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2.1 Introduction to trees

All of life is related by common ancestry. Recovering this pattern, the ‘Tree of .
Life’, is one of the prime goals of evolutionary biology. This chapter introduces i : ¢
the fundamentals of trees. You may find it useful to read the chapter through |

once, then refer back to it as you read the rest of the book. All the concepts |

introduced in this chapter will be discussed in more detail in subsequent .
chapters; our goal here is to give you some familiarity with trees so that |
interpreting them eventually becomes second nature.

2.1.1 Tree terminology

Figure 2.1 illustrates the terminology used in this book to describe trees.
Unfortunately tree terminology varies greatly among authors, and among
different disciplines, such as mathematics and biology. Where possible we will
list the commonly used synonyms that you may encounter in the literature.

A tree is a mathematical structure which is used to model the actual
evolutionary history of a group of sequences or organisms. This actual pattern
of historical relationships is the phylogeny or evolutionary tree which we
try and estimate. A tree consists of nodes connected by branches (also called
edges). Terminal nodes (also called leaves, OTUs [Operational Taxonomic
Units], or terminal taxa) represent sequences or organisms for which we
have data; they may be either extant or extinct. Internal nodes represent
hypothetical ancestors; the ancestor of all the sequences that comprise **
tree is the root of the tree (see below).
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Terminal
node

(leaf)

Internal node
(hypothetical
ancestor)

Branch

(edge)
Root Fig. 2.1 A simple tree and
| associated terms.

The nodes and branches of a tree may have various kinds of information
associated with them. For example some methods of phylogeny reconstruction
(e.g. parsimony) endeavour to reconstruct the characters of each hypothetical
ancestor; most methods also estimate the amount of evolution that takes
place between each node on the tree, which can be represented as branch
lengths (or edge lengths). Trees with branch lengths are sometimes called
weighted trees.
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Star tree Partially resolved Fully resolved

Polytomy

Fig. 2.2 Three trees showing various degrees of resolution, ranging from a complete lack
of resolution (star tree) to a fully resolved tree. Any internal node with more than two
immediate descendants is a polytomy.

The number of adjacent branches possessed by an internal node is that
node’s degree. If a node has a degree greater than three (i.e. it has one ancestor
and more than two immediate descendants) then that node is a polytomy. A
tree that has no polytomies is fully resolved (Fig. 2.2).

Polytomies can represent two rather different situations (Fig. 2.3); firstly
they may represent simultaneous divergence —all the descendants evolved
at the same time (a ‘hard’ polytomy); alternatively, polytomies may indicate
uncertainty about phylogenetic relationships — the lineages did not necessarily
all diverge at once, but we are unsure as to the actual order of divergence (a
‘soft’ polytomy). These two interpretations—simultaneous divergence or
uncertainty — are obviously quite different. Typically polytomies are treated as
‘soft’. It may be thought unlikely that multiple lineages would diverge at
exactly the same time; however, if lineages diverge rapidly in time relative to
the rate of character evolution then there may be insufficient evidence available
to us to ever be able to reconstruct the exact order of splitting, in which case
the polytomy is effectively ‘hard’.

'Hard' polytomy 'Soft' polytomy
(simultaneous (uncertainty)
divergence)

v ‘
Fig. 2.3 Polytomies can

represent either simultaneous

divergence of multiple

sequences (‘hard’), or lack of

resolution due to insufficient

data or conflicting trees

(‘soft’).
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Fig. 2.4 A tree and its
(((A,B),C).(D,E)) shorthand representation
——1using nested parentheses.

2.1.2 A shorthand for trees

Trees can be represented by a shorthand notation that uses nested parentheses.
Each internal node is represented by a pair of parentheses that enclose all
descendants of that node. This format makes it easy to describe a tree in the
body of some text without having to draw it. The format is also used by many
computer programs to store representations of trees in data files. Figure 2.4
gives an example of this shorthand.

2.1.3 Cladograms, additive trees and ultrametric trees

Different kinds of tree can be used to depict different aspects of evolutionary

Phylogeny Cladogram
A B C
[
E Additive tree
A B C
4
Bl
Fig. 2.5 A phylogeny and the
Character change 2 l 2 three basic kinds of tree used
to depict that phylogeny. The
Ultrametric tree cladogram represents relative
A B C recency of common ancestry;
0 L _' the additive tree depicts the
amount of evolutionary
. change that has occurred
5 along the different branches,
and the ultrametric tree

S depicts times of divergence.
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history. The most basic tree is the cladogram which simply shows relative
recency of common ancestry, that is, given the three sequences, A, B and C,
the cladogram in Fig. 2.5 tells us that sequences A and B share a common
ancestor more recently than either does with C. In the biomathematical
literature cladograms are often called ‘n-trees’.

Additive trees contain additional information, namely branch lengths.
These are numbers associated with each branch that correspond to some
attribute of the sequences, such as amount of evolutionary change. In the
example shown in Fig. 2.5, sequence A has acquired four substitutions since it
shared a common ancestor with sequence B. Other commonly used terms for
additive trees include ‘metric trees’ and ‘phylograms’.

Ultrametric trees (sometimes also called ‘dendrograms’) are a special kind
of additive tree in which the tips of the trees are all equidistant from the root
of the tree. This kind of tree can be used to depict evolutionary time, expressed
either directly as years or indirectly as amount of sequence divergence using a
molecular clock.

Additive and ultrametric trees both contain all the information found in a
cladogram —the cladogram is the simplest statement about evolutionary
relationships that we can make. For some questions knowledge of relative
recency of common ancestry is sufficient. However, there are other evolutionary
questions (such as determining relative rates of evolution) which require the
additional information contained in additive and ultrametric trees.

Bex 2 2 What do the horizontal and vertical axes of a tree
_-represent" e i

It i 1s temptin'g to think of a tree as being a graphical plot like a scatter plot, in
_Whlch case the question arises ‘what do the horizontal and vertical axes
‘represent?’ For cladograms, which have no branch length mformanon, neither
axis has any special meaning; you can squash the tree flatter, or stretch it out
 without changing the relationships among the terminal nodes. Hence, the two
cladograms shown below are the same.
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Box 2.2 continued

For additive trees oneof the axes does have meaning; it represents the amount
of evolutionary change. In the diagram above if we stretch the tree along the
horizontal axis (i.e. left to right) we do not change interpretation of the tree;
‘however, changes in the vertical axis (up and down) change the amount of
evoiutiohary change along the branches, hence the trees are not the same additive
trees. Similarly, foran ultrametric tree one axis typi'caHy represents time whereas
-the other has no meaning. The two ultrametric trees shown above are different i
because the two trees specify different-divergence times. _ e

A last consideration is that trees can be drawn in a number of orientations,
such as ‘planted’ with the root at the bottom as in the diagram above, ‘left-to-
right” as in Fig. 2.17, or even ‘top-down’ with the root at the top. The choice

among these representations is entirely arbitrary; in some circumstances it may
be more convenient to draw the tree one way rather than another. Just
remember that if the tree diagram is rotated then the x- and y-axes in the above
diagram need to be rotated as well. Hence, if an additive tree is drawn left to

right then the horizontal axis represents evolutionary change and the vertical
axis has no meaning, :

2.1.4 Rooted and unrooted trees

Cladograms and additive trees can either be rooted or unrooted. A rooted
tree has a node identified as the root from which ultimately all other nodes
descend, hence a rooted tree has direction. This direction corresponds to
evolutionary time; the closer a node is to the root of the tree, the older it is in
time. Rooted trees allow us to define ancestor—descendant relationships between
nodes: given a pair of nodes connected by a branch, the node closest to the
root is the ancestor of the node further away from the root (the descendant).
Unrooted trees lack a root, and hence do not specify evolutionary relationships
in quite the same way, and they do not allow us to talk of ancestors and
descendants. Furthermore, sequences that may be adjacent on an unrooted
tree need not be evolutionarily closely related. For example, given the unrooted
tree in Fig. 2.6, the gibbon (B) and orang-utan (0) sequences are neighbours
on the tree, yet the orang-utan is more closely related to the other apes
(including humans). This is because the root of the tree lies on the branch
leading to the gibbon. Had we placed the root elsewhere, say on the branch

leading to the gorilla (G). then the gibbon and orang-utan sequences would

indeed be closely related.

In the unrooted tree for the apes shown in Fig. 2.6, we could have placed

the root on any of the seven branches of the tree. Hence, this unrooted tree
corresponds to a set of seven rooted trees (Fig. 2.7)

e e A il i st
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Fig. 2.6 Rooted and unrooted \ / Rkt
trees for human (H), chimp

(C), gorilla (G), orang-utan | / \3‘\/ i
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Fig. 2.7 The seven rooted trees that can be derived from an unrooted tree for five
sequences. Each rooted tree 1-7 corresponds to placing the root on the corresponding
numbered branch of the unrooted tree. (Sequence labels as for Fig. 2.6.)
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The distinction between rooted and unrooted trees is important because
many methods for reconstructing phylogenies generate unrooted trees, and
hence cannot distinguish among the seven trees shown in Fig. 2.7 on the basis
of the data alone. In order to root an unrooted tree (i.e. decide which of the
seven trees is the actual evolutionary tree) we need some other source of
information. Methods of rooting trees are discussed in Chapter 6 (note that
this does not apply to ultrametric trees which are rooted by definition).

The number of possible unrooted trees U, for n sequences is given by

U,=(2n-5)2n-7) ... 3)(1) (2.1)
for n> 2. The number of rooted trees R, for n 2 3 is given by

R, =(2n-3)(2n-5) .. (3)(1)

=(2n-3)U, ‘ el

Table 2.1 lists the numbers of rooted and unrooted fully resolved trees for
2-10 sequences. Note that the number of unrooted trees for n sequences is
equal to the number of rooted trees for (n-1) sequences. Note also that the
number of trees rapidly reaches very large numbers: for 10 sequences there
are over 34 million possible rooted trees. For a relatively modest 20 sequences
there are 8200794 532637891 559000 possible trees, whereas the number of
different trees for 135 human mitochondrial DNA sequences used in the study
of the evolution of modern humans (see Chapter 4), 2.113 x 1027, exceeds
the number of particles in the known universe! This explosion in number of
trees is a fundamental problem for phylogeny reconstruction, where the goal
is to identify which tree of all the possible trees is the best estimate of the
actual phylogeny.

2.1.5 Tree shape

Typically, the information in a tree in which we are most interested is the
relationship among the sequences, and perhaps the lengths of the branches.

Table 2.1 Numbers of

Number of Number of Number of rooted unrooted and rooted trees for
sequences unrooted trees trees 2-10 sequences.
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10395
8 10395 135135
9 135135 2027025
10 2027025 34459425
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Fig. 2.8 The three possible
shapes for a rooted tree for
five sequences.

However, other aspects of the tree may also reflect evolutionary phenomena
and hence be of interest. Figure 2.8 shows the three possible shapes (or
topologies) for a rooted tree for five sequences. All 105 possible trees (Table
2.1) for five sequences will have one of these three shapes.

2.1.6 Splits

Trees can be represented in a variety of ways other than as graphs. One useful
representation is as sets of sets, called splits or partitions. Each split takes
the set of sequences (e.g. {H, C, G, O, B}) and partitions them into two mutually
exclusive sets: you can think of a split as the two sets of sequences obtained
by chopping (‘splitting’) the tree at a given branch. For example, the tree shown
in Fig. 2.9 has seven branches and hence seven splits. However, all splits
comprising a single terminal node on one hand and the rest of the tree on
the other are not ‘phylogenetically informative’ in the sense that all possible
trees will contain those splits. Hence, the only informative splits are those

Tree
C G o]
H B
Splits
C G G 0]
0 C
Fig. 2.9 An unrooted tree H B H B

and its two splits.
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resulting from chopping internal branches. The tree shown in Fig. 2.9 has two
informative splits: {{C, H}, {G, O, B}} and {{G, C, H}, {O, B}}.

Given these two splits we can combine them to reconstruct the original
tree. Notice that there are other possible partitions of the set {H, C, G, Q. B},
such as {{H, G}, {C, O, B}}. This split groups humans and gorillas together to
the exclusion of the other apes, which is incompatible with the split {{C, H},
{G, O, B}}, which groups humans and chimps. Incompatible splits cannot be
combined to form a tree.

Another way of representing the splits in Fig. 2.9 is to assign arbitrary
letters to each half of a split, such as the letter ‘A’ to each sequence on the
left and the letter ‘T’ to each sequence on the right. This gives the following
table:

Sequence Split 1 Spiit 2
H A A
G A A
G T A
(0] T T
B T T

Each split now resembles a single nucleotide site with only the bases A and T.
In Chapter 6 you will encounter some methods for reconstructing phylogenies
that make use of this relationship between nucleotide sites and splits.

2.2 Reconstructing the history of character change

The tree relating a set of sequences tells us only part of what we want to know.
The tree alone does not tell us when a particular evolutionary change, such as
a nucleotide substitution, took place, or whether the occurrence of the same
amino acid in two sequences is the result of inheritance from a common
ancestor or independent evolution. To address these questions we need to be
able to reconstruct the history of character change. This problem is addressed

@ ®) © 7

Fig. 2.10 Three equivalent ways of representing the same evolutionary change on the
same tree. (a) BEach node is labelled by the corresponding nucleotide; (b) each branch is
coloured corresponding to the nucleotide at the end of each branch; and (c) indicating on
which branch the change took place.
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in more detail in Chapter 5, so here we will merely introduce some of the
different ways of representing evolutionary change on a tree (Fig. 2.10) and
describe some basic terminology. '

Given a tree, we can distinguish between ancestral (‘primitive’) and
derived character states. If a sequence has the same base as the common
ancestor of all the sequences being studied then it is the primitive or
plesiomorphic state; otherwise it is a derived or apomorphic state. Unique
derived character states are autapomorphies (auf = alone), shared derived
states are synapomeorphies (syn = shared) (Fig. 2.11). Given any two character
states that are identical (e.g. the same nucleotide base) the similarity between
them may be because they have both inherited it directly from their ancestor
which also had that state. This is an instance of homology. Alternatively, the
similarity may have occurred independently in which case it is homoplasy.
Only homologous similarity directly reflects common ancestry. Homoplasy is

Apomorphy  Plesiomorphy Autapomorphy

NG N

Synapomorphy Homoplasy
Fig. 2.11 Trees showing the
terminology used to describe
different patterns of ancestral
(O) and derived (®) character
states.
Parallel evolution Convergent evolution Secondary loss
Independent evolution of  Independent evolution of Reversion to
same feature from same  same feature from different ancestral
ancestral condition ancestral condition condition

Fig. 2.12 Three different kinds of homoplasy.
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a poor indicator of evolutionary relationships because the similarity does not
reflect shared ancestry. It is sometimes useful to distinguish between different
kinds of homoplasy (Fig. 2.12). Convergence and parallel evolution both
result in the independent evolution of the same feature in two unrelated
sequences; the difference between the two lies in whether the similarity was
acquired from the same (parallelism) or a different (convergence) ancestral
condition. Homoplasy may also be due to the secondary loss of a derived
feature, which results in the apparent reversion to the ancestral condition,
such as the loss of legs in snakes and some amphibia.

2.2.1 Ancestors

Phylogenies présuppose ancestors —previously living organisms that are
now extinct but which left descendants which comprise modern species. These
ancestors (or their sequences) are represented by the internal nodes of a tree.
These ancestors are hypothetical, but some methods of phylogenetic recon-
struction allow us to infer what they (or their sequences) may have looked like.

All molecular phylogenies include ancestors, but for the most part these
remain hypothetical entities represented by the internal nodes of the tree,
and inferred solely on the basis of sequences from extant organisms. It
used to be thought that the possibility that a sequence being studied was
actually an ancestor could be salely ignored, hence all sequences were placed
art the tips of evolutionary trees. However, two recent developments have
meant that molecular biologists must deal with a problem previously restricted
to palaeontology—namely the recognition of ancestors. The first of these
developments is the recovery of DNA from extinct taxa: the second is the
increasing number of sequences being obtained from viruses such as human
immunodeficiency virus (HIV) which evolve sufficiently fast to be tracked in
‘real time’.

If all sequences are from extant organisms, then they can be placed at the
tips of the tree. However, if some of the sequences are extinct it is possible,
if unlikely, that they may have been ancestral to one or more of the extant
sequences: is a sequence extracted from an extinct taxon an ancestor to
modern taxa or is it on an evolutionary side branch? Cladists have adopted
the convention that extinct raxa that lack autapomorphies are candidates
for being ancestral, as it is equally parsimonious to treat them as sister taxa
(i.e. each other’s closest relative) or as ancestors (Fig. 2.13). Treating a taxon
with autapomorphies as an ancestor would require us to postulate additional
evolutionary changes (this invokes the parsimony principle discussed in Chapter
6). Note that under this rule a taxon with no autapomorphies need not be an
ancestor, rather there is nothing to refute that possibility.

We can apply the cladistic convention to viral sequences where the virus
is evolving sufficiently rapidly for successive samples to show evolutionary
change. For example, Fig. 2.14 shows a cladogram for eight HIV sequences

e S i
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Cladogram

A T
Seq 1 Seq 2

A

Hypothetical
. ancestors

Evolutionary trees
Seq 1 Seq 2
Ancestral  Ancestral
T@Seq2 A@ Seqi
A@Seql T@ Seq2

A A

Fig. 2.13 A cladogram for two sequences {Seq 1 and Seq 2) showing the nucleotide at a
single site, and two of several possible evolutionary trees derived from that cladogram. We
could postulate that either sequence is ancestral to the other. However, postulating Seq 2
to be an ancestor of Seq 1 requires the gain and subsequent loss of T, whereas if Seq 1 is an
ancestor no additional substitutions need be postulated. Note that a third phylogeny would

be identical to the cladogram (see Box 2.3).

Cladogram

D1 D3 D2 D4 D5 D8 D6 D7

Replacements

o
[ 2
N 3
I

Evolutionary tree

i

6 @

)

T

Fig. 2.14 Cladogram and corresponding evolutionary tree for eight V3 loop amino acid
sequences for HIV samples taken from a single patient over 3 years. In the cladogram on
the left all eight sequences are depicted as terminal nodes; however, four sequences

(D1, D2, D4 and D7) have no autapomorphies (i.e. there are no replacements along the
branch leading to each sequence) and hence are possible ancestors. The evolutionary tree
on the right depicts the same relationships as the cladogram, but the sequences lacking
autapomorphies (except D7) are treated as ancestors which is consistent with the order of
appearance of the sequences. Modified from Holmes ef al. (1992).
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obtained from a single patient over 3 years. Because the samples were ob-
tained over a period of time it is possible that some of the sequences sampled
earlier in time gave rise to later sequences. Indeed, some sequences lack
autapomorphies and hence by the cladistic criterion are potential ancestors, a
conclusion which is supported by the order of the sequences in time.

‘Box 2.3 Cladograms and evolutionary trees 2 -
In this book we use the term ‘cladogram’ to refer to an evolutionary tree that
hasno i_hférrhaﬂon on branch lengths (e.g, Fig. 2.5). Within cladistics a disﬁne;ioﬁ{-
is made between a- cladogram and an evolutionary tree. In a cladogram the
o terminal taxa are always at the tips of the tree, o matter if the taxa are extant
orextinct, orwhether one or more of the taxa are ancestral to any of the others.

L=

‘However, in an evolutionary tree some of the ’faxa'mayfbgfanéésjt: 1 to the
others. Given the cladogram ((A, B), C) shown beiox_‘@fl_:he’ré are six differ“é':iti'_"
evolutionary trees that are consistent with the "cladcgrém;"'Oné‘df"_thé’se trees
is the cladogram itself: the other five trees have one or more of the taxa A, B
-and C being ancestral to the others. Note that in all six trees A and B are more
closely related toreachiother thanto €, . 0 o T

Evolutionary trees

In the vast majority of cases none of the taxa (or sequehcés};b‘éing_s;uﬁied will
be ancestral and hence the cladogram is also an evolﬂﬁoﬁétjf‘irea;. Exceptions
_imay occur:yéhen fossils are being studied (although the probability that a given

fossil is actually part of an ancestral lineage is rather remote) or in the case

where samples have been taken over time from a rapidly evolving lineage, such
e a_.vimrsl.(Fig,.z‘_14)‘_ sek e Slilall b

2.3 Trees and distances

Measures of sequence dissimilarity may be used to estimate the number of
evolutionary changes that occurred in two sequences since they last shared a
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common ancestor (see Chapter 5). These measures quantify the evolutionary
distance between the two sequences. Trees themselves can also be represented
by distances, and this link has motivated a range of tree-building methods
that seek to convert pairwise distances between sequences into evolutionary
trees. We shall describe these measures in Chapter 5. However, in order for a
distance measure to be used to build phylogenies it must satisfy some basic
requirements: it must be a metric, and it must be additive.

2.3.1 Metric distances

Let d (a, b) be the distance between two sequences, a and b. A distance 4 is a
metric if it satisfies these properties:

1 d(a,b)z0 (non-negativity)

2 d(a, b)=d(b, a) (symmetry)

3 d(a ¢)=d(a b)+d(b, ¢ (triangle inequality)
4 d(a,b)=0ifandonlyifa=b  (distinctness)

The first property is non-negativity; two sequences must have a non-negative
distance. The second property is symmetry; two sequences have the same
dissimilarity regardless of the direction in which the dissimilarity is measured.
These two properties may seem trivial, but not all measures of similarity
meet these seemingly obvious requirements.

The third property is the triangle inequality, which states that the dissimilarity
between any two sequences cannot exceed the sum of the dissimilarities
between each sequence and a third. This condition is equivalent to ensuring
that it is possible to represent the distances between the three sequences as a
triangle (Fig. 2.15), hence the name. The last condition (distinctness) requires
that sequences that are different must have a non-zero dissimilarity.

Of these conditions, 1, 2 and 4 are generally true for all measures of
sequences dissimilarity calculated directly from sequences. However, indirect
measures of sequence dissimilarity such as those obtained from DNA-DNA
hybridisation or from immunological measurements need not always obey
these conditions, particularly condition 2.

®

Fig. 2.15 The triangle 5
inequality. The distance
between any pair of sequences
must be no greater than that
between those sequences and @
a third sequence.
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2.3.2 Ultrametric distances
A metric is an ultrametric if it satisfies the additional criterion that:
5 d(a, b) <maximum [d(a, c), d(b, ¢)]

This criterion implies that the two largest distances are equal, so that they
define an isosceles triangle (Fig. 2.16).

Ultrametric distances have the very useful evolutionary property of
implying a constant rate of evolution. Indeed the ‘relative rate’ test for a
molecular clock (see Box 7.2, Chapter 7) is a test of how far the pairwise
distances between three sequences depart from ultrametricity. Furthermore,
if distances between sequences are ultrametric then the most similar sequences
are also the most closely related. :

2.3.3 Additive distances

Being a metric (or ultrametric) is a necessary, but not sufficient condition for
being a valid measure of evolutionary change. A measure must also satisfy the
four-point condition:

6 d(a, b)+d(c, d) < maximum [d(a, c) + d(b, d), d(a, d) +d(b, ¢)]

This is equivalent to requiring that of the three sums d(a, b) +d(c, d),
d(a, c) + d(b, d), and d(a, d) + d(b, c), the two largest are equal.

2.3.4 Tree distances

An additive distance measure defines a tree. Perhaps the easiest way to see
this is to consider the distances shown in Fig. 2.17. Sequence d is equidistant
from all other sequences; sequence c is equidistant from a and b. If we take
any three sequences the distances between them define an isosceles triangle
(the two largest distances are equal), hence the distances shown in Fig. 2.17

B )

Q——®
6 6 Fig. 2.16 The ultrametric
inequality. The two largest
pairwise distances, in this case
d(a, ¢) and d(b, c), are equal

@ and hence the ultrametric
defines an isosceles triangle.
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Distance matrix Tree
a
b 2
c 6 6
dl 10 10 10 2

Fig. 2.17 An ultrametric distance matrix between four sequences a—d and the
corresponding ultrametric tree. For any two sequences, the value in the distance matrix
corresponds to the sum of the branch lengths along the path between the two sequences
on the tree.

are ultrametric. These same distances can be represented by the ultrametric
tree shown in Fig. 2.17. If we trace the shortest path between any pair of
sequences in the tree, and add up the corresponding branch lengths, we obtain
the same values as those in the distance matrix. For example, travelling from

Distance matrix Tree
5
1
a 1
z b
b 6
[ 7 3 N
1
d 14 10 9 <
a b C d
6
L [ [ | |
6 5 4 3 2 1 0

Fig. 2.18 An additive distance matrix between four sequences and the corresponding
additive tree. For any two sequences, the value in the distance matrix corresponds to the
sum of the branch lengths along the path between the two sequences on the tree.
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sequence a to sequence d and adding branch lengths we obtain the value of
1+2+2+5=10, hence d(a, d) = 10.

When distances are not ultrametric but only metric they can still be
represented by a tree, in this case an additive tree (Fig. 2.18). This additive tree
again represents the additive distances exactly. Notice that sequences b and ¢
are the most similar (d(b, ¢) = 3) but are not the most closely related. Similarity
and evolutionary relationship will only coincide exactly if the distances are
ultrametric. This has important implications for using distances to reconstruct
trees (Chapter 6).

The distances obtained from the tree are tree distances (also called
‘patristic distances’), to distinguish them [rom observed distances which
are obtained directly from the sequences themselves. In the examples shown
in Fig. 2.17 and Fig. 2.18, the observed and tree distances match exactly. For
real data this is rarely the case, indicating that the observed distances cannot
be completely accurately represented by a tree. The discrepancy between
observed and tree distances can be used to measure how good the fit is between
the observed distances and the best tree representation of those distances (see
Chapter 6).

2.4 Organismal phylogeny

Although the main subject of this book is molecular evolution, a major use of
DNA sequences is the reconstruction of the evolutionary history of the
organisms from which those sequences are obtained.

2.4.1 Clades and classification

Phylogenies form the basis of classification, which is the formal naming of
groups of organisms. Cladistic classifications recognise only monophyletic
groups or clades. A monophyletic group includes all the descendants of an
ancestral taxon, whereas a non-monophyletic group omits some of those
descendants (Fig. 2.19). A good example of a non-monophyletic group is the
‘apes’, which is not monophyletic as it excludes humans.

Non- Fig. 2.19 The difference
monophyletic between monophyly and
non-monophyly. A
monophyletic group includes
all descendants of their
common ancestor, whereas in
a non-monophyletic group
one or more descendant is not
included.

Monophyletic
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Many authors distinguish between two kinds of non-monophyly: paraphyly
and polyphyly (Fig. 2.20). Paraphyletic groupings are based on shared
primitive characters (plesiomorphies), and hence typically exclude one or more
taxa that have autapomorphies. The paradigm example is the ‘reptiles’” as
classically defined, which excludes birds because of their novel anatomy and
behaviour, even though crocodiles are more closely related to birds than they
are to other reptiles. Polyphyletic groups are typically assemblages of taxa that
have been erroneously grouped on the basis of convergent characters, such as
‘vultures’. The New and Old World vultures look strikingly similar but have
evolved independently from different ancestors (storks and birds of prey,
respectively).

Cladistic classifications have often been criticised as being limited in
that they tell us little about the organisms themselves beyond who their
nearest relatives are. For example, advocates of more traditional approaches
to classification like to be able to reflect the evolutionary innovation shown by
birds compared to their closest living relatives (the crocodiles) by elevating
birds to their own class and consigning their dowdy relatives to the non-descript
group the ‘reptiles’. However, rigorous and objective alternatives to cladistic
classifications have been hard to construct. Cladistic classifications also have
the great advantage of being immune to variation in rates of evolution. For

Paraphyly
‘Reptiles’

Birds : Crocodiles Lizards Turtles ‘
Fig. 2.20 Two kinds of non- Polyphyly
monophyletic groups. 1 "Vultures'
‘Reptiles’ are a paraphyletic
grouping that isbased onthe | "NewWorld Storksand ~ Birds  Old World
absence of the apomorphic vultures their relatives  of prey vultures
(“derived’) characters
possessed by birds. ‘Vultures’
are a polyphyletic grouping
comprising two groups of
birds that have independently
evolved similar morphology
and habits from different
ancestors.
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(a) (b)

Fig. 2.21 Examples of
variation in rate of evolution

A _E A | among genes from the same

organisms. For all four trees
the cladistic group AB is

C preserved. Dashed line is an

i arbitrary threshold for placing
- B species in different higher

taxonomic groups.

example, in Fig. 2.21(a) we have additive trees for two different genes from
the same organisms A—C. In the first case the gene from species A has evolved
much more rapidly than its homologous gene in B and C. Classifying the three
species based on similarity would lead us to group B and C together. However,
a second gene indicates that A and B are more conservative than C, in which
case we might prefer to group A and B to the exclusion of C. If similarity is
our criterion for delimiting taxonomic groups then we would have to choose
between these two genes, essentially an arbitrary choice. Note however that
the cladistic relationship remains the same in both trees. Figure 2.21(b) shows
a different case where the rate of evolution for a given gene is constant. This
might lead us to base taxonomic groups on amount of genetic divergence.
However, using this method another gene evolving at a slower rate might lead
to a different classification. Again, the cladistic groupings have not changed.

2.4.2 Gene trees and species trees

The naive expectation of molecular systematics is that phylogenies for genes
match those of the organisms, hence obtaining the first necessarily gives us
the second. However, there are a number of reasons why this need not be so.
The first is that gene duplications may result in a species containing a number
of distinct but related sequences. In the example shown in Fig. 2.22 three
species A—C each have two copies of the same gene, o and B. A phylogeny for
all six genes allows us to correctly recover the organismal phylogeny ((A, B),
C) from either the o or § genes. However, if we were unfortunate enough to
sequence only genes 1, 3 and 5, and were unaware that they were part of a
larger gene tree, we would infer that the organismal tree was ((A, C), B) because
gene 3 from species C is more closely related to gene 1 from species A than is
gene 5 from species B, even though species B is actually closer to species A
than is species C.

This example illustrates that organismal phylogeny can be correctly in-
ferred only if we have the complete set of genes, or if we restrict ourselves to
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Orthologous Orthologous

A B c A B C
1 2 3 4 5 6

o
Gene duplication

Fig. 2.22 Phylogeny for three species A—C and six genes that stem from a gene duplication
resulting in two paralogous clades of genes, o and B. The o genes 1-3 are orthologous with
each other, as are the B genes 4-6; however each o gene is paralogous with each p gene as
they are separated by a gene duplication event, not a speciation event.

a set of genes that have not themselves undergone a duplication. That is, we
require orthologous genes. Two homologous genes are orthologous if their
most recent common ancestor did not undergo a gene duplication, otherwise
they are termed paralogous. In Fig. 2.22 genes 1-3 are orthologous, as are
genes 4—6, but any pair of o and § genes are paralogous.

2.4.3 Lineage sorting and coalescence

Another process that complicates the relationship between organismal and
gene phylogeny is lineage sorting. Even if we restrict our attention to
orthologous genes for the reason given above, the presence of ancestral
polymorphism coupled with the differential survival of those alleles can result
in allele phylogeny not matching organismal phylogeny. If we start with a
pair of orthologous alleles and travel down the tree (i.e. backwards in time)
we will eventually encounter their most recent common ancestor. This is the
point at which the two gene lineages coalesce (Fig. 2.23) and the time at
which this occurs is the coalescence time.

In the example shown in Fig. 2.23, alleles 3 and 4 have a recent coalescence
point which lies within their organismal lineage B. However, alleles 1 and 2
have a more ancient coalescence time which pre-dates the age of their lineage
A, that is, they are older than species A. Furthermore, even though alleles 1
and 2 are both found in the same species, they are not each other’s closest
relative. The presence of a paraphyletic pair of alleles in lineage A may have
consequences later on in evolutionary time. Imagine that shortly after species
A and B diverged, and while alleles 1 and 2 were still both extant, species A
itself speciated into species A and A, (Fig. 2.24). In this case, species A, inherited
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7] Fig. 2.23 A gene tree for four
’7 A B alleles (1-4) in two organismal
lineages, A and B. The points
at which pairs of allele
ﬁ lineages join (coalesce) are
marked by open circles. Alleles
3 and 4 coalesce within
lineage B, but alleles 1 and 2
are older than lineage A. Note
especially that alleles 1 and 2
do not form a monophyletic
group—2 is more closely
Time related to 3 and 4 than it is to
the other allele (1) found in
- the same spedies.

Speciation

O = Coalescence

Speciation - -

Fig. 2.24 One possible
extrapolation into the future
of the gene and species trees
shown in Fig. 2.23. In this

T . S instance species A diverged
g into species A and A,. The
two alleles (1 and 2) present
in A when it speciated were
. inherited by A, and A,
O = Coalescence Tim

respectively. Allele 3 has gone
extinct.

allele 1 and species A, inherited allele 2. Put another way, the two allele
lineages 1 and 2 were sorted among the descendants of A. Note that even
though all three species have monophyletic suites of alleles, the alleles found
in A, are actually more closely related to species B than to its sister species A
Were we to use the phylogeny of these alleles to infer the phylogeny of the
three species A, A, and B we would incorrectly conclude that the species tree
was (A, (A,, B)). This hypothetical example illustrates the problem of lineage
sorting. If the alleles present in a lineage prior to that lineage speciating are
not monophyletic then the distribution and relationships of these alleles need
not accurately reflect the phylogeny of the organisms themselves.

Lineage sorting is likely to be a problem for organismal phylogenetics if
the time it takes for alleles within a lineage to coalesce is greater than the
interval between successive speciation events.
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A A, B
Speciation -
Fig. 2.25 The same situation speciation A A
as in Fig. 2.24 but lineage A s
speciating later in time, by
which time allele 2 has gone
extinct. Consequently species Time
A, and A, inherita | O = Coalescence
L i

monophyletic set of alleles.

Figure 2.25 shows an alternative extrapolation of Fig. 2.23 in which
species A splits into two daughter species later than in Fig. 2.24, after allele 2
has gone extinct. Consequently, when A speciates its descendants receive a
monophyletic set of alleles. In this case, allele phylogeny faithfully reflects
species phylogeny.

The key difference between Fig. 2.24 and Fig. 2.25 is the length of ume
between successive speciations of the same lineage. Due to a combination of
chance and selection, allele lineages will either persist, radiate or go extinct.
The longer the interval between speciation events the greater the chance
that these processes will result in lineages with a monophyletic set of alleles.
The importance of gene trees and coalescence times for modern population

genetics is discussed in more detail in Chapter 4.

2.5 Consensus trees

Often we want to compare trees derived from different sequences, or from

the same sequences using different methods. Given two or more different

trees we can ask ‘what do .these trees agree on?’ Consensus trees are trees

that represent the commonality (if any) among a set of trees. For example,
consider the two trees for hominoids shown in Fig. 2.26. The two trees are
very similar, but tree 1 groups humans and chimps together, whereas tree 2
groups the chimp and gorilla. Both trees agree that humans and African
apes are more closely related to each other than each is to the orang-utan,
and that the great apes and humans form a clade that excludes the gibbon.
We can summarise the agreement between these trees in a consensus tree,
which contains a polytomy indicating that there is conflict concerning our
relationships with the African apes. This is an example of a soft polytomy

(see section 2.1.1); the consensus tre¢ is not indicating that the African apes
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Tree 1 Tree 2

H C G o B8 H € G o &8

Consensus

H C G O B
Fig. 2.26 Two different trees
for humans (H), chimps (C),
gorillas (G), orang-utans (O)
and gibbons (B), and their
consensus tree.

and humans speciated simultaneously, rather we have insufficient evidence
to determine the exact order of speciation. There is a range of different
consensus methods, three of which are discussed in Box 2.4.

o be xhdi;glédg.m,:_nhgconsé_'iiSus.\W'é‘di's‘cusis‘ three commonly use methods

only

. Box24‘IYp Iy} es of ‘(:'ohs:e'?lsus EreR T st :
A :consélisgsg Lree.sumﬁiaq"s& information common to two ormore tr_ée;_s';- There
s a range of different methods which differ in what aspect of tree information
they use, and how frequently that information must be shared among the trees
here. The strict consensus tree includes only those groups (or splits, see section
2.1.6) that occur in all the trees being considered. Among the three trees below, -

- consensus of these trees contains just that split.

:.‘_Nb_tic'e,_ however, that there are somes_pﬁts such as {{A, B}, (C, :
found in two of the three trees. We can relax the requirement that a split bein

the split ({4, B, €}, (D, E)} is common 1o all three trees, and so the strict

Tree 1 Tree 2 Tree 3
ABCDEABCDEABCDE_‘%

Strict Majority-rule
A B C D E A B C D E
67

100
67

D, E}} that are

 continued
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Box 2 4 conrmued

aIl trees, for example, we could retain those sphts found in a ma;onty of trees, :
and this i 15 exactly what the majonty-mle consensus does. Any spht in more
i than half the trees is mcluded in the consensus tree, so the two sphts shared by
two of the three trees are also mcluded Note that any split in the strict consensus
tree will also be in the majority-rule tree. The splits in the maJonty—rule tree are
usually labe}Ied by what percentage of trees that split occurs in. :

- Strict and majority- -rule consensus methods are two examples of methods
that use sp].lts However, trees that have no splits in common (and hence will :
_give completely unresolved strict and majority-rule consensus trees) may still
“have points of smulanty For instance, the two trees below share no sphts Yet:
both agree that if we consider just sequences B, C and D B is more closely
related wC r.ha.n elther istoD.

Tree 1 Tree 2 Strict Adams
A B C D E E B C D A A B C D E B C D A E

“The strict consensus tree for these trees is a star tree, but this somewhat overstates

the differences between the two trees. The Adams consensus tree captures

the information that both tree 1 and tree 2 have the subtree ((B, C), D). Although

'Adams consensus trees can sometimes be a little difficult to interpret, they are

; very useful in situations where one or more sequences have very different

i posxtmns on different ‘rees, but there is a subset of sequences upon Whose
“relationships r.he different trees agree :

2.6 Networks

So far in this chapter we have assumed that the evolutionary relationships
among sequences and organisms are best represented by a tree. In other words,
we are using the tree to model reality. However, the actual evolutionary history
may not be particularly tree-like, in which case analyses that assume a tree
may be seriously misleading.

For example, the metaphor of a ‘family tree’ is itself rather misleading, as
anyone will know who has drawn one. A tree has single root and branches
outwards such that the branches never meet, whereas in a family tree or
pedigree every time a male and female organism mate their branches fuse.
Generally the history of each individual gene can be adequately represented
by a tree; however, in cases where a gene has undergone recombination a
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Tree Network

A B C A B o
. Cycle
! | Fig.2.27 Atreeanda

network. Networks contain
cycles, whereas trees do not.

network may be more appropriate. A network (Fig. 2.27) contains one or
more cycles (a set of nodes where it is possible to trace a path starting and
ending at the same node without visiting any other node more than once).

2.7 Summary

1 Evolutionary relationships can be represented by a variety of trees.
Cladograms depict relative recency of common ancestry, additive trees incor-
porate branch lengths, ultrametric trees can be used to represent evolutionary
time.

2 Trees may be either rooted or unrooted, but only rooted trees have an
evolutionary direction.

3 The number of possible trees increases rapidly with increasing number of
sequences.

4 Evolutionary trees can depict ancestor—descendant relationships.

5 Distances satistying the ‘four-point condition’ define a corresponding tree.
6 Gene trees may differ from species trees.

2.8 Further reading

Maddison and Maddison (1992) give an excellent introduction to trees and
phylogenies. Barthélemy and Guénoche (1991) provide a detailed and elegant
discussion of the kinds of trees, and the relationship between distances and
trees. See Poinar and Poinar (1995) for the recovery of DNA from amber,
Austin er al. (1997) for a sceptical review of the authenticity of geologically
ancient DNA, and Smith (1994) on the problem of ancestors. The HIV example
is taken from Holmes er al. (1992). For the distinction between hard and
soft polytomies, see Maddison (1989). Swofford (1991) provides an excellent

review of consensus methods. For a discussion of classification see chapter 14
in Ridley (1996). -
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