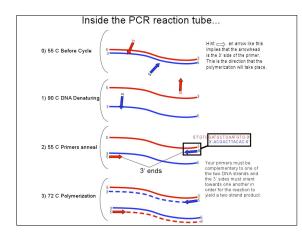
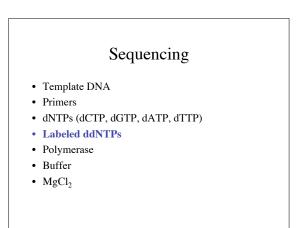
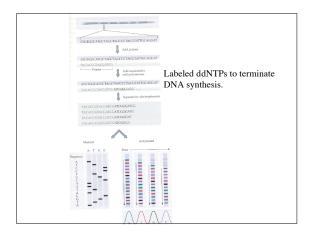
Course summary

- Goals
- Organization
- Labs
- Project
- Reading

Today

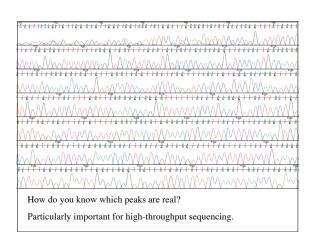

- DNA sequencing.
- Genome Projects.
- New DNA sequencing technologies.


Obtaining molecular data


- PCR
- Typically used in empirical molecular evolution studiesSequencing
- Sequence chromatograms and base calling
- Genome sequencing (data used by Mol. Evol.)
 Shotgun versus Hierarchical
- Cloning vectors
- Plasmids and BACs
- The human genome

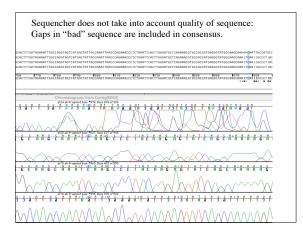
PCR Polymerase chain reaction

- Template DNA
- Primers (must know sequence)
- dNTPs (dCTP, dGTP, dATP, dTTP)
- Polymerase
- Buffer
- MgCl₂



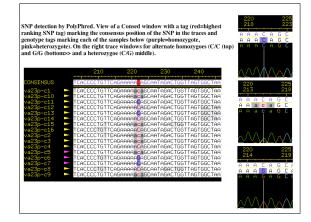
Base calling

- Merge all four colors channels into one file
- Calculate spacing (mean distance between peaks)
- · Detect local maxima for each four colors



PHRED score

- Variance in peak spacing over 7 peaks
 Should be low
- Ratio of largest to smallest called peak in window - Should be 1
- Same ratio over 3 peak window
- Number of bases between current base and nearest unresolved base.
 - Should be high

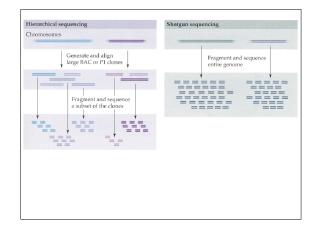

Phred score reported as: $Q = -10 \log_{10}(Pe)$ where Pe is error probability of base call.

Score 30 means error probabilty is 0.001.

What about polymorphism in sequence data?

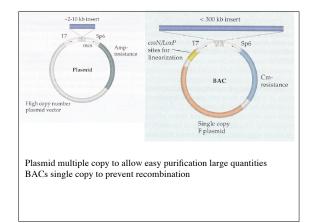
• Directly sequenced PCR products can be from diploid individuals with potential for heterzygotes.

Genome Projects


- Drosophila
- C. elegans
- Human, Chimpanzee
- Mouse, Rat
- Dog
- Plants
- Cow, Rhesus,

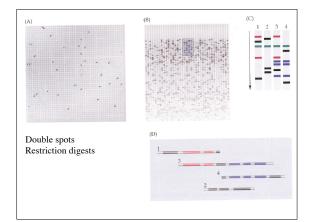
Goals of Human Genome Project

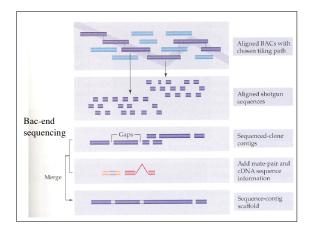
- Technology development
 - High throughput, inexpensive DNA sequencing
- Complete Sequence - Provide the genetic sequence
- Gene Identification
 Identify the "parts' list. Also non-coding functional regions
- Polymorphism Data – Association studies, evolutionary studies
- Functional characterization
- ENCODE

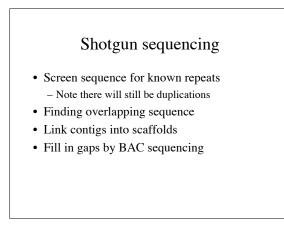

Two strategies for genome sequencing

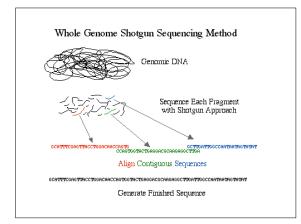
- Whole Genome Shotgun
- Random reads assembled by computer
- Hierarchical
 - Map bases, clone by clone

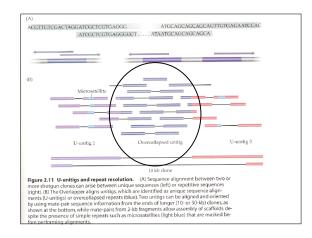
Genome sequencing Terminology

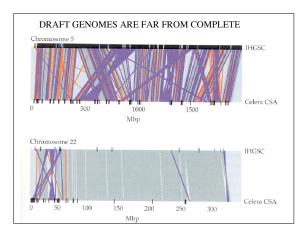

- Coverage
 - Estimated number of times a region of the genome is sequenced (typically 5 - 10 fold). Note on distribution.
- Consensus Sequence – Sequence based upon multiple reads
- Contig
 - Contiguous sequence aligned
- Scaffold
 - Ordered contigs based upon BAC-end sequencing or other knowledge

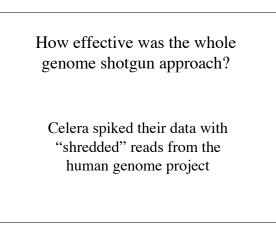


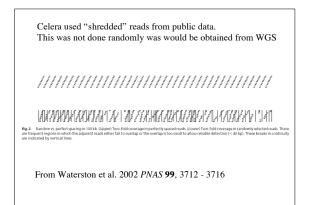



Aligning BACs


- Hybridize arrayed library with unique sequence.
- Isolate all hybridizing BACs.
- Perform restriction based mapping.
- Align BACs and make tilling path.

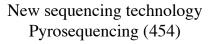



Sequence verification

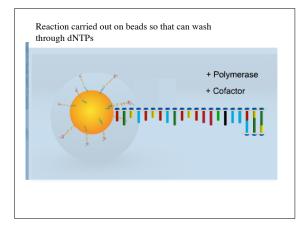

- Completeness
 - Repetitive regions, heterochromatin
- Accuracy
 - Based upon probability scores for base calls (Phred scores)
- · Validity of assembly
 - Difficult to assess. Predict restriction profiles and compare to observed. Correct spacing of pair-end sequences (correct for repeats), consistent read depth.

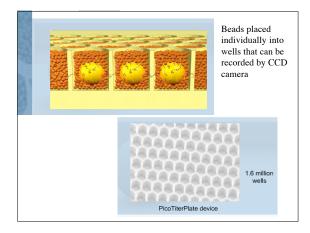
Is there any difference between two draft human genomes?

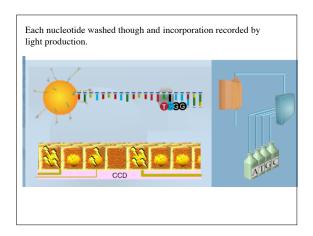
- International public consortium – Used hierarchical sequencing
 - Published in Nature 2001
- Private company Celera
 - Used Whole Genome ShotgunPublished in Science 2001



Category	Celera			
	WGS	Faux WGS	Faux CSA	HGP
Sequence coverage	5.1 imes Celera	$5.1 \times Celera$ + $7.5 \times HGP$	5.1 × Celera + 7.5 × HGP	7.5 imes HG
		$12.6 \times total$	$12.6 \times total$	
Length (in Gb) of draft genome assembly, counting only bases with known sequence*	NR	2.587	2.654	2.693
Length (in Gb) of draft genome assembly, including unknown nucleotides in gaps ¹	NR	2.848	2.906	2.916
Proportion of sequence in euchromatic genome present in draft genome assembly, % ¹	NR	89	91	92
Number of contigs ⁵	NR	221,036	170,033	149,821
Number of scaffolds ⁵	NR	118,968	53,591	87,757
Number of components, to be anchored in genome®	NR	118,968	3,845	942


CSA: Compartmentalized sequence assembly HGP: Human genome Project (hierarchical sequencing)




• 4 enzymes

- DNA polymerase
- DNA synthesis
- ATP sulfurylaseConverts PPi to ATP
- Luciferase
- Uses ATP to generate light
- Apyrase
- Degrades dNTPs
- Cheaper, higher throughput
 - 20 million bases per run, versus 67K
 - Moving towards the \$1,000 genome

Show chemistry

Some examples of pyrosequencing

- Marine Microbes
 - Large amount of sequencing to get "unculturable" microbes
- Extinct cave bears
 - Test case for Neanderthals
- Neanderthals
 - Small amount of highly degraded DNA, lots of microbe contamination, need to sequence a lot.

Disadvantages

- Short reads
- Only 100 bps compared to 800+
- · Homo-polymer runs difficult
- Beyond 2 or 3, can not quantify
- Needs for reference genome
 - Reads potentially too short for shotgun assembly. No possibility of clone based sequencing
- · Initial investment high
- Instrument cost.

- 1. Describe DNA sequencing.
- 2. What is the difference between a BAC and Plasmid?
- What is the unrefere between a Dive and Flash
 What are two methods for sequencing genomes?
 What is hierarchical sequencing?
- 5. What is whole genome shotgun sequencing?
- 6. Describing a tilling path.
- 7. What is a phred score?
- 8. What is the difference between a scaffold and contig sequence 9. What is the difference between dNTP and ddNTP?
- 10. Describe pyrosequencing? What is advantage/disadvantage?