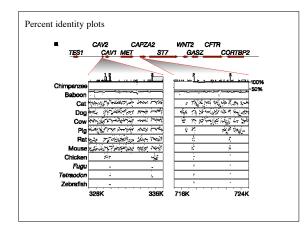
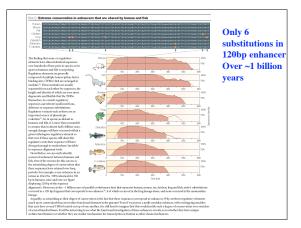
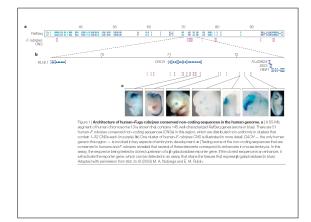

Project presentations

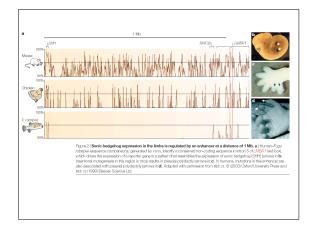

- All written projects due on Thursday March 10th.
- Student presentation will be on Thursday March 10th. All in J-280.
 - During lecture time Tuesday section will present
 - During lab hours Thursday section will present
 - E-mail me your power point presentation by Thursday March 10th at 11am.

Detecting conserved regions

- · Closely related species
- Divergent groups.

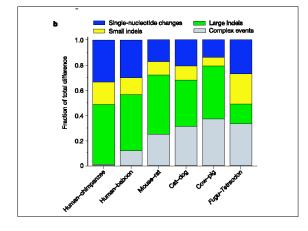



Multiple-species conserved sequences (MCSs)


- Calibrated so that 5% of sequence fell into MCS
- Found 1,194 elements conserved
- Average 58 base pairs
- 32% cover exons
 Identifies 90.4% coding and 27% UTR
- 68% outside known exons
 - Are these elements functional?

Are these MCSs functional?

- Fuse element to β-galactosidase gene.
 Check expression in embryonic development.
- Mutagenesis of elements
 - Compare mouse and human

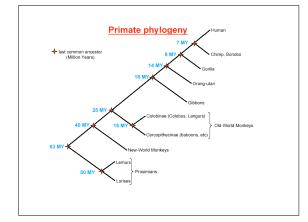


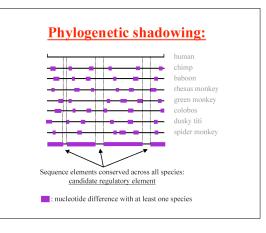
Many of conserved elements involved in development

Gene	Molecular function	Biological process	Reference
HOXB4	DNA-binding	Embryonic development	1
WNT1	Signal transducer	Embryonic development	7
SHH	Hydrolase and peptidase	Embryonic development	80,2
SCL (TAL1)	DNA-binding	Cell differentiation	2
SOX9	DNA-binding	Cell differentiation	8
DLL1	Protein-binding	Embryonic development	8
DLX1, -2, -5 and -6	DNA-binding	Embryonic development	24,3
HOXA1-13	DNA-binding	Embryonic development	8
HOXD cluster	DNA-binding	Embryonic development	8
DACH	Transcription factor	Embryonic development	2
NEUROG1	DNA-binding	Embryonic development	2
HOXC8	DNA-binding	Embryonic development	3
OTX2	DNA-binding	Embryonic development	2
CTGF	Growth-factor signalling	Cell growth/proliferation	2
PAX6	DNA-binding	Embryonic development	8
RUNX2	DNA-binding	Skeletal development	8

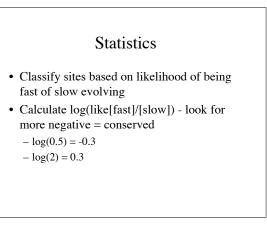
What type of changes are observed across these groups

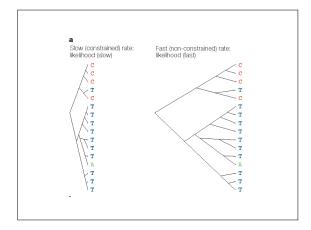
- Nucleotide differences
- Insertions/deletions
- Complex events

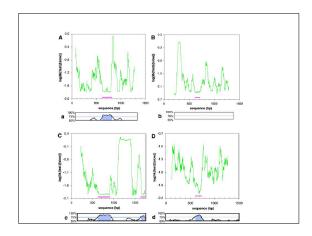


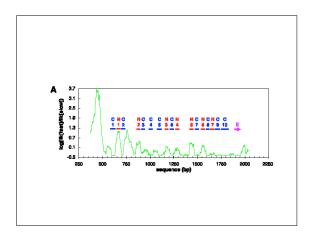

Problems with phylogenetic footprinting

- Alignment difficult between divergent species.
- Does not take into account phylogenetic tree information.
- Identification fairly arbitrary.
- Conservation must be across all lineages.
- Will miss lineage specific elements.

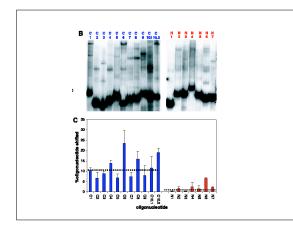

Phylogenetic shadowing


- Generate data from primates – Should be easier to align than divergent taxa
- Use phylogenetic information to look at rates of evolution across all lineages
 - Results in similar amount of divergence compared to human - mouse
- Classify sites as either rapidly evolving or slowly evolving
 - Statistical estimation versus arbitrary percent identity.


	(new- and old- world monkeys, hominoids)	
	Direct sequence of the PCR product	
Multiple sequence alignement with ClustalW:		
Allen		
Green	CACCCGGNTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACTACGTTGGCCAGGC 19	
Green Human	CACCCGGRTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACTACGTTGGCCAGGC 19 CACCCGGCTAATTTTTGTATTTTTAGTAGAGTCGGGGTTTCACTATGTTGGCCAGGC 39	
Green Human Chimp	CACCCGGHTAATTTTGTATTTTTAGTAGACACAGCGTTCACTACGTGGCCAGC 1 CACCCGCTAATTTTTGTATTTTAGTAGACTCGGGGTTTCACTACGTGGCCAGC 3 CACCCGCGCTAATTTTGTATTTTAGTAGACTCGGGGTTTCACTATGTTGGCCAGC 3	
Green Human Chimp Orangutan	CACCCGGNTANTTITGTATTTTAGTAGAGACAGGGTTCACTACGTTGGCCAGGC 19 CACCCGGCTANTTITGTATTTTAGTAGAGACGGGGTTCACTACGTTGGCCAGGC 30 CACCCGGCTANTTITGTATTTTTAGTAGAGTCCGGGTTCACTACGTCGCCAGGC 30 CGCCCGGCTANTTTTGTATTTTAGTAGAGTCCGGGATTCACTACGTGGCCAGGC 31	
Green Human Chimp Orangutan Colobus	CACCOGRETANTITITOTATTITAGTAGGACAGGGTTTCACTAGGTGGCCAGC 1 CACCOGGCTANTITIGTATTITAGTAGGTCGGGGTTTCACTAGTGGCCAGGC 3 CACCOGGCTANTITIGTATTITAGTAGGTCGGGGTTCACTAGTGGCCAGGC 3 COCCOGGCTANTITITGTATTITTAGTAGGCCGGGGTTCACTAGGTGGCCAGGC 3 CACCOGGCTANTITITGTATTITTAGTAGGCGGGGGTTCACTAGGTGGCCAGGC 3	
Green Human Chimp Orangutan	CACCOGGINATITICGATITIAGAMGCACAGGITTCATACGICAGCIA CACCOGGINATITICGATITIAGAMGCOGGITTCATACITAGTOCCAGGI CACCOGGINATITICGATITIAGAMGCOGGITTCATANGTOCCAGGI CACCOGGINATITICGATITIAGAMGCOGGITTCATANGTOCCAGGI CACCOGGINATITICGATITIAGAMGCACGGITTCATACITAGTOCCAGGI CACCOGGINATITICGATITIAGAMGCACGGITTCATACGITCACGIAGGIAGA	
Green Human Chimp Orangutan Colobus Douc	CACCOGGINATITITGATITTAGAAGACAGGITTCATAGTIGCCAGGI CACCOGGINATITITGATITTAGAAGTCOGGITTCATAGTIGCAGGI CACCOGGINATITITGATITTAGAAGTCOGGITTCATAGTIGCAGGI CACCOGGINATITITGATITTAGAAGATCOGGITTCATAGTIGCAGGI CACCOGGINATITITGATITTAGAAGAACGOGITTCATAGTIGCAGGI CACCOGGINATITITGATITTAGAAGAACGOGITTCATAGTIGCAGGICAGGI	
Green Human Chimp Orangutan Colobus Douc Francois	CACCOGGINATITICGATITIAGRAMGCACAGGITICATACGITOCCABGC 1 CACCOGGINATITICGATITIAGRAMGTCOGGITICATACGITOCCABGC 3 CACCOGGINATITICGATITIAGRAMGCOGGITICATACGICCABGC 3 CACCOGGINATITICGATITIAGRAMGCACGGITICATACGICCABGC 3 CACCOGGINATITICGATITIAGRAMGCACGGITICATACGICCABGC 3 CACCOGGINATITICGATITIAGRAMGCACGGITICATACGICCABGC 3 CACCOGGINATITICGATITIAGRAMGACGGITICATACGICCABGC 3 CACCOGGINATITICGATITIAGRAMGACGGITICATACGICCABGC 3	
Green Human Chimp Orangutan Colobus Douc Francois Drill	CACCOGGRIANTITIGATITIKATAMAGACAGOGTITICATAGTIGOCCAGOC 19 CACCOGGRIANTITIGATITIKATAMAGTOGGRITICATAGTIGOCCAGOC 39 CACCOGGRIANTITIGATITIKATAMAGTOGGRITICATAGTIGOCCAGOC 39 CACCOGGRIANTITIGATITIKATAMAGACAGOGTITICATAGTIGOCCAGOC 39 CACCOGGRIANTITIGATITIKATAMAGACAGOGTITICATAGTIGOCCAGOC 39 CACCOGGRIANTITIGATITIKATAMAGACAGOGTITICATAGTIGOCCAGOC 39 CACCOGGRIANTITIGATITIKATAMAGACAGOGTITICATAGTIGOCCAGOC 39 CACCOGGRIANTITIGATITIKATAMAGACAGOGTITICATAGTIGOCCAGOC 39	
Green Human Chimp Orangutan Colobus Douc Francois Drill Mangabey	CACCOGGINATITICGATITIAGRAGAACAGGITICATACGITOCCAGGI CACCOGGINATITICGATITIAGRAGACOGGITICATACGITOCCAGGI CACCOGGINATITICGATITIAGRAGACOGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGACOGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGICA CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGICAGGI CACCOGGINATITICGATITIAGRAGAACAGGITICATACGICAGGICAGGI CACCOGGINATITICGATITICATAGAGI-ACAGGITICATACGICAGGICAGGI	
Green Human Chimp Orangutan Colobus Douc Francois Drill Mangabey Owl	CACCOGGINATITITGATITTAGTAGAACAGGITTCACATGGITGCCAGGC B CACCOGGINATITIGATITTAGTAGATCGGGITTCACATGGICACGAGG B CACCOGGINATITIGATITTAGTAGATCGGGITTCACATGGICCAGGC B CACCOGGINATITIGGITTAGTAGAGCACGGITTCACATGGICCAGGC B CACCOGGINATITIGGITTGATITTAGTAGAACGGITTCACATGGICCAGGC B CACCOGGITATITIGGITTAGTAGAGACGGITTCACATGGICCAGGC B CACCOGGITATITIGGITTAGTAGAGACGGITTCACATGGICCAGGC B CACCOGGITATITIGGITTAGTAGAGACGGITTCACATGGICCAGGC B CACCOGGITATITIGGITTAGTAGAGACGGITTCACATGGICCAGGC B CACCOGGITATITIGGITTAGTAGAGACGGITTCACATGGICCAGGC B CACCOGGITATITIGGITAGTAGTAGAGAACGGITTCACATGGICCAGGC B	
Green Human Chimp Orangutan Colobus Douc Francois Drill Mangabey Owl Squirrel	CACCOGGINATITIGATITIATIAGAAGALAGGITICATAGITAGCIAGUADA CACCOGGINATITIGATITIGATIAGACOGGITICATAGITAGUAGAAGA CACCOGGINATITIGATITIGATIAGAAGA-COGGITICATAGITAGUAGAAGA COCCOGGINATITIGATITIGATIAGAAGA-COGGITICATAGITAGUAGAAGA CACCOGGINATITIGATITIGATITIAATIAGAACGGITICATAGITAGUAGAAGA CACCOGGINATITIGATITIAGUAAGAALAGGITICATAGUAGAAGAA CACCOGGINATITIGATITIAGUAAGAALAGGITICATAGUAGAAGAA CACCOGGINATITIGATITIAGUAAGAALAGGITICATAGUAGAAGAA CACCOGGINATITIGATITIAGUAAGAALAGGITICATAGUAGAAGAAA CACCOGGINATITIGATITIGATITIGATIAGUAAGAAAAAAAAAAAAA	



• Identify exons from regions with 4 known intron-exon boundries.


Prediction of regulatory regions in primate specific gene

- Discover conserved and nonconserved elements
- Test function of each by gel shift assay

Functional test

- Generate labeled primers of conserved and non-conserved regions
- Perform gel-shift assay to see if primers bind proteins.

Conclusions

- Closely related species can be useful in identification of conserved regions.
- Alignments are fairly robust
- Classifying sites using likelihood ration identifies exons and conserved regions effectively.

Which method should we use?

- Phylogenetic footprinting
 - Effective at identifying highly conserved features across divergent lineages
- Phylogenetic shadowing
 - Effective at getting taxon-specific elements.

Which species should we get genome sequences to increase power

- Marsupials?
- Reptiles?
- Fish?
- More mammals?
- More primates?