
TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L6.1

Scrum Software Process,Scrum Software Process,Scrum Software Process,Scrum Software Process,
Version Control, Version Control, Version Control, Version Control,
GitGitGitGit////GithubGithubGithubGithub,,,,
PostmanPostmanPostmanPostman

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 360: TCSS 360: TCSS 360: TCSS 360: SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT

AND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCE

� From chapter 10: Engineering SaaS

�Scrum

�Version control

�Git / Github

�Postman

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.2

OBJECTIVES

1. Enthusiasm
� Great! Can’t wait to start

2. Disillusionment
� Oh, there’s a lot of requirements…

3. Panic
� The customer wants everything!

and the scope just keeps increasing …

4. Search for the guilty
� Who agreed to this anyway?

5. Punishment of the Innocent
� No one knew…

6. Praise for non-participants

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.3

SOFTWARE PROJECT PHASES

� Agile like process

� Feature daily short meetings ~ 15 minutes

� Often called “STAND UPS”

� By standing we encourage meetings to be short

� Basic agenda

� What have you done since yesterday?

� What are you planning to do today?

� Are there any impediments or stumbling blocks?

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.4

SCRUM

� Scrum uses “Sprints” instead of agile iterations

� Scrum Team – two pizza team that delivers software

� Teams of 4 to 9 people

� Two pizzas can feed the team in a meeting

� Scrum Master

� Acts as a buffer between the team and external distractions

� Keeps team focused

� Enforces rules, coding standards, testing, walkthroughs

� Product Owner

� Represents customer (not the Scrum Master)

� Serves as the customer’s voice, prioritizes user stories

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.5

SCRUM - 2

� GOALGOALGOALGOAL: Improve software quality

� Automobile analogy:Automobile analogy:Automobile analogy:Automobile analogy: two developers work jointly at the
same workstation on the same code

� Driver RoleDriver RoleDriver RoleDriver Role

� Enters code, thinks tactically about how to complete the
current task, explains thoughts out loud while typing

� Observer/navigatorObserver/navigatorObserver/navigatorObserver/navigator

� Reviews each line of code as it is entered

� Acts as a safety net for the driver

� Thinks strategically about future problems

� Makes suggestions to the driver

� Pairs alternate between driving and observing

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.6

PAIR PROGRAMMING

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L6.2

PAIR PROGRAMMING - 2

� Sit side-by-side facing screens together

�Not personal computer; pair programming workstation

� To avoid distractions, no email reader, browser

Pivotal Tracker Developers �Can produce more readable code

�Requires more effort than solo programing

�Supports knowledge transfer between pair:

�programming idioms

� tool tricks

�company processes

� latest technologies

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.8

PAIR PROGRAMMING - 3

� Software quality improvements:

measured by study (Cockburn and Williams 2001)

� Faster development with PP

� Code development in 20% to 40% less time

� Fewer failures with PP

� Only 15% of tests failed

� 30% with solo programming

� But, higher development costs

� On average 15% more “programmer hours”

� Requires more focused attention

� Two programmers “close off” interrupts for hours

� Can be exhausting, less net surfing, smartphone use

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.9

PAIR PROGRAMMING - 4

VERSION CONTROL

SYSTEMS

January 25, 2017
L6.10

�Records changes to files or filesets over time

�Allows reversion to previous state

�Compare changes

�Creates a version history

�Supports team collaboration on code

�Supports versioning

� Releases are tagged

�Supports branching

� Developers work on branches

� Merge code into trunk

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.11

VERSION CONTROL SYSTEM

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.12

CENTRALIZED VERSION CONTROL

� SVN

(subversion)

� CVS

� PVCS

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L6.3

� Distributed copies of the

source code repository

� Peer-to-peer approach to VC

� Git, mercurial (hg)

� Users work on local fi lesystem

� Commit code to local repository

� Push code to shared repository

� Shared repositories: Github.com,

privately hosted git servers

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.13

DISTRIBUTED VERSION CONTROL

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.14

CENTRALIZED VS. DISTRIBUTED

VERSION CONTROL TRADEOFFS

Centralized VCCentralized VCCentralized VCCentralized VC Distributed VCDistributed VCDistributed VCDistributed VC

Branching and Branching and Branching and Branching and

MergingMergingMergingMerging

Not easy. Users manually track

which revisions have been

merged between branches

Creating, managing and removing

branches is simple

SynchronizationSynchronizationSynchronizationSynchronization No way to share changes

between users except through

central server

Users can exchange code and

collaborate directly: peer to peer

Offline commitsOffline commitsOffline commitsOffline commits Not supported. Requires network

connection to central server

Supported to local repositories

BackupBackupBackupBackup If central server fails, all data is

lost. Reliant on server backup

Source code copies are everywhere.

User copies are “remote” backups.

Provides security against data loss

PerformancePerformancePerformancePerformance Slow operations to central server.

Becomes overloaded with large

teams

Operations are fast because central

server communication is minimized

ComplexityComplexityComplexityComplexity Very easy to setup and use,

conceptually simple

More complex and requires time to

learn generally

� Snapshots of source fi les are kept

� Stored as checksums (incremental)

� Operations are local (offl ine)

� Push syncs local repository with remote repository

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.15

GIT DESIGN

� Committed � Stored safely in local repository

� Modified � Local copy changed but not committed

� Staged � Marked as modified fi le in this current version to go

into the next commit snapshot

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.16

FILE STATES IN GIT

� OriginOriginOriginOrigin

Authoritative repository. Acts as the master. Changes

are all eventually “pushed” there.

Git doesn’t care which repository is authoritative.

Can be on a central server, users laptop, etc.

� ForkingForkingForkingForking

Used to make a copy of another project in your own

account. Creates your own copy for contributing.

� CloningCloningCloningCloning

Download a repository to your local machine

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.17

KEY TERMS

� Pull requestPull requestPull requestPull request

When committing changes, you send a PULL

request to the master contributor so they know

that there are new changes to incorporate

� Merge requestMerge requestMerge requestMerge request

The original owner merges the request and it

becomes part of the master.

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.18

KEY TERMS - 2

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L6.4

� Amy and Bob each have a current copy of the repository

� Amy makes and commits a set of changes to fi le A

� Amy makes and commits a separate set of changes to fi le B

� Amy pushes her commits to the origin repository

� Bob makes and commits his own changes to fi le A, but doesn’t

touch fi le B.

� Bob tries to push his commits, but is prevented from doing so

since fi le A has changed since Bob’s last pull .

Bob must bring his copy of fi le A up-to-date with respect to the

origin before he can push his changes to the origin

� Bob merges Amy’s fi le A changes, and can then commit/push

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.19

MERGE CONFLICTS

� Automatic merge

� When differences are minimal and there are no conflicting changes

the system will automatically perform the merge

� Differences by line, word

� Manual merge

� When changes conflict with each other, they must be manually

inspected and dealt with

� Sometimes can be confusing

� Requires communication with team members who changed to code

� Visual Diff tools

� Show differences between file versions to help observe differences

� Sometimes integrated directly into tools, IDEs

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.20

MERGE CONFLICTS - 2

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.21

GRAPHICAL DIFF

� Git support already integrated into Netbeans & other IDEs

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.22

IDE INTEGRATION

� Pair programming eliminates the need

� What if not programming in pairs?

� Plan and document processes: formal code reviews

� Agile source management: PULL requests

� Developers perform SHORT reviews on new code when

merging pull requests

� If concerns arise, short discussions ensue

� Reviews becomes mandatorymandatorymandatorymandatory when merge conflicts arise

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.23

CODE REVIEWS

� Chrome plug-in

� Browser based generic webservices client

� Alternative to command-line curl

� Create/invoke webservices tests

� Provide files, raw text as an input, etc.

� Also, other similar browser plugins exist

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.24

POSTMAN

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L6.5

� Installed into chrome as an extension

�Extension menu

�Visit: chrome://apps/

�Postman runner: batch tests, batch POSTs

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.25

POSTMAN - DEMO

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.26

POSTMAN DEMO

� http://faculty.washington.edu/wlloyd/courses/tcss360/tutori

als/TCSS360_w2017_Tutorial_2.pdf

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.27

TUTORIAL #2 QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 25, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.28

