
TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.1

Introduction to Introduction to Introduction to Introduction to

Software EngineeringSoftware EngineeringSoftware EngineeringSoftware Engineering

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 360: TCSS 360: TCSS 360: TCSS 360: SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT

AND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCE

� What point(s) remain least clear to you?

� The difference between the waterfall and spiral software
process models

� Agile software processes

� Software-as-a-Service: what does this mean in a practical
application

� Can you elaborate more on SaaS, provide examples

� Forthcoming

� Service Oriented Architecture Design

� The overall project for TCSS 360

� Details forthcoming –

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.2

FEEDBACK – JAN 4TH

� Introduction to Software-as-a-Service

� Cloud computing

� Software quality

� Software productivity

� Software-as-a-Service architecture

� TCP/IP, HTTP, REST/JSON

� Examples

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.3

OBJECTIVES

SOFTWARE-AS-A-

SERVICE (SAAS)

&

SERVICE ORIENTED

ARCHITECTURES (SOA)

L2.4

1. No installation; Not worried about HW capabilities,
OS versions, etc.

2. Data stored safely, persistently on (cloud) servers

3. Easy for groups to interact with same data

4. If data is large or changed frequently, simpler to
support a master copy at a central site (cloud)

5. Cloud hosting � single HW/OS environment
� no compatibility hassles for developers
� incremental deployment: beta test new features

with subset of the user base transparently

6. Cloud hosting � simplifies upgrades for developers,
and no user upgrade requests

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.5

WHY SAAS IS > SHRINK-WRAPPED SW…

� Include server-centric apps, using thin clients

�Search, email, commerce, social nets, video…

�Now also productivity (Google Docs/Office 365),

finance (TurboTax Online), IDEs (Codenvy)…

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.6

SAAS EXAMPLES

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.2

�Client-specific binary, frequent upgrades

�Must work w/many versions of HW, OS, Libraries…

�Hard to maintain

�Extensive compatibility testing per release

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.7

SHRINK WRAPPED SOFTWARE (SWS)

�Can you design software so that you can

recombine independent modules to offer many

different apps without a lot of programming?

�Solves “Agile only good for small teams”

� “[Amazon CEO Jeff Bezos] realized long before the

vast majority of Amazonians that Amazon needs to

be a platform.”

Steve Yegge, Googler, former Amazonian, in a 2011 blog post

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.8

BUILDING LARGE SAAS

1. “All teams will henceforth expose their data and

functionality through service interfaces.”

2. “Teams must communicate with each other

through these interfaces.”

3. “There will be no other form of inter-process

communication allowed: no direct linking, no

direct reads of another team's data store, no

shared-memory model, no back-doors whatsoever.

The only communication allowed is via service

interface calls over the network.”

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.9

2002 JEFF BEZOS EMAIL:

AMAZON SERVICES MANDATE

4. “It doesn't matter what [API protocol] technology

you use.”

5. “Service interfaces, without exception, must be

designed from the ground up to be

externalizable. That is to say, the team must plan

and design to be able to expose the interface to

developers in the outside world. No exceptions.”

6. “Anyone who doesn't do this will be fired.”

7. “Thank you; have a nice day!”

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.10

AMAZON SW MANDATE – 2

� Internal subsystems

share data directly

� DBs shared internally

� For example:

Each subsystem accesses

the users DB

� All subsystems composed

together in a single API

(“Bookstore”)

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.11

BOOKSTORE – SILO DESIGN

� Subsystems are

independent,

as if in separate

datacenters

� Review Service access

User Service API

� Can recombine to make

new service

(“Favorite Books”)

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.12

BOOKSTORE – SOA DESIGN

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.3

� SOA may be harder to debug and tune

� SOA results in lower developer productivity

� SOA’s complexity is a poor match for small teams

� SOA is more expensive to deploy than SILO as more servers

are needed to handle the same workload

� SOA is harder to debug and tune: SOA can experience partial

failures as a complete system consists of a number of

microservices hosted separately, but composed together

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.13

WHICH OF THE FOLLOWING IS A DISADVANTAGEDISADVANTAGEDISADVANTAGEDISADVANTAGE

OF SOA COMPARED TO A SILO DESIGN?

CLOUD

COMPUTING

L2.14

� Clusters: Commodity computers connected by Ethernet

switches

� More scalable than conventional servers

� Much cheaper than conventional servers

� Dependability through extensive redundancy

� Few administrators for 1000s servers

� Careful selection of identical HW/SW

� Interchangeable components

� Virtual Machine Monitors simplify operation

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.15

COMPUTER CLUSTERS

� Inktomi search engine on Network of Workstations (NOW)

@ UCB in 1996

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.16

EARLY CLUSTER APPLICATION (1996)

CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources

(networks, servers, storage, applications and

services) that can be rapidly provisioned and

reused with minimal management effort or service

provider interaction”…

MICROPROCESSORS

ADVANCEMENTS

� Smaller die sizes (microns)

� Lower voltages

� Improved heat dissipation

� Energy conservation

� More transistors, but with similar clock rates

�How do we harness this new transistor density?

� Multicore CPUs

� Improve computational throughput

�How do we utilize many-core

processors?

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.4

VIRTUALIZATION VIRTUALIZATION

CONTAINERIZATION

Virtualization Containerization

CLOUD COMPUTING STACK

InfrastructureInfrastructureInfrastructureInfrastructure

PlatformPlatformPlatformPlatform

SoftwareSoftwareSoftwareSoftware

CLOUD COMPUTING STACK

IaaSIaaSIaaSIaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaSPaaSPaaSPaaS

User manages:
Application Services

SaaSSaaSSaaSSaaS

IaaSIaaSIaaSIaaS

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.24

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.5

PUBLIC CLOUD EXAMPLE: NETFLIX

�Amazon Elastic Compute Cloud (EC2)

� Continuously run 20,000 to 90,000 VM instances

� Across 3 regions

� Host 100s of microservices

� Process over 100,000 requests/second

� Host over 1 billion hours of monthly content

�Communication

�Allow customers to interact with service

�Scalability

�Fluctuations in demand during

+ new services to add users rapidly

�Dependability

�Service & communication available 24x7

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.26

CLOUDS PROVIDE IDEAL HARDWARE

INFRASTRUCTURE FOR HOSTING SAAS

�Clusters grew from 1,000 servers to 100,000+
based on customer demand for SaaS apps

�Economies of scale pushed down costs by 3X to 8X

�Purchase, house, operate 100K vs. 1K computers

�Traditional datacenters utilization is ~ 10% - 20%

�Earn $ offering pay-as-you-go computing at prices
lower than customer’s costs;

�Scalable � as many computers as customer needs

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.27

HOW WAREHOUSE SCALE COMPUTING

BECAME THE CLOUD

� Offers computing, storage, communication at ¢ per hour

� No premium to scale:

1000 computers @ 1 hour

= 1 computer @ 1000 hours

� Illusion of infinite scalability to cloud user

� As many computers as you can afford

� Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

� Amazon runs its own e-commerce on AWS!

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.28

PUBLIC CLOUD COMPUTING

Instance Type Per Hour
$ Ratio to

Nano
vCPUs Compute Units Memory (GiB) Storage (GB)

t2.nano $0.007 1 1 Variable 0.5 EBS

t2.micro $0.013 2 1 Variable 1 EBS

t2.small $0.026 4 1 Variable 2 EBS

t2.medium $0.052 8 2 Variable 4 EBS

t2.large $0.104 16 2 Variable 8 EBS

m4.large $0.120 18 2 7 8 EBS

m4.xlarge $0.239 37 4 13 16 EBS

m4.2xlarge $0.479 74 8 26 32 EBS

m4.4xlarge $0.958 147 16 54 64 EBS

m4.10xlarge $2.394 368 40 125 160 EBS

m3.medium $0.067 10 1 3 4 1 x 4 SSD

m3.large $0.133 20 2 7 8 1 x 32 SSD

m3.xlarge $0.266 41 4 13 15 2 x 40 SSD

m3.2xlarge $0.532 82 8 26 30 2 x 80 SSDJanuary 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.29

AMAZON AWS EC2 INSTANCE PRICES

� Private datacenters are not shared by multiple
companies/competitors

� Private datacenters may be the only option for some highly-
regulated apps

� Private datacenters are inherently more secure than public
util ity computing

� Private datacenters could match the low cost of public util ity
computing if they just used the same type of hardware and
software

� Costs will generally always be higher for private datacenters

� Sometimes private datacenters are shared

� There are now government certified public clouds (e.g.
GovCloud) for regulated and highly secure apps

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.30

WHICH STATEMENT ABOUT PRIVATE DATACENTERS

VS. PUBLIC CLOUD COMPUTING IS TRUETRUETRUETRUE?

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.6

LEGACY SOFTWARE VS.

BEAUTIFUL SOFTWARE

CONSIDERING SOFTWARE

QUALITY

L2.31

� $(Bug fixing) ≥ ~2x $(Enhancing)

� $(Bug fixing) ≈ $(Enhancing)

� $(Enhancing) ≈ ~2x $(Bug fixing)

� $(Enhancing) ≈ 3-4x $(Bug fixing)

�60% maintenance costs is for enhancements

�17% is for bug fixes

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.32

IN GENERAL, WHICH STATEMENT REGARDING THE

RELATIONSHIP BETWEEN BUG FIX COSTS AND

ENHANCEMENT COSTS IS MOST ACCURATE?

LEGACY SW VS. BEAUTIFUL SW

� Legacy codeLegacy codeLegacy codeLegacy code: old SW that continues to meet customers'

needs, but difficult to evolve due to design inelegance or

antiquated technology

� 60% SW maintenance costs adding new functionality to

legacy SW

� 17% for fixing bugs

� USDA NRCS science models: SWAT, RUSLE2, others

� Vital but ignored topic in most SWE courses

� Contrasts with beautiful codebeautiful codebeautiful codebeautiful code:::: meets customers' needs

and easy to evolve

� Also consider: Software rot, decay, erosion

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.33

SOFTWARE QUALITY

�Product quality (in general): “fitness for use”

� Business value for customer and manufacturer

� Quality Assurance : processes/standards

=> high quality products & to improve quality
�

�Software quality:

1. Satisfies customers’ needs—easy to use, gets correct

answers, does not crash, …

2.Easy for developers to debug and enhance (maintenance)

�Software QA: ensure quality and improve processes

in SW organization

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.34

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L19.35

NonNonNonNon----functionalfunctionalfunctionalfunctional
SoftwareSoftwareSoftwareSoftware

RequirementsRequirementsRequirementsRequirements

SOFTWARE QUALITY ASSURANCE

� Verification: Did you build the thing rightrightrightright?

�Did you meet the specification?

� “Software Verification”

� Validation: Did you build the rightrightrightright thing?

� Is this what the customer wants?

� Is the specification correct?

� “Requirements Validation”

� Hardware design focuses on VerificationVerificationVerificationVerification

� Software design focuses on ValidationValidationValidationValidation

� Testing helps Assure Software Quality

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.36

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.7

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.37

� Divide and conquer: perform different tests at different

phases of SW development

� Higher level tests don’t repeat lower level tests

� Coverage: various measurements of what % of the system

is “exercised” by a test suite. (% of Lines of Code LOC)

� System or acceptance testSystem or acceptance testSystem or acceptance testSystem or acceptance test: Check if the integrated

program meets requirements, expectations ((((scope c reepscope c reepscope c reepscope c reep))))

� Integration testIntegration testIntegration testIntegration test: Test if interfaces between units

communicate correctly. Do the parts work together?Do the parts work together?Do the parts work together?Do the parts work together?

� Module or functional testModule or functional testModule or functional testModule or functional test: test individual units

� Unit testUnit testUnit testUnit test: test a single method, does it do what is

expected?

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.38

EXHAUSTIVE TESTING IS INFEASIBLE

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.39

LEVELS OF TESTING

� Tests that have outlived their usefulness should be

discarded

� While difficult to achieve, 100% test coverage ensures

customer requirements have been fulfilled.

� Higher level tests typically delegate more detailed

testing to lower levels

� Unit testing works within a single class and module

testing works across classes

� 100% test coverage ensures design reliability (verification)

but not that we’ve built the right product (validation)

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.40

WHAT STATEMENT IS NOT TRUENOT TRUENOT TRUENOT TRUE ABOUT TESTING?

� Agile vs . Plan & DocumentAgile vs . Plan & DocumentAgile vs . Plan & DocumentAgile vs . Plan & Document: Small teams, quick iterations

w/customer feedback, to reduce risk of building the wrong

thing (validation)

� Service Service Service Service Oriented ArchitectureOriented ArchitectureOriented ArchitectureOriented Architecture: build large systems by

combining smaller standalone services � reuse!

� Cloud ComputingCloud ComputingCloud ComputingCloud Computing: Economies of scale of large computer

warehouses led to cost savings & higher server (CPU)

util ization, enabling reduced costs for everyone

� Utility Utility Utility Utility ComputingComputingComputingComputing

� TestingTestingTestingTesting: to assure software quality, including verification

(code) and validation (requirements) is good for all

stakeholders (customers and developers)

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.41

IN SUMMARY…

SOFTWARE

PRODUCTIVITY

L2.42

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.8

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.43

INTEL 8080 (1974), 2MHZ,

6000 TRANSISTORS

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.44

INTEL XEON PHI (2012)

62 PENTIUM-CLASS CORES @1GHZ,

5B TRANSISTORS

� 50 years of Moore’s Law => 2X /1.5 years

�HW designs get bigger

�Faster processors, larger memory

�SW designs get bigger

�Had to improve SW productivity

� Techniques to boost developer productivity

�Clarity via conciseness: new languages

�Synthesis

�Automation and tools

�Reuse and refactoring

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.45

PRODUCTIVITY

� Shorter, easier-to-read syntax:

assert_greater_than_or_equal_to(a,7)
vs.

expect(a).to be ≥ 7

Time.now + 4 * 24 * 60 * 60

vs.
4.days.from_now

� Raise the level of abstraction

� High-level programming languages vs. assembly

� Automatic memory management (Java vs. C)

� Reflection: allow programs to observe themselves

Meta-programming: programs modify themselves at run-time

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.46

CLARITY VS. CONCISENESS

� Code that writes code

� Templates- code templates

� Easy to generate dynamic scripts, etc.

� Populate with case-specific values

� E.g. Apache Velocity

� Be wary of too much code generation

� Some frameworks have so much boilerplate code

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.47

SYNTHESIS

� Replace tedious manual tasks with automation to save

time, improve accuracy

� Enhancements to Integrated Development Environments

� Integrated refactoring

� New tools can make software engineer’s lives better

� In theory: learning curve for new tools justifies

productivity gains

� Good software developer repeatedly learn how to use new

tools � lifetime learning

� Good software engineering jobs acknowledge the cost vs.

benefit tradeoffs of learning new tools

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.48

AUTOMATION AND TOOLS

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.9

�How do these help with reuse?

�Procedures and functions

�Object oriented programming

�Software libraries

�Programming frameworks

�Design patterns

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.49

REUSEREUSEREUSEREUSE

� Don't Repeat Yourself � D.R.Y. principle

� “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a
system.”

� Consider maintenance on a system with copied code
vs. applying the same repair with DRY coding

� Over time, can we still recognize the copies?

� Software decay, software grime

� How do we know we all the instances requiring change?

� Best practice:
Refactor code to extract commonality

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.50

REFACTORING

� Computer EngineeringComputer EngineeringComputer EngineeringComputer Engineering: Has delivered more than a 6x order of 6x order of 6x order of 6x order of

magnitude magnitude magnitude magnitude expansion of the number of transistors on a CPU

since 1974.

6,000 � 7,200,000,000

� Software EngineeringSoftware EngineeringSoftware EngineeringSoftware Engineering: Harness new languages, code-

generation, more automation and improved development

tools, reuse and refactoring to develop software to use

modern computers and cloud systems.

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.51

IN SUMMARY…

CHAPTER 2.

THE ARCHITECTURE OF

SAAS APPLICATIONS

L2.52

�Key terms

�Software architectureSoftware architectureSoftware architectureSoftware architecture

�How software subsystems interconnect to meet

application functional and non-functional

requirements

�Design patternsDesign patternsDesign patternsDesign patterns

�A general architectural solution for a family of

similar problems

�Design patters emerge when studying common

solutions to architectural design

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.53

SAASSAASSAASSAAS ARCHITECTUREARCHITECTUREARCHITECTUREARCHITECTURE

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.54

DESIGN PATTERNS

� The “Gang of Four” book

� Object-oriented design
patterns

� Seminal book on OO patterns

� Now somewhat dated, examples
is C++ 98

� Patterns can be applied in any OO
language

� Many things are called
“patterns”, but not all are
OO design patterns

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.10

� ClientClientClientClient ---- serverserverserverserver: A client makes requests, a server responds

to the request of many clients

� ThreeThreeThreeThree---- tier architecturetier architecturetier architecturetier architecture “pattern”“pattern”“pattern”“pattern”: Separate the

responsibilities of SaaS applications. Each “tier” can

benefit from horizontal scaling horizontal scaling horizontal scaling horizontal scaling in the cloud

� Tiers: ModelModelModelModel ----ViewViewViewView ----Controller design patternController design patternController design patternController design pattern

� ModelModelModelModel: data tier (databases, persistent storage)

� ViewViewViewView: presentation tier (GUI/UI)

� ControllerControllerControllerController: Implement services, e.g. actions on the data

� Controller provides a number of REST/SOAP web services

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.55

KEY TERMS - 2

The client server architecture is in
contrast to a peer-to-peer architecture

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.56

MODEL VIEW CONTROLLER

� The key to MVC is the separationseparationseparationseparation of tiers

�Allows many “presentations” to be created from one

model

�Controller (services) are reused

�GUI does not depend on controller, and vice-a-versa

� Tiers are hosted individually using different computer

infrastructure

� Model: database server(s)

� Controller: web application server(s): Tomcat, Glassfish

� View: client’s web browser

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.57

MODEL VIEW CONTROLLER - 2

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.58

SAAS ARCHITECTURE

� The web consists primarily of a client/server architecture

� Web clients make requests, servers reply

� This architecture has proliferated

� Smart phones

� Tablets

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.59

100,000 FEET

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.60

PROLIFERATION OF CLIENTS AND DEVICES

2 to 3 billion 1 trillion

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.11

� IP (Internet Protocol) address identifies a physical network

inter face with four octets, e.g. 128.32.244.172 (ipv4)

� Special address 127.0.0.1 is “this computer”, named localhostlocalhostlocalhostlocalhost,

even if not connected to the Internet!

� TCP/IP (Transmission Control Protocol/Internet Protocol)

� IPIPIPIP: no-guarantee, best-ef for t service that delivers packets from

one IP address to another

� TCPTCPTCPTCP: make IP reliable by detecting “dropped” packets, data

arriving out of order, transmission errors, slow networks, etc.,

and respond appropriately

� TCP ports TCP ports TCP ports TCP ports allow multiple TCP apps on same computer

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.61

TCP/IP PROTOCOLS

� An ASCII-based request/reply protocol for transferring

information on the web

� HTTP request includes:

� request method (GET, POST, etc.)

� Uniform Resource Identifier (URI)

� HTTP protocol version understood by the client

� headers—extra info regarding transfer request

� HTTP response from server

� Protocol version & status code �

� Response headers

� Response body

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.62

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

� Web services protocol

� Supersedes SOAP – Simple Object Access Protocol

� Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

� Requests are made to a URI

� Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text-based

� HTTP verbs: GET, POST, PUT, DELETE, …

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.63

REST: REPRESENTATIONAL STATE TRANSFER

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.64

// SOAP REQUEST

POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>
</m:GetBookPrice>

</soap:Body>
</soap:Envelope>

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.65

// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>

</soap:Body>
</soap:Envelope>

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.66

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>
</message>
<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>
</message>
<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>

<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >

<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

TCSS 360 C: Software Development and Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

01/09/2017

Slides by Wes J. Lloyd L2.12

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.67

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{

"name": "latitude",
"value":47.2529

},
{

"name": "longitude",
"value":-122.4443

}
]

}

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 9, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.68

