Any questions?

- Blast
- Phylogenies
- Likelihood Ratio Tests

Related Structures		
	Score	E
Sequences producing significant alignments:	(bits)	Value
gi 604525 gb AAC37229.1 fertilization protein >gi 1097388	275	2e-73
gi 604527 gb AAC37230.1 fertilization protein >gi 1097389	248	2e-65
gi 604533 gb AAC37231.1 fertilization protein >gi 1097390	212	3e-54
gi 3513683 gb AAC33930.1 fertilization protein precursor [94	8e-19
gi 604529 gb AAC37232.1 fertilization protein >gi 1097391	82	5e-15
gi 604531 gb AAC37233.1 fertilization protein >gi 1097392	67	1e-10
gi 12084519 pdb 1GAK A Chain A, Crystal Structure Of Green	62	3e-09 S
gi 538388 gb AAA21518.1 lysin	40	0.022
gi 4704776 gb AAD28265.1 sperm lysin precusor [Tegula fune	36	0.25
gi 602977 gb AAB59216.1 sperm lysin	36	0.25
gi 538406 gb AAB59168.1 lysin	36	0.32
gi 538400 gb AAB59167.1 lysin	36	0.32
di 602973 db 5557303 1 enerm lucin	3.6	0.32

The current size of the NR protein database is 680,984,053 and the PDB is 3,816,875.

Which should you use in a Blast search to have the most sensitivity in detecting homologs with known 3D structures? Why? BlastX translates a DNA sequence into the 6 reading frames and searches each one against the protein NR database. BlastP takes a known translation and searches against the protein NR database.

Do you expect both searches to have the identical E-value? Why or why not?

Analysis of variation in the dn/ds ratio between sites or lineages

- Reading for today on website

 Review article of methods discussed today.
- Reading for Thursday on website

 Example of adaptive evolution using variation between lineages.

$\underline{d_N}/\underline{d_S}$ ratio (ω) estimated across all sites is inefficient at detecting positive selection

e.g. 3/44 (6.8%) sites subjected to positive selection

1 MSLAVLTFLVLCGFSFQHQAVGKWLTAAQKHPISGRMIRIRTKE 2 MSLAVLTFLVLCGWSFQHQAVGKWLTLAQKHPISGKMIRIRTKE

 $\texttt{3} \quad \texttt{MSLAVLTFLVLCGYSFQHQAVGKWLTSAQKHPISGHMIRIRTKE}$

This approach can work well if you know, a priori, where the functionally important parts of the gene are located (from functional or structural studies).

BUT, what if you don't have a prior functional or structural information?

What is you	have	sequ	ienco	es fro	om n	nulti	ple s	pecie	es?
PINK	CGC	CAC	CGC	TTC	CGT	TTT	ATT	CCA	CAT
BLACK		CGC	CGC	TAT	CAA	TTT	GTT	CAA	CAT
RED		CGC	AGC	TGG	CAT	TAT	GTT	GAA	CCC
WHITE		CGC	CGC	TGG	CAT	TAT	GTT	CCA	CCC
PINTO		CGC	AGC	TGG	ACT	TAT	GTT	CAA	CCC
FLAT		CGC	CGC	TGG	AAT	TTT	GTT	ACA	CCC
GREEN		CGC	CGA	TGG	ACT	TTT	GTT	CGA	TAT

Markov models of codon evolution

Goldman & Yang 1994 MBE 11:725-736

Muse & Gaut 1994 MBE 11:715-724

Why use a likelihood model of codon evolution?

- 1. We can take advantage of the phylogeny
- 2. Computation of transition probabilities accomplishes the following in 1 step:
 - i. estimation of parameters (t, κ , ω)
 - ii. correction for multiple hits
 - iii. weight evolutionary pathways between codons

Codon models

Important parameters:

- Transition/transversion rate ratio: κ
- Biased codon usage: π_i for codon j
- Nonsynonymous/synonymous rate ratio: $\omega = d_N/d_S$

Pairwise comparisons

- Calculate dn/ds from data
- Determine if value is significantly > 1.

For pairwise comparisons, we must determine if d_N/d_S is *significantly* greater than 1

- Estimate d_N/d_S ratio for pairwise comparison.
- Estimate d_N/d_S ratio with d_N/d_S fixed at one.
- Compare likelihoods using likelihood ratio test.

Example pairwise estimates

Estimating the dn/ds ratio: H__sorenseni ... 1 H__rufescens lnL = -567.039906 t= 0.1406 S= 108.2 N= 257.8 dN/dS= 6.0570 dN= 0.0622 dS= 0.0103

Fixing the dn/ds ratio equal to one:

 $\begin{array}{ll} H._sorenseni) ... 1 \ H._rufescens \\ lnL = -569.395789 \\ t= 0.1390 \ S= \ 105.2 \ N= \ 260.8 \ dN/dS= 1.0000 \ dN= 0.0463 \ dS= 0.0463 \end{array}$

Likelihood ratio test:

Example pairwise estimates

Estimating the dnlds ratio: H_sorenseni ... 1 H_rufescens InL = -567.039906 t = 0.1406 S= 108.2 N= 257.8 dN/dS=6.0570 dN=0.0622 dS=0.0103

Fixing the dn/ds ratio equal to one: H._sorenseni) ... 1 H._rufescens InL = -569.395789 t= 0.1390 S= 105.2 N= 260.8 dN/dS= 1.0000 dN= 0.0463 dS= 0.0463

Likelihood ratio test: -2[-569.4 - (-567.0)] = 4.8 + selection

Example pairwise estimates

Estimating the dn/ds ratio: H._walallensis ... 2 H._sorenseni lnL = -568.604732

t= 0.1292 S= 95.2 N= 270.8 dN/dS= 1.2521 dN= 0.0454 dS= 0.0363 *Fixing the dn/ds ratio equal to one:* H._walallensis ... 2 H._sorenseni

H._walallensis ... 2 H._sorenseni lnL = -568.661120

 $t{=}\;0.1292\;\;S{=}{-}94.5\;\;N{=}\;\;271.5\;\;dN/dS{=}\;1.0000\;\;dN{=}\;0.0431\;\;dS{=}\;0.0431$

Likelihood ratio test:

Example pairwise estimates

Estimating the dn/ds ratio: H._walallensis ... 2 H._sorenseni lnL = -568.604732

t= 0.1292 S= 95.2 N= 270.8 dN/dS= 1.2521 dN= 0.0454 dS= 0.0363 *Fixing the dn/ds ratio equal to one:* H__walallensis ... 2 H__sorenseni lnL = -568.661120

 $t{=}\;0.1292\;\;S{=}\;\;94.5\;\;N{=}\;\;271.5\;\;dN/dS{=}\;1.0000\;\;dN{=}\;0.0431\;\;dS{=}\;0.0431$

Likelihood ratio test: -2[-568.6 - (-568.7)] = 0.2

Can not reject null model = neutral evolution.

Problem: averaging over a pair

In a pairwise analysis we must average the $\boldsymbol{\omega}$ ratio over:

- 1. all sites
- 2. the entire evolutionary history

In a large-scale pairwise database search, only 17 out of 3,595 genes were found to be under positive selection, at <0.5% (Endo *et al.* 1996 *MBE* **13**: 685-690)

Problem: averaging over a pair has very low power if the questions are about "when" or "where"!

Solution: Phylogenetic estimation of selection pressure

- variable ω over branches (when?)
- variable ω over sites (what fraction?)

Statistical methods (maximum likelihood) have been developed to test models of positive selection using genes. If a selection model fits the data better than a neutral model, one can identify sites subjected to positive selection and infer functional importance.

- Model different classes of codon sites – Purifying, neutral, positive selection.
- Compare selection model with one class that has dn/ds > 1, to neutral model where all classes have dn/ds < 1 using likelihood ratio test.

Model	Code	NP	Parameters
One-ratio	M0	1	ω
Neutral	M1	1	p_0
Selection	M2	3	p_{0}, p_{1}, ω_{2}
Discrete	M3	2K-1	$p_{0}, p_{1, \dots, p_{K-2}}$
			$\omega_0, \omega_1, \ldots, \omega_{K-2}$
Frequency	M4	5	$p_{0}, p_{1},, p_{4}$
Gamma	M5	2	α, β
2Gamma	M6	4	$p_{0}, \alpha_{0}, \beta_{0}, \alpha_{1}$
Beta	M7	2	p, q
Beta& <i>w</i>	M8	4	p_{0}, p, q, ω
Betaγ	M9	5	$p_{0}, p, q, \alpha, \beta$
Beta&normal+1	M10	5	p_0, p, q, α, β
3eta&normal>1	M11	5	p_{0}, p, q, μ, σ
)&2normal>1	M12	5	$p_{0}, p_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$
3normal>0	M13	6	$v_0 v_1, \mu, \sigma_0, \sigma_1, \sigma_2$

- 6 alleles of human class I MHC aligned - Known to be subjected to positive selection
- · Calculated dn/ds across all sites
- Test for variation in the dn/ds ratio between sites - Identification of sites under selection

150 – 200 mya

35 mva

Ϋ́́A

ß alobin aene cluster

40 – 80 mya

δ β Chrom, 11

Problems with lineage analysis

- Estimating dn/ds across all sites – There are "branch - site" models
- Many branches increase the degrees of freedom

 Can limit estimates to particular branches, such as
 human lineage or following duplication

Summary

- 1. Pairwise methods have very low power to detect adaptive evolution.
- 2. Branch models allow variation among branches but assume one ω for all sites, and have low power to detect positive selection.
- 3. Site models assume allow variation among sites but assume selection pressure does not change among branches, and will have higher power if positive selection is long term
- 1. Why is averaging the dn/ds ratio across all sites in a gene inefficient at detecting adaptive evolution
- What is one way to detect variation in rates of evolution along lineages.
 Model 7 is a neutral model of DNA evolution estimates for a beta distribution with the parameters p and q. Model 8 add an additional proportion of sites with a dn/ds ratio estimated from the data. What are the degrees of freedom between
- these two models?4. Describe a selective and neutral model that would be a useful for testing adaptive evolution by a likelihood ratio tests. Include what parameters are different between the models.
- 5. How do you determine the degrees of freedom for a likelihood ratio test?6. What are some important factors to consider when calculating dn/ds ratios?

PAML demo