“A method that works on an instance of
type T, should also work on any
subtype of T”

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L7.5

� Code smell: In a refused bequest a subclass either:

� Destructively overrides a behavior inherited from its superclass

� Forces changes to the superclass to avoid the problem

� Subclasses that don’t take advantage of parent (gifts)

implementations should not be subclassesshould not be subclassesshould not be subclassesshould not be subclasses

� Indicates inappropriate use of inheritance!

� Symptom:

change to subclass requires

change to superclass

(shotgun surgery code smell)

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.25

LSP: REFUSED BEQUEST

■ LSP Violation:

■ Square inherits from rectangle

■ Rectangle provides

make_twice_as_wide_as_high() method

■ Not shown in UML diagram

■ Makes no sense in a square (OCP)

� Composition should be used instead of inheritance

� The square will be composed of a rectangle (it uses it!)

rather than inheriting from, and extending the rectangle class

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.26

LSP: SOLUTION

SquareSquare

@rect@rect

area(), perimeter()area(), perimeter()

RectangleRectangle

width, heightwidth, height

area(), perimeter()area(), perimeter()

RectangleRectangle

area, perimeterarea, perimeter

width, heightwidth, height

SquareSquare

make_twice_as_wide
_as_high

make_twice_as_wide
_as_high

� Clients should not be forced to depend on methods

they do not use…

� Split large interfaces into smaller, more specific ones

� ISP reduces coupling

� High code coupling is

correlates with higher

software maintenance

costs

� Code is harder to modify,

refactor, extend

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.27

INTERFACE SEGREGATION PRINCIPLE (ISP)

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.28

ISP: MINIMAL INTERFACE EXAMPLE

� Degree of interdependence between software modules

� Measure of how closely connected two routines/modules are

� These factors are

commonly correlated:

� Low coupling

� High Cohesion

� High readability

� High maintainability

� Characteristics of:

Good Good Good Good software designssoftware designssoftware designssoftware designs

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.29

ISP: CODE COUPLING

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.30

ISP: COUPLING LEVELS

� ContentContentContentContent: one module relies on internal
workings or data of another. One class reads/depends on
another internal variables

� CommonCommonCommonCommon: two modules share global data; all modules using
the global data are impacted by a change

� ExternalExternalExternalExternal: two modules share an externally imposed data
format, communication protocol, device interface

� ControlControlControlControl: one module controls the flow of another by passing
it information on what to do

� StampStampStampStamp: modules share a common data structure, though may
only sparsely use some of its fields

� DataDataDataData: modules share data through parameters passing

� MessageMessageMessageMessage: modules communicate through message passing
code not explicitly coupled, messages come through channels

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L7.6

� To measure coupling must define precisely what to quantify

� Response for class (RFC)Response for class (RFC)Response for class (RFC)Response for class (RFC): class methods + distinct method

calls made

� Message passing coupling (MPC)Message passing coupling (MPC)Message passing coupling (MPC)Message passing coupling (MPC): number of messages

passing among objects of a class

� ChidamberChidamberChidamberChidamber & & & & KemererKemererKemererKemerer

� Coupling between objects (CBO)Coupling between objects (CBO)Coupling between objects (CBO)Coupling between objects (CBO): total classes reference by a

class, plus the total number of classes referencing it.

� Fan outFan outFan outFan out : number of other classes referenced by the class

� Fan InFan InFan InFan In: number of other classes referencing the class

� Efferent coupling (Ce)Ef ferent coupling (Ce)Ef ferent coupling (Ce)Ef ferent coupling (Ce): Fan In – stricter implementation

� Afferent coupling (Ca)Afferent coupling (Ca)Afferent coupling (Ca)Afferent coupling (Ca): Fan out – stricter implementation

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.31

ISP: COUPLING METRICS

�Coupling measures dependencies between

subsystems

�High coupling: changes to one subsystem will have

high impact on the other subsystem – BAD!!

� Require change of model, massive compilation

� Low coupling: change in one subsystem does not

affect any other subsystem - - GOOD!!

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.32

ISP: COUPLING SUMMARY

� http://faculty.washington.edu/wlloyd/courses/tcss360/tutori

als/TCSS360_w2017_Tutorial_2.pdf

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.33

TUTORIAL #2 - CONTINUED QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 30, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.34

