
TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.1

Introduction to Introduction to Introduction to Introduction to

Software EngineeringSoftware EngineeringSoftware EngineeringSoftware Engineering

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 360: TCSS 360: TCSS 360: TCSS 360: SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT

AND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCEAND QUALITY ASSURANCE

� Introduce practices of Software Engineering

� In the context for developing applications with service
oriented architectures (SOA)

� Much service oriented software is hosted in the cloud

� Not a programming course per se

� Examples in Java/Javascript, Ruby/Rails

� Group projects to practice an Agile process to develop
service oriented software

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.2

TCSS 360 C – WINTER 2017

� Working with legacy code, refactoring

� Working with non-technical customers

� Years spent learning programming, algorithms, computer

science theory

� How do we put this knowledge to work?

� Bridging the gap between theory and practice

� How to test software

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.3

MISSING SOFTWARE SKILLS

� $10 Kindle

� $39.99 print

� $30 used

� Amazon

� 4.4 / 5 stars

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.4

TEXTBOOK: WWW.SAASBOOK.INFO

� TCSS360

�http://www.sasbook.info/students

�Online "get started" tutorials on ruby in case want

to get feet wet before Ruby lectures

� Tutorials on other tools (GitHub, etc.)

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.5

ONLINE RESOURCES

� Introduction, Syllabus

�Software Development Processes

�Plan and Document

�Agile

�Service Oriented Architecture

�Cloud Computing

�Software Quality Assurance - Testing

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L23.6

OBJECTIVES

TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.2

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.7

AGILE SOFTWARE DEVELOPMENT

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.8

AN AGILE SOFTWARE PROCESS

Tools

� Margaret Hamilton, 1965

� Director & Supervisor of

Software Programming

for Project Apollo

� Worked on priority -based

asynchronous scheduling software

� Prevented last-minute

abort of the first moon landing

� Coined term “Software Engineering”,

which gave name to first-ever

conference on topic (1968)

� …convened to address the

“software crisis”

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.9

WHY SOFTWARE ENGINEERING?

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.10

RANKING TOP 200 JOBS (2012)

104. Airline Pilot

133. Fashion Designer

137. High School Teacher

163. Police Officer

173. Flight Attendant

185. Firefighter

196. Newspaper Reporter

200. Lumberjack

28. Civil Engineer

34. Programmer

40. Physician

47. Accountant

60. Mechanical Engineer

73. Electrical Engineer

87. Attorney

1. Software Engineer

Organizes and lists the instructions
for computers to process data and
solve problems in logical order.
Income: $71,178

Researches, designs, develops and
maintains software systems along
with hardware development for
medical, scientific, and industrial
purposes. Income: $88,142 (+25%)

InformationWeek 5/15/12. Based on salary, stress levels, hiring outlook, physical
demands, and work environment (www.careercast.com)

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.11

HEALTHCARE.GOV

� “The DOD is hampered by a culture of acquisition-related
practices that favor large programs, high-level oversight, and
a very deliberate, serial approach to development and testing.
(the waterfall model)

Programs (contractors) are expected to deliver complete,
nearly perfect solutions that take years to develop are the
norm in the DOD.

These approaches run counter to Agile practices in which the
product is the primary focus, where end users are engaged
early and often – the oversight of incremental product
development is delegated to the lowest practical level…”

(National Research Council 2010)

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.12

HEALTHCARE.GOV - 2

TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.3

� Consider lessons of 60 years of SW development

� Software engineering is more than just programming

� Consider many variations of software processes

� Make software development as predictable as building a

bridge

� What development processes make building software more

predictable?

� Plan and Document, Agile methods

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.13

HOW TO AVOID INFAMY?

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.14

IEEE SPECTRUM:

SOFTWARE WALL OF SHAME

PLAN AND DOCUMENT

PROCESSES

L1.15

� Bring engineering discipline to SW

� Term coined ~ 20 years after 1st computer

�Find SW development methods as predictable in

quality, cost, and time as civil engineering

� “Plan-and-Document”

�Before coding, project manager makes plan

�Write detailed documentation all phases of plan

�Progress measured against the plan

�Changes to project must be reflected in

documentation and possibly to plan

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.16

SOFTWARE ENGINEERING:

PLAN AND DOCUMENT PROCESSES

WaterfallWaterfallWaterfallWaterfall

� Sequence of phases
6 to 18 month total length

� Best when requirements are
fixed, unchanging

1. Requirements analysis

2. Architectural design

3. Implementation,
integration

4. Verification

5. Operation, Maintenance

SpiralSpiralSpiralSpiral

� Iterations of 6-24 months

� Each builds prototype

� Captures requirements

1. Determine objectives and

constraints

2. Evaluate alternatives,

identify risks

3. Develop and verify prototype

4. Plan the next iteration

PLAN AND DOCUMENT:

WATERFALL VS. SPIRAL

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L1.17

Common objective: the earlier an error is found the cheaper it is to fix

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.18

SPIRAL LIFECYCLE

TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.4

� Design

� Development

� Testing

� Maintenance

� 60% of costs are maintenance

� Many first software development jobs involve

maintenance, feature enhancement, bug fixing

� Most of a CS curriculums avoids software maintenance,

refactoring

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.19

WHAT PHASE OF SOFTWARE DEVELOPMENT

CONSUMES THE MOST RESOURCES?

�Plan and Document software process depends on
top-notch project managers

�Key tasks

�Write contract to win the project

�Recruit development team

�Evaluate software engineers performance, set salary

�Estimate costs, maintain schedule, manage budget,
evaluate risks & overcomes them

�Document project management plan

�Gets credit for success, or blamed if projects are late
or over budget

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.20

ROLE OF PROJECT MANAGERS

� And the users exclaimed with a laugh and a taunt: “It’s just

what we asked for, but not what we want.” —Anonymous

� “Plan to throw one

[implementation] away;

you will anyhow.”

� Fred Brooks, Jr.

Author: Mythical Man Month

� No Silver Bullet - essay

(1999 Turing Award winner)

� Often after build first one,

developers learn right way

they should have built it

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.21

HOW WELL DOES WATERFALL WORK?

(Photo by Carola Lauber of SD&M
www.sdm.de. Used by permission under
CC-BY-SA-3.0.)

“Adding manpower to a late software

project makes it later.”

Fred Brooks, Jr.,

The Mythical Man-Month

� It takes time for new people to learn project, domain

� Communication overhead grows with team size

� Leaves less time for work

� Ideal may be groups of 4 to 9 people

� Hierarchically composed for larger projects

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.22

FRED BROOKS

� Can plan & development practices deliver on cost,
schedule, and quality targets?

� Required

� Extensive documentation

� Planning

� Experienced project managers

� Consider

� Ratio of documentation to code with plan and document
approaches

� How can documentation be reduced while eliciting,
capturing, and delivering on customer software
requirements?

� How to avoid hacking?

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.23

PLAN AND DOCUMENT PITFALLS

“If a problem has no solution,

it may not be a problem,
but a fact, not to be solved,
but to be coped with over time.”

— Shimon Peres

(winner of 1994
Nobel Peace Prize
for Oslo accords)

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.24

PERES’S LAW

(Photo Source: Michael Thaidigsmann, put in public domain,
See http://en.wikipedia.org/wiki/File:Shimon_peres_wjc_90126.jpg)

TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.5

AGILE SOFTWARE

PROCESS

L1.25

“We are uncovering better ways of developing SW by doing

it and helping others do it. Through this work we have come

to value

� Individuals Individuals Individuals Individuals and and and and interactionsinteractionsinteractionsinteractions over processes & tools

� Working softwareWorking softwareWorking softwareWorking software over comprehensive documentation

� Customer collaborationCustomer collaborationCustomer collaborationCustomer collaboration over contract negotiation

� Responding Responding Responding Responding to to to to changechangechangechange over following a plan

� While there is value in the items on the right

we value the items on the left more.

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.26

AGILE MANIFESTO - 2001

� If short iterations short iterations short iterations short iterations are good, make them as short as
possible (weeks vs. years)

� If simplicitysimplicitysimplicitysimplicity is good, always do the simplest thing that
could possibly work

� If testingtestingtestingtesting is good, test all the time. Write the test code
before you write the code to test.

� If code reviews code reviews code reviews code reviews are good, review code continuously, by
programming in pairs, taking turns looking over each
other’s shoulders.

� But you have to do all of them.

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.27

EXTREME PROGRAMMING (XP)

VARIANT OF AGILE LIFECYCLE

� Embraces change as a fact of
life: continuous improvement vs.
phases

� Developers continuously refine
working but incomplete prototype
until customers are happy, with
customer feedback on each
IterationIterationIterationIteration
(every ~1 to 2 weeks)

� Agile emphasizes TestTestTestTest ----Driven DevelopmentDriven DevelopmentDriven DevelopmentDriven Development (TDDTDDTDDTDD) to
reduce mistakes, User User User User StoriesStoriesStoriesStories to validate customer
requirements, VelocityVelocityVelocityVelocity to measure progress

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.28

AGILE LIFECYCLE

� Controversial when introduced, 2001

� “… yet another attempt to undermine the discipline of

software engineering… nothing more than an attempt to

legitimize hacker behavior.”

�Steven Ratkin, “Manifesto Elicits Cynicism,”

IEEE Computer, 2001

� Mainstream more recently

� 2012 study of 66 projects found majority using Agile, even

for distributed teams

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.29

AGILE: THEN AND NOW

� Fallacy: The Agile lifecycle is best for all software

development

� Good match for some SW, especially SaaS

� But not for NASA, code subject to regulations

� In TCSS 360, we will practice Agile, but will also consider

Plan & Document perspectives

� Software lifecycles (processes) are constantly evolving

� Expect to see new processes

� Many companies use variants or hybrids combining

various aspects as best fit for project demands

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.30

AGILE DRAWBACKS

TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.6

Yes=Plan and document; No = AgileYes=Plan and document; No = AgileYes=Plan and document; No = AgileYes=Plan and document; No = Agile

1. Is specification required?

2. Are customers unavailable?

3. Is the system to be built large?

4. Is the system to be built complex (e.g., real time)?

5. Will it have a long product lifetime?

6. Are you using poor software tools?

7. Is the project team geographically distributed?

8. Is team part of a documentation-oriented culture?

9. Does the team have poor programming skills?

10. Is the system to be built subject to regulation?

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.31

WHICH SOFTWARE PROCESS?

�Requirements elicitation

�Documentation

�Progress estimation

�Unit & functional testing

�System / integration testing

�User acceptance testing

�Continuous refactoring of design

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.32

WHAT’S MISSING FROM AGILE

SOFTWARE-AS-A-

SERVICE (SAAS)

&

SERVICE ORIENTED

ARCHITECTURES (SOA)

L1.33

1. No install worries about HW capability, OS

2. Data stored safely, persistently on servers

3. Easy for groups to interact with same data

4. If data is large or changed frequently, simpler to

keep 1 copy at central site

5. 1 copy of SW, single HW/OS environment => no

compatibility hassles for developers

=> beta test new features on 1% of users

6. 1 copy => simplifies upgrades for developers

and no user upgrade requests

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.34

WHY SAAS IS > SHRINK-WRAPPED SW…

�Client-specific binary, frequent upgrades

�Must work w/many versions of HW, OS, Libraries…

�Hard to maintain

�Extensive compatibility testing per release

�Alternative: server-centric app, thin client

�Search, email, commerce, social nets, video…

�Now also productivity (Google Docs/Office 365),

finance (TurboTax Online), IDEs (Codenvy)…

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.35

SHRINK WRAPPED SOFTWARE (SWS)

�Can you design software so that you can

recombine independent modules to offer many

different apps without a lot of programming?

�Solves “Agile only good for small teams”

� “[Amazon CEO Jeff Bezos] realized long before the

vast majority of Amazonians that Amazon needs to

be a platform.”

Steve Yegge, Googler, former Amazonian, in a 2011 blog post

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.36

BUILDING LARGE SAAS

TCSS 360 C - Winter 2017
Institute of Technology, UW-Tacoma

01/04/2017

Slides by Wes J. Lloyd L1.7

1. “All teams will henceforth expose their data and

functionality through service interfaces.”

2. “Teams must communicate with each other

through these interfaces.”

3. “There will be no other form of inter-process

communication allowed: no direct linking, no

direct reads of another team's data store, no

shared-memory model, no back-doors whatsoever.

The only communication allowed is via service

interface calls over the network.”

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.37

2002 JEFF BEZOZ EMAIL:

AMAZON SERVICES MANDATE

4. “It doesn't matter what [API protocol] technology

you use.”

5. “Service interfaces, without exception, must be

designed from the ground up to be

externalizable. That is to say, the team must plan

and design to be able to expose the interface to

developers in the outside world. No exceptions.”

6. “Anyone who doesn't do this will be fired.”

7. “Thank you; have a nice day!”

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.38

AMAZON SW MANDATE – 2

� Internal subsystems

share data directly

� DBs shared internally

� For example:

Each subsystem accesses

the users DB

� All subsystems composed

together in a single API

(“Bookstore”)

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.39

BOOKSTORE – SILO DESIGN

� Subsystems are

independent,

as if in separate

datacenters

� Review Service access

User Service API

� Can recombine to make

new service

(“Favorite Books”)

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.40

BOOKSTORE – SOA DESIGN

� SOA may be harder to debug and tune

� SOA results in lower developer productivity

� SOA’s complexity is a poor match for small teams

� SOA is more expensive to deploy than SILO as more servers

are needed to handle the same workload

� SOA is harder to debug and tune: SOA can experience partial

failures as a complete system consists of a number of

microservices hosted separately, but composed together

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.41

WHICH OF THE FOLLOWING IS A DISADVANTAGEDISADVANTAGEDISADVANTAGEDISADVANTAGE

OF SOA COMPARED TO A SILO DESIGN? QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 4, 2017
TCSS360: Software Development and Quality Assurance [Winter 2017]
Institute of Technology, University of Washington - Tacoma L23.42

