TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

TCSS 360:

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

SOFTWARE DEVELOPMENT
AND QUALITY ASSURANCE

SessionMgr

Software Design and B
SOLID Principles Database

SessionMgr

nterface»
SessionStore

o
7

OBJECTIVES

= From chapter 11: Engineering SaaS

=Software Design & Architecture

=SOLID Design Principles

=Design Patterns

=Software Metrics

January 30,2017

TCSS360: Software Development and Quality Assurance [Winter 2017) 2
Institute of Technology, University of Washington - Tacoma

SOFTWARE DESIGN:
REQUIREMENTS TO CODE

= Software Architecture

/_\{V TR
Requirements

= Provides a high-level
framework to build and
evolve the system m

,

Code

Software Architecture

TCS5360: Software Development and Quality Assurance [Winter 2017]

LI, At Institute of Technology, University of Washington - Tacoma

ARCHITECTURE VS. DESIGN PATTERNS

= Architecture: provides high-level framework for structuring
application
= Client-server REST web services
= Client-server SOAP web services
= Client-server based on remote procedure calls
= Distributed system based on CORBA
= Defines the system in terms of computational components
and their interactions

= Design Patterns
= Lower level than architecture

= Reusable collaborations that solve sub-problems within an
application
= E.g. How can | decouple subsystem X from subsystem Y?

T —— TC55360: Software Development and Quality Assurance [Winter 2017] ‘ e |

Institute of Technology, University of Washington - Tacoma

SOFTWARE ARCHITECTURE:
100,000 FT VIEW

= Component based design
= Systems consist of components and connectors

system and their behaviors
= Abstract data types, classes, etc.

= Connectors: define the interconnections between comp

= Components: define the basic computations comprising the

onents

= Procedure call, event announcement, asynchronous messages

TCSS360: Software Development and Quality Assurance [Winter 2017)

{ETETR £, A Institute of Technology, University of Washington - Tacoma

ABSTRACT DATA TYPES

= Abstract data types provide a model for a certain class of data
structures with similar behavior

= ADTs include

= A collection of data elements

= A set of operations to perform on the data
= ADT specification

= Defines what the operations do, but now how
= ADT implementation

= Provides an implementation for the operations specific to a
particular data structure

= Consider Java’s List Interface
= Provides an abstract definition of List operations
= Java class provide concrete implementations

January 30, 2017 TCS5360: Software Development and Quality Assurance [Winter 2017 ‘ e |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

2/1/2017

L7.1

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

ABSTRACTION

= Define the operations
= Define the data
= Provide an implementation

User

= Why would we like to abstract the
definition of our operations?

= Common interface
= Many implementations

= Backward compatibility:
introduce new interfaces while
retaining support for old...

Oparations

TCSS360: Software Development and Quality Assurance [Winter 2017)

{EETR £, A Institute of Technology, University of Washington - Tacoma

SOLID DESIGN GUIDELINES

= Single Responsibility
= A class should have one and only one reason to change

= Open/Closed
= Classes should be open for extension but closed for modification

= Liskov Substitution
= Substituting a subclass for a class should preserve correct program

behavior
= Interface Segregation
= No client should depend on methods it does not use

= Injecting Dependencies

= Collaborating classes who implementation may vary at runtime
should depend on an intermediate “injected” dependency

TCSS360: Software Development and Quality Assurance [Winter 2017)

TR R Institute of Technology, University of Washington - Tacoma

[o

SINGLE RESPONSIBILITY PRINCIPLE

= A class should have one and only one responsibility

= Example: class named “Reviewers” in CoffeeFinder which
defines information about users who review coffee shops

= A “sign-on” operation could be added to “Reviewers”
to enable a reviewer to log in
= This does not separate responsibility!

= Single Responsibility: Use a “Sessions” class
= Decouples the design of logging-in from the Reviewers Class
= What if the authentication strategy changes?
= Reviewers class would need to change

TCS5360: Software Development and Quality Assurance [Winter 2017]

LI, At Institute of Technology, University of Washington - Tacoma

SINGLE RESPONSIBILITY - 2

= “Sign-on” operation added to “Reviewers” Class
= How do other classes of users sign-on?
= Does each user class implement their own?

= Decouple key features/functions into reusable classes

= MVC: Controllers
= Each controller provides business logic for system components
= Components

= ReviewerController: User who contributes coffee shop reviews

= UserController: General system user

= AdminController: Admin user that performs DB maintenance

‘TCSS360: Software Development and Quality Assurance [Winter 2017]

(I, A Institute of Technology, University of Washington - Tacoma

SINGLE RESPONSIBILITY - 3

= MVC: Each controller should specialize in dealing with one
resource

= User session is a distinct resource from Reviewer

= Rule of thumb: if you cannot describe the responsibility of
the class in 25 words or less, it may have more than one
responsibility

= Provides a gauge for when to split into multiple classes

TCSS360: Software Development and Quality Assurance [Winter 2017)

{ETETR £, A Institute of Technology, University of Washington - Tacoma

[o

SRP: COHESION METRICS - 1

" Measuring abuse: Lack of Cohesion Metrics - (LCOM)
= Degree to which the elements of a class are related

= Methods are related if they access the same subset of
instance or class variables - or if one calls the other

= Detects unrelated clusters within a class

“Data clump” code smell: when a class is evolving towards
multiple responsibilities
Group of variables/values passed and returned together
Could values benefit from their own class?

= CKJM Java metrics (Free Tool):
http://www.spinellis.gr/sw/ckjm

'TCSS360: Software Development and Quality Assurance [Winter 2017]

(I, A Institute of Technology, University of Washington - Tacoma

‘ a2

Slides by Wes J. Lloyd

2/1/2017

L7.2

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

SRP: COHESION METRICS - 2

= Revised Henderson-Sellers
LCOM=1-(sum(MV,) / M*V) (produces value from O to 1)
= M= # instance methods
= V = # instance variables
= MV = # instance methods that access the i'th instance
variable (excluding “trivial” getters/setters)

= | COM-4: counts # of connected components in graph where
related methods are connected by an edge

= High LCOM suggests possible single responsibility violation

January 30,2017 ‘TCSS360: Software Development and Quality Assurance [Winter 2017] | s |

Institute of Technology, University of Washington - Tacoma

SRP: COHESION SUMMARY

= Cohesion measures the degree of dependence
among classes/modules in a system

=High cohesion: Classes/modules in the program
perform similar tasks and are related to each
other (via associations) GOOD !

=Low cohesion: Lots of miscellaneous and auxiliary
classes/modules, no associations BAD!

TCSS360: Software Development and Quality Assurance [Winter 2017)

Institute of Technology, University of Washington - Tacoma ‘ 7.1 |

January 30,2017

SRP: REFACTORING TO SOLVE

= Reviewer class:
= Attribute: phone_number

= Attrihute: zincode

“Extract Class” Refactoring:
.| Extract new class(es) from the Reviewer

Could refactor as an Address Class, or separate
zipcode and phone number
variables of Reviewer class

= Zipcode and phone number could be separate classes
= Overtime the number of “support” methods tends to grow

TCS5360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma s

January 30,2017

OPEN/CLOSED PRINCIPLE (OCP)

= Classes should be: open for extension,
but closed for modification

= Extending a class shouldn’t require modifying existing

code Class Report
def output
= Case statement code smell: formatter =

case @format

when :html
\ \ HtmlIFormatter.new(self)

when :pdf
PdfFormatted.new(self)

= Explicit dispatch based
on the report format

= Adding a new output type #.. Etc
requires modifying ’ end
Report.output method enj“

‘TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma ‘ 1716

January 30,2017

OPEN/CLOSED PRINCIPLE - 2

= Abstract factory design pattern

_ o Postractractory [e ’—‘Absm(mw
= Provides a solution in L= 1pattembemo_{
i +getShape() : Shape Teetfactony(): “+main() : void
statically typed oot ol L] D]
languages — extends
| |
= Provides common [Faetshapelishape | | eetcolencalor |
interface for instantiating creates l conatis l
an object whose subclass S Jaincr T Toomntbonns
may not be known until
T imglements imglements
implement implement
/1 —] —— ||/ /— —/]
== —— | |—— = =
January 30,2017 TCSS360: Software Development and Quality Assurance [Winter 2017) | a7 |

Institute of Technology, University of Washington - Tacoma

Non-elegant solution: factory must be changed

public abstract class AbstractFactory {
abstract Color getColor(String color);
abstract Shape getShape(String shape) ;
}

public class P extends y {
@Override
public Shape getShape(String shapeType){
if(shapeType == null){
return null;

}
if(shapeType.equalsignoreCase("CIRCLE")){
return new Circle();

Jelse if(shapeType.equalsignoreCase("RECTANGLE")){
return new Rectangle();

Jelse if(shapeType.equalsignoreCase("SQUARE")){
return new Square();

lelum null;

}

@Override

Color getColor(String color) {
return null;

TCSS360: Software Development and Quality Assurance [Winter 2017]

LIy e Institute of Technology, University of Washington - Tacoma 1718

Slides by Wes J. Lloyd

2/1/2017

L7.3

2/1/2017

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

OCP:

TEMPLATE METHOD / STRATEGY PATTERN

= Template method: set of steps is the same,
but implementation of steps different

= Inheritance: subclasses override abstract “step” methods

= Strategy: task is the same, but many ways to do it
= Composition: component classes implement whole task (delegation)

AbstraciClass
ErRYTeEa det template_method Context
- operation1()

operation1() operation2() strategy i

aoperation2() operation3() o Delegation

operation3() end

ConcreteClass1 ConcreteClass2 I Strategy1 [Strategy2
operation1() operationt() l i ‘ ‘ ration|
cperation2() operation2() pzelel) Spemtionl)
operation3() operation()
TC55360: Software Development and Quality Assurance [Winter 2017]
(O S e Institute of Technology, University of Washington - Tacoma 19

OCP: REPORT - STRATEGY PATTERN

class Report
attr_accessor :title, :text, :formatter
def output_report
formatter .output_report

|

end
end
Report
@formatter Formatter
output_report() - output_report()
[HtmIFormatter [pdfFormatter
‘ output_report() ‘ I output_report() ‘
“ ara 5 q ”
Prefer composition over inheritance
TCS5360: Software Development and Quality Assurance [Winter 2017]
LI, At Institute of Technology, University of Washington - Tacoma 72

OCP: REPORT - TEMPLATE PATTERN

class Report

attr_accessor title, :text
def output_report
output_title
output_header Template method stays the same;
output_body helpers overridden in subclass
end
end Report
output_report()
class HtmIReport < Report nurppur mpﬂr()
def output_title ... end output_header()
def output_header ... end output_body ()
end
class PdfReport < Report
def output_title ... end Htm1Report PdfReport
def output_header ... end output_title() output_title()
end - output_header) output_header ()
output_body () output_body ()
TCSS360: Software Development and Quality Assurance [Winter 2017)
TR R Institute of Technology, University of Washington - Tacoma ‘ 1720 |

OCP - TOO MUCH INHERITANCE

PdfFormatter

T
RegularPdfF ormatter Pdfwitt
Formatier
—_— Loutput()
PdfWitk PdfWith
WatermarkFormatter Formatter
output(output(

= Multiplication of subclasses
= > favor: composition over inheritance

‘TCSS360: Software Development and Quality Assurance [Winter 2017] ‘ 22 |
a

(I, A Institute of Technology, University of Washington - Tacom:

OPEN/CLOSED PRINCIPLE CONCLUSIONS

= |n some cases it won’t be possible to be “closed”
for all types of modifications
= Design pattern or approach should be chosen
= Agile methods can help determine potential changes early
= Can try to refactor, etc. to keep classes closed to modification

= Can you think of some implications for class modification vs.
extension?

= What about dependent code?
If class behavior changes, potentially affects other code

= Extension is generally harmless

TCSS360: Software Development and Quality Assurance [Winter 2017)

{ETETR £, A Institute of Technology, University of Washington - Tacom: | 723 |

Slides by Wes J. Lloyd

LISKOV SUBSTITUTION PRINCIPLE (LSP)

= Class subtypes can substitute for base types
= Current formulation attributed to (Turing Award winner)

Barbara Liskov
“A method that works on an instance of

type T, should also work on any
subtype of T”

Type/subtype != Class/subclass
All of T's subtypes should preserve T's
contract...

TCS5360: Software Development and Quality Assurance [Winter 2017] ‘ s

(I, A Institute of Technology, University of Washington - Tacoma

L7.4

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

LSP: REFUSED BEQUEST

= Code smell: In a refused bequest a subclass either:
= Destructively overrides a behavior inherited from its superclass
= Forces changes to the superclass to avoid the problem

= Subclasses that don’t take advantage of parent (gifts)
implementations should not be subclasses

= Indicates inappropriate use of inheritance!
= Symptom:

change to subclass requires

change to superclass

(shotgun surgery code smell) W

¢y

TCS5360: Software Development and Quality Assurance [Winter 2017]
LI, At Institute of Technology, University of Washington - Tacoma 728

LSP: SOLUTION

Rectangle m LSP Violation:
'"e_a' pe”"_mer m Square inherits from rectangle
width, height
7AY m Rectangle provides

make_twice_as_wide_as_high() method
m Not shown in UML diagram
m Makes no sense in a square (OCP)
Square Rectangle
@rect —|_> width, height

3| area(), perimeter()

make_twice_as_wide
_as_high

= Composition should be used instead of inheritance

= The square will be composed of a rectangle (it uses it!)
rather than inheriting from, and extending the rectangle class

TCSS360: Software Development and Quality Assurance [Winter 2017)

TR R Institute of Technology, University of Washington - Tacoma

| o=]

INTERFACE SEGREGATION PRINCIPLE (ISP)

= Clients should not be forced to depend on methods
they do not use...

= Split large interfaces into smaller, more specific ones
= |SP reduces coupling

YOU:RE|GOINGITO'NEED,TO SHRINK

. . . iTHAT INTERFACE;
= High code coupling is

correlates with higher

software maintenance

costs

= Code is harder to modify,
refactor, extend

TCS5360: Software Development and Quality Assurance [Winter 2017]

[ETETR £, A Institute of Technology, University of Washington - Tacoma

w27

ISP: MINIMAL INTERFACE EXAMPLE

O ClierL1 @ dliernz @ dliern3
«irteraces ¢interfeces «irrerfaces
@ servernterfacel @ ServerInterface? @ ServerInterfare3

® cllentlFunctons (1 ® dlent2Functicns () @ cllent3Functions ()

(3 Server

@ disntLMunctons i
@ diient2Functons ()
@ rlient 3Rt

January 30,2017 ‘TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma ‘ 1728

ISP: CODE COUPLING

= Degree of interdependence between software modules
= Measure of how closely connected two routines/modules are

= These factors are - J‘r
commonly correlated: @ &
= Low coupling { ~
= High Cohesion el
= High readability Q—0—0 0o 9
= High maintainability @ntent @mmon el Sump S
Tight Loose

= Characteristics of:
More interdependency

Good software designs More coordination
More information flow

Less interdependency
Less coordination
Less information flow

TC55360: Software Development and Quality Assurance [Winter 2017]
LI, At Institute of Technology, University of Washington - Tacoma

29 |

ISP: COUPLING LEVELS ._._._.:{J

Lese e sperre
ettty

= Content: one module relies on internal | izl oy
workings or data of another. One class reads/depends on
another internal variables

= Common: two modules share global data; all modules using
the global data are impacted by a change

= External: two modules share an externally imposed data
format, communication protocol, device interface

= Control: one module controls the flow of another by passing
it information on what to do

= Stamp: modules share a common data structure, though may
only sparsely use some of its fields

= Data: modules share data through parameters passing

= Message: modules communicate through message passing
code not explicitly coupled, messages come through channels

January 30,2017 'TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma ‘ 0 |

Slides by Wes J. Lloyd

2/1/2017

L7.5

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

ISP: COUPLING METRICS

= To measure coupling must define precisely what to quantify

= Response for class (RFC): class methods + distinct method
calls made

=M ge p i ling (MPC): number of messages
passing among objects of a class

= Chidamber & Kemerer

= Coupling between objects (CBO): total classes reference by a
class, plus the total number of classes referencing it.

= Fan out: number of other classes referenced by the class
= Fan In: number of other classes referencing the class

= Efferent coupling (Ce): Fan In - stricter implementation
= Afferent coupling (Ca): Fan out - stricter implementation

January 30,2017

TCSS360: Software Development and Quality Assurance [Winter 2017) o
Institute of Technology, University of Washington - Tacoma

ISP: COUPLING SUMMARY

= Coupling measures dependencies between
subsystems

= High coupling: changes to one subsystem will have

high impact on the other subsystem - BAD!!
= Require change of model, massive compilation

= Low coupling: change in one subsystem does not
affect any other subsystem - - GOOD!!

TCSS360: Software Development and Quality Assurance [Winter 2017)

(e R, 2R Institute of Technology, University of Washington - Tacoma

.32

TUTORIAL #2 - CONTINUED

= http://faculty.washington.edu/wlloyd/courses/tcss360/tutori
als/TCSS360_w2017_Tutorial_2.pdf

TCS5360: Software Development and Quality Assurance [Winter 2017]

LI, At Institute of Technology, University of Washington - Tacoma

733

Slides by Wes J. Lloyd

QUESTIONS

TCSS360: Software Development and Quality Assurance [Winter 208]

R Institute of Technology, University of Washington - Tacoma

2/1/2017

L7.6

