
TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.1

Software testing

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 360: SOFTWARE DEVELOPMENT
AND QUALITY ASSURANCE

 Project deliverable #1 – Due Wednesday February 15

 Class-wide project collaborative meeting:
Wednesday February 15

 One group representative

 Define common data sharing APIs

 Exchange project wikis

 Share service endpoints

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.2

COURSE PLANNING

From chapter 8:
Software Testing – Test Driven Development

 Test driven development (TDD)

 Junit testing

Mock objects

 Test coverage

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.3

OBJECTIVES

 Verification: building the right thing

 Quality assurance (QA) team

 Engineers tasked with writing tests, manual testing,
writing bug reports

 Agile/DEVOPS: expects QA team to be developers
 Developers = Testers

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.4

SOFTWARE TESTING

 Construct software from a test-centric perspective

 Also called test-first development

 Test code written before functional code

 Improves code readability, maintainability

 Testable code, tends to be good code

 Code is well tested, more modular, easier to read

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.5

TEST DRIVEN DEVELOPMENT (TDD)

 Agile: DEVOPS team writes tests

 Tests are automatically applied using tools

 Tests continuously run/applied via automated build
system which builds code and executes test suites

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.6

AGILE: TEST AUTOMATION

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.2

 Fast: should be easy and quick to run a subset of test cases
for various coding tasks

 Independent: No test should rely on preconditions created by
other tests. Support prioritization of running subsets of tests
to cover only recent code changes

 Repeatable: tests should not depend on external factors:
today’s date, magic constants

 Self-checking: test results can be determined by the system.
Computer can infer pass/fail status without human
intervention

 Timely: Tests are created/updated at the same time as the
code being testing. Test creation ideally immediately before
code creation.

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.7

F.I.R.S.T. TESTING

 Can write test methods for every method of a class

 A Junit test class will collect the test methods for a given
class in the system

 Set up and tear down methods

 Help configure working environment so preconditions
are in place for test runs

 Example: parameterize a database connection

 Java annotations are used to mark up Junit classes

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.8

JAVA – JUNIT TESTING

 @BeforeClass, @AfterClass

 Runs once before and after entire all tests

 Good for preparing a database connection, initializing
dependencies

 @Before, @After

 Execute before and after each individual junit test is run

 @Test

 Annotates each test method

 Identifies individual test cases

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.9

JUNIT ANNOTATIONS

 Assert methods:
 assertArrayEquals()
 assertEquals()
 assertFalse()
 assertNotEquals()
 assertNotNull()
 assertNotNull()
 assertSame()
 assertThat()
 assertTrue()

 Parameter order: expected value, actual value

 Optional: First parameter can be a string message that is
output on failure

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.10

JUNIT TESTING - 3

 Test suites support writing multi-class tests

 Integration tests

 @RunWith(Suite.class)

 @Suite.SuiteClasses({})

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.11

JUNIT TEST SUITE

 Run same test over and over using different values

 Annotate test case with @RunWith(Parameterized.class)

 Create a public static method annotated with @Parameters
that returns a Collection of Objects (as an Array) as test data

 Create a public constructor that takes in what is equivalent to
one “row” of test data.

 Create an instance variable for each “column” of test data

 Create your test case(s) using the instance variables as the
source of the test data

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.12

PARAMETERIZED TESTS

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.3

@Test(expected = IndexOutOfBoundsException.class)

Public void empty() {

new ArrayList<Object>().get(0);

}

@Test

public void testExceptionMessage() {

try

{

new ArrayList<Object>().get(0);

fail("Expected an IndexOutOfBoundsException to be thrown");

}

catch (IndexOutOfBoundsException anIndexOutOfBoundsException)

{

assertThat(anIndexOutOfBoundsException.getMessage(),

is("Index: 0, Size: 0"));

}

}
February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L10.13

EXCEPTION TESTING

@Rule

public ExpectedException thrown = ExpectedException.none();

@Test

public void shouldTestExceptionMessage() throws
IndexOutOfBoundsException

{

List<Object> list = new ArrayList<Object>();

thrown.expect(IndexOutOfBoundsException.class);

thrown.expectMessage("Index: 0, Size: 0");

list.get(0); // execution will never get past this line

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.14

EXCEPTION TESTING - 2

 Ignore a test
 @Ignore(“This is ignored test is ignored”)

 Specify a timeout value
 @Test(timeout=1000)

 Specify the execution sequence of tests
 @FixOrderMethod(MethodSorters.NAME_ASCENDING)

 @RunWith(Theories.class)
 @DataPoint (marks variables that are data points)
 @Theory

 Test functionality against subset of infinite data
 Run a theory against datapoints, mimics scientific theorem
 Try to prove a theory, theory passes if all datapoints fit the theorem

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.15

OTHER JUNIT ANNOTATIONS

 Junit tests, parameterized tests, suite tests

 Netbeans: direct Junit support/integration

 Automatic test generation!

 Integrating into a maven project

 Pom.xml file requirements
 Maven-surefire-plugin
 Specify test class naming conventions
 Dependencies

 Junit jar file
 Scope = test

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.16

JUNIT EXAMPLES

 Before writing code, write test for one aspect of the
behavior the new code will have
 Writing the test forces thinking about how new code will

behave and interact if it did exist

 RED step: run the test, verify it fails because code is
implemented yet

 GREEN step: write the simplest code to make the test
pass without breaking any existing tests

 REFACTOR step: Refactor implementation code or test
code. Change structure to eliminate redundancy,
repetition, or other ugliness
 Tests ensure refactoring doesn’t introduce bugs.

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.17

TEST DRIVE DEVELOPMENT:
RED-GREEN-REFACTOR

 How do we perform unit tests on classes which can’t run
without instances of other classes?

 For example: a database connection

 Use mock objects

 Simulated objects

 Mimic behavior or real objects

 Support unit testing of middleware classes

 Used to test behavior of other objects

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.18

MOCK TESTING

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.4

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L10.19

 Testing and specification framework for Java and Groovy

 Inspired by Junit, Rspec (shown in ch. 8)

 Write specifications
 Describe expected features exhibited by system of interest (SOI)

 SOI can be single class, or entire application

 SOI is also called the system under specification (SUS)

 In SPOCK you write specifications which describe the features
to test.

 A specification is to SPOCK, what a unit test is to Junit

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.20

SPOCK

Spock JUnit

Specification Test class

setup() @Before

cleanup() @After

setupSpec() @BeforeClass

cleanupSpec() @AfterClass

Feature Test

Feature method Test method

Data-driven feature Theory

Condition Assertion

Exception condition @Test(expected=…)

Interaction Mock expectation (e.g. in Mockito)

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.21

SPOCK VS. JUNIT COMPARISON

 Fixture: snapshot of a system under test
 Fox and Patterson:

“a fixed state used as a baseline for one or more tests”
 Includes a set of static objects used to instrument a test

 Fixture methods: (for setup/teardown)
 def setup() {} // run before every feature method
 def cleanup() {} // run after every feature method
 def setupSpec() {} // run before the first feature method
 def cleanupSpec() {} // run after the last feature method

 Uses to set up fixtures for the features (tests)

 Fixtures here are used like junit @Before, @After, etc.

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.22

FIXTURES

 Conditions
 Like assertions in Junit without the use of the “assertion” descriptor

 Blocks
 Maps flow of the test

 setup:

 when:

 then:

 expect:

 cleanup:

 where:

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.23

SPOCK

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.24

SPOCK SPEC SAMPLE

def "HashMap accepts null key"() {

setup:

def map = new HashMap()

when:

map.put(null, "elem")

then:

notThrown(NullPointerException)

}

TCSS 360 C: Software Development & Quality
Assurance Techniques [Winter 2017]
Institute of Technology, UW-Tacoma

2/13/2017

Slides by Wes J. Lloyd L10.5

def "events are published to all subscribers"() {

def subscriber1 = Mock(Subscriber)

def subscriber2 = Mock(Subscriber)

def publisher = new Publisher()

publisher.add(subscriber1)

publisher.add(subscriber2)

when:

publisher.fire("event")

then:

1 * subscriber1.receive("event")

1 * subscriber2.receive("event")

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.25

SPOCK SPEC SAMPLE - 2

def "offered PC matches preferred configuration"() {

when:

def pc = shop.buyPc()

then:

with(pc) {

vendor == "Sunny"

clockRate >= 2333

ram >= 406

os == "Linux"

}

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.26

SPOCK SAMPLE SPEC - 3

class MathSpec extends Specification {

def "maximum of two numbers"(int a, int b, int c)
{

expect:

Math.max(a, b) == c

where:

a | b | c

1 | 3 | 3

7 | 4 | 7

0 | 0 | 0

}

}

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.27

SPOCK SAMPLE SPEC - 4 QUESTIONS

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.28

 Armando Fox, David Patterson, Engineering Software As A
Service: An Agile Approach Using Cloud Computing, 1st

edition (v1.2.1), Strawberry Canyon LLC., 2016. ISBN-13:
978-0984881246. [Chapter 8]

February 13, 2017 TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L10.29

THE CONTENTS OF THIS SLIDE SET ARE
BASED ON THE FOLLOWING REFERENCES:

