
TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.1

Software testing

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 360: SOFTWARE DEVELOPMENT
AND QUALITY ASSURANCE

 Project deliverable #1 – Due Wednesday February 15

 Class-wide project collaborative meeting:
Wednesday February 15

 One group representative

 Define common data sharing APIs

 Exchange project wikis

 Share service endpoints

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.2

COURSE PLANNING

From chapter 8:
Software Testing – Test Driven Development

 Test driven development (TDD)

 Junit testing

Mock objects

 Test coverage

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.3

OBJECTIVES

 Verification: building the right thing

 Quality assurance (QA) team

 Engineers tasked with writing tests, manual testing,
writing bug reports

 Agile/DEVOPS: expects QA team to be developers
 Developers = Testers

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.4

SOFTWARE TESTING

 Construct software from a test-centric perspective

 Also called test-first development

 Test code written before functional code

 Improves code readability, maintainability

 Testable code, tends to be good code

 Code is well tested, more modular, easier to read

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.5

TEST DRIVEN DEVELOPMENT (TDD)

 Agile: DEVOPS team writes tests

 Tests are automatically applied using tools

 Tests continuously run/applied via automated build
system which builds code and executes test suites

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.6

AGILE: TEST AUTOMATION

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.2

 Fast: should be easy and quick to run a subset of test cases
for various coding tasks

 Independent: No test should rely on preconditions created by
other tests. Support prioritization of running subsets of tests
to cover only recent code changes

 Repeatable: tests should not depend on external factors:
today’s date, magic constants

 Self-checking: test results can be determined by the system.
Computer can infer pass/fail status without human
intervention

 Timely: Tests are created/updated at the same time as the
code being testing. Test creation ideally immediately before
code creation.

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.7

F.I.R.S.T. TESTING

 Can write test methods for every method of a class

 A Junit test class will collect the test methods for a given
class in the system

 Set up and tear down methods

 Help configure working environment so preconditions
are in place for test runs

 Example: parameterize a database connection

 Java annotations are used to mark up Junit classes

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.8

JAVA – JUNIT TESTING

 @BeforeClass, @AfterClass

 Runs once before and after entire all tests

 Good for preparing a database connection, initializing
dependencies

 @Before, @After

 Execute before and after each individual junit test is run

 @Test

 Annotates each test method

 Identifies individual test cases

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.9

JUNIT ANNOTATIONS

 Assert methods:
 assertArrayEquals()
 assertEquals()
 assertFalse()
 assertNotEquals()
 assertNotNull()
 assertNotNull()
 assertSame()
 assertThat()
 assertTrue()

 Parameter order: expected value, actual value

 Optional: First parameter can be a string message that is
output on failure

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.10

JUNIT TESTING - 3

 Test suites support writing multi-class tests

 Integration tests

 @RunWith(Suite.class)

 @Suite.SuiteClasses({})

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.11

JUNIT TEST SUITE

 Run same test over and over using different values

 Annotate test case with @RunWith(Parameterized.class)

 Create a public static method annotated with @Parameters
that returns a Collection of Objects (as an Array) as test data

 Create a public constructor that takes in what is equivalent to
one “row” of test data.

 Create an instance variable for each “column” of test data

 Create your test case(s) using the instance variables as the
source of the test data

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.12

PARAMETERIZED TESTS

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.3

@Test(expected = IndexOutOfBoundsException.class)

Public void empty() {

new ArrayList<Object>().get(0);

}

@Test

public void testExceptionMessage() {

try

{

new ArrayList<Object>().get(0);

fail("Expected an IndexOutOfBoundsException to be thrown");

}

catch (IndexOutOfBoundsException anIndexOutOfBoundsException)

{

assertThat(anIndexOutOfBoundsException.getMessage(),

is("Index: 0, Size: 0"));

}

}
February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L10.13

EXCEPTION TESTING

@Rule

public ExpectedException thrown = ExpectedException.none();

@Test

public void shouldTestExceptionMessage() throws
IndexOutOfBoundsException

{

List<Object> list = new ArrayList<Object>();

thrown.expect(IndexOutOfBoundsException.class);

thrown.expectMessage("Index: 0, Size: 0");

list.get(0); // execution will never get past this line

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.14

EXCEPTION TESTING - 2

 Ignore a test
 @Ignore(“This is ignored test is ignored”)

 Specify a timeout value
 @Test(timeout=1000)

 Specify the execution sequence of tests
 @FixOrderMethod(MethodSorters.NAME_ASCENDING)

 @RunWith(Theories.class)
 @DataPoint (marks variables that are data points)
 @Theory

 Test functionality against subset of infinite data
 Run a theory against datapoints, mimics scientific theorem
 Try to prove a theory, theory passes if all datapoints fit the theorem

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.15

OTHER JUNIT ANNOTATIONS

 Junit tests, parameterized tests, suite tests

 Netbeans: direct Junit support/integration

 Automatic test generation!

 Integrating into a maven project

 Pom.xml file requirements
 Maven-surefire-plugin
 Specify test class naming conventions
 Dependencies

 Junit jar file
 Scope = test

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.16

JUNIT EXAMPLES

 Before writing code, write test for one aspect of the
behavior the new code will have
 Writing the test forces thinking about how new code will

behave and interact if it did exist

 RED step: run the test, verify it fails because code is
implemented yet

 GREEN step: write the simplest code to make the test
pass without breaking any existing tests

 REFACTOR step: Refactor implementation code or test
code. Change structure to eliminate redundancy,
repetition, or other ugliness
 Tests ensure refactoring doesn’t introduce bugs.

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.17

TEST DRIVE DEVELOPMENT:
RED-GREEN-REFACTOR

 How do we perform unit tests on classes which can’t run
without instances of other classes?

 For example: a database connection

 Use mock objects

 Simulated objects

 Mimic behavior or real objects

 Support unit testing of middleware classes

 Used to test behavior of other objects

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.18

MOCK TESTING

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.4

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L10.19

 Testing and specification framework for Java and Groovy

 Inspired by Junit, Rspec (shown in ch. 8)

 Write specifications
 Describe expected features exhibited by system of interest (SOI)

 SOI can be single class, or entire application

 SOI is also called the system under specification (SUS)

 In SPOCK you write specifications which describe the features
to test.

 A specification is to SPOCK, what a unit test is to Junit

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.20

SPOCK

Spock JUnit

Specification Test class

setup() @Before

cleanup() @After

setupSpec() @BeforeClass

cleanupSpec() @AfterClass

Feature Test

Feature method Test method

Data-driven feature Theory

Condition Assertion

Exception condition @Test(expected=…)

Interaction Mock expectation (e.g. in Mockito)

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.21

SPOCK VS. JUNIT COMPARISON

 Fixture: snapshot of a system under test
 Fox and Patterson:

“a fixed state used as a baseline for one or more tests”
 Includes a set of static objects used to instrument a test

 Fixture methods: (for setup/teardown)
 def setup() {} // run before every feature method
 def cleanup() {} // run after every feature method
 def setupSpec() {} // run before the first feature method
 def cleanupSpec() {} // run after the last feature method

 Uses to set up fixtures for the features (tests)

 Fixtures here are used like junit @Before, @After, etc.

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.22

FIXTURES

 Conditions
 Like assertions in Junit without the use of the “assertion” descriptor

 Blocks
 Maps flow of the test

 setup:

 when:

 then:

 expect:

 cleanup:

 where:

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.23

SPOCK

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.24

SPOCK SPEC SAMPLE

def "HashMap accepts null key"() {

setup:

def map = new HashMap()

when:

map.put(null, "elem")

then:

notThrown(NullPointerException)

}

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.5

def "events are published to all subscribers"() {

def subscriber1 = Mock(Subscriber)

def subscriber2 = Mock(Subscriber)

def publisher = new Publisher()

publisher.add(subscriber1)

publisher.add(subscriber2)

when:

publisher.fire("event")

then:

1 * subscriber1.receive("event")

1 * subscriber2.receive("event")

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.25

SPOCK SPEC SAMPLE - 2

def "offered PC matches preferred configuration"() {

when:

def pc = shop.buyPc()

then:

with(pc) {

vendor == "Sunny"

clockRate >= 2333

ram >= 406

os == "Linux"

}

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.26

SPOCK SAMPLE SPEC - 3

class MathSpec extends Specification {

def "maximum of two numbers"(int a, int b, int c)
{

expect:

Math.max(a, b) == c

where:

a | b | c

1 | 3 | 3

7 | 4 | 7

0 | 0 | 0

}

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.27

SPOCK SAMPLE SPEC - 4 QUESTIONS

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.28

 Armando Fox, David Patterson, Engineering Software As A
Service: An Agile Approach Using Cloud Computing, 1st

edition (v1.2.1), Strawberry Canyon LLC., 2016. ISBN-13:
978-0984881246. [Chapter 8]

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.29

THE CONTENTS OF THIS SLIDE SET ARE
BASED ON THE FOLLOWING REFERENCES:

