Speciation by the rapid evolution of reproductive proteins Willie J. Swanson University of Washington Department of Genome Sciences

Three groups of organisms studied • Marine invertebrates - Abalone • Terrestrial vertebrates - Mammals • Drosophila - Fruit flies

Exons evolve up to 16X faster than introns Table 2 | Percentage sequence difference* in three abalone species Percentage nucleotide difference Hru-Hco Hru-Hfu Hco-Hfu Lvsin Exons (420 bp) 13.7 24.1 22.1 Introns (2187 bp) 3.0 4.8 5.8 Exons (447 bp) Introns (745 bp) ND Ed Metz & Cuquis Robles PNAS 95: 10676, 1998

Why is lysin different between species?

- Lack of constraint:
 - Selectively neutral evolution
- Adaptive value for change:
 Positive "Darwinian" selection

→ Compare cDNA sequences.

 d_N = # nonsynonymous substitutions/# nonsynonymous sites d_S = # synonymous substitutions/# synonymous sites

Test for selection by comparing d_N and d_S

 d_N/d_S = 1: Neutral evolution d_N/d_S < 1: Purifying selection d_N/d_S > 1: Positive selection

The d_N/d_S ratio (ω) measures the selective pressure

Why is lysin rapidly evolving?

- · Identify the interacting VE component.
- Study evolution of VE receptor for lysin (VERL).
 - -Is the female component also subjected to positive selection?

Is egg VERL subjected to positive selection like sperm lysin?

- Estimate d_N/d_S ratios

and are subjected to positive selection with $d_N/d_S > 1$.

Hypotheses for rapid divergence

- Sexual conflict (polyspermy, gamete usage)
- Sperm competition
- · Gene duplication/functional diversification
- · Relaxed constraint/repetitive domains
- Selection against hybrids (reinforcement)
- · Sexual selection
- · Cryptic female choice
- · Self-nonself recognition
- · Barrier to microbes/immunological defense

Is adaptive evolution of reproductive proteins limited to free-spawning marine invertebrates?

d_N/d_S ratio (ω) estimated across all sites is insensitive at detecting positive selection

e.g. 3/44 (6.8%) sites show signs of positive selection

- 1 MSLAVLTFLVLCGFSFQHQAVGKWLTAAQKHPISGRMIRIRTKE
- 2 MSLAVLTFLVLCGWSFOHQAVGKWLTLAQKHPISGKMIRIRTKE
- 3 MSLAVLTFLVLCGYSFQHQAVGKWLTSAQKHPISGHMIRIRTKE

Variation between sites analyzed by likelihood ratio tests.

Compare likelihood of neutral vs. selection models¹

1st: Identification of positive selection

- Is there a class of sites with $d_N/d_S > 1$?

2nd: Identification of sites with $d_N/d_S > 1$.

 Where are the sites subjected to positive selection?

¹Method of Nielsen and Yang (1998), Yang et al. (2000)

1st: Testing for positive selection using likelihood ratio test statistic:

 $\Delta l = \log \left(\frac{\max\{L(\text{neutral model})\}}{\max\{L(\text{selection model})\}} \right)$

= log (max{L(neutral model)}) - log(max{L(selection model)})

-2 Δl approximates χ^2 with n degrees freedom, where n is the difference in number of parameters between the nested models.

2nd: Identifying sites subjected to selection

If likelihood ratio test shows a significant difference, then positive selection is indicated. Given the distribution of ω , we then use an empirical Bayes approach to predict sites subjected to positive selection.

Potential effects of rapid evolution

- · Rapidly evolving ZP2 and ZP3
 - Could a mismatch of sperm/egg proteins contribute to infertility?
- · Rapidly evolving MHC genes
 - Exact match of tissue-type needed for successful skin grafts.
- · Variable blood groups (surface antigens)
 - Blood types must match to serve as blood donors.

Is there any evidence that reproductive proteins show variation within humans?

Future plans: Clinical Association Study ("evolutionary medicine")

- Use clinical data to obtain samples where *in vitro* fertilization fails, but sperm and egg are normal.
- · Genotype sperm and egg molecules
- Perform association study to determine if any genotypes result in decreases IF success.
 - If additional data available on efficiency of IF (ie sperm concentration), incorporate probabilities.
- Develop diagnostic test to indicate when to skip IF in favor of ICSI.

Rapid, adaptive evolution of reproductive proteins occurs in several taxonomic groups.

The selective pressure(s) remains unknown, but could be involved in speciation.

Hypotheses for rapid divergence

- Sexual conflict (polyspermy, gamete usage)
- · Sperm competition
- · Gene duplication/functional diversification
- · Relaxed constraint/repetitive domains
- · Selection against hybrids (reinforcement)
- · Sexual selection
- · Cryptic female choice
- · Self-nonself recognition
- · Barrier to microbes/immunological defense