

Adaptive Molecular Evolution

Nonsynonymous vs Synonymous

- Li and Graur chapter (PDF on website)
- Evolutionary EST paper (PDF on website)

Neutral theory

- The majority of substitutions are either deleterious or have no function.
- Introns, pseudogenes, non-coding DNA.
- What about coding regions, promoters, centromeres.
 - How do we evolve differences between species

Evolutionarily conservation of genes and regions implies functional importance

What molecular changes are different between species?

Synonymous and nonsynonymous sites are both in coding regions. Synonymous sites are considered selectively neutral. Therefore, we can use synonymous sites as a "ruler" for nonsynonymous substitutions. When nonsynonymous changes exceeds synonymous changes, infer positive selection. There are more nonsynonymous than synonymous sites in coding DNA Prot. 1: Ile Cys Ile Lys Ala Leu Val Leu Thr

DNA1: ATA TGT ATA AAG CGA GTC CTG TTA ACA DNA2: ATA TGT ATA AAG CGA GTC CTG TTA ACA Prot. 2: Ile Cys Ile Lys Ala Leu Val Leu Thr d_N = # nonsynonymous substitutions/# nonsynonymous sites d_s = # synonymous substitutions/# synonymous sites

Test for selection by comparing d_N and d_S $d_N/d_S = 1$: Neutral evolution $d_N/d_S < 1$: Purifying selection $d_N/d_S > 1$: Positive selection

The d_N/d_S ratio (ω) measures the selective pressure

Multiple methods for calculating d_N/d_S

- "Counting" methods
 - Nei and Gojobori
 - Li et al.
- Maximum likelihood methods (model of codon evolution)
 - Muse and Gaut
 - Neilsen and Yang

Codon degeneracy

- Non-degenerate
 - All mutations produce nonsynonymous change
- Two-fold degenerate
 - one of the three possible changes is synonymous
- Four-fold degenerate - all mutations produce synonymous change

When counting sites: GAG (Glu)

- Non-degenerate (1) [All mutations produce nonsynonymous change] - nonsynonymous
- Two fold degenerate (2) [one of the three possible changes is synonymous] - 1/3 synonymous and 2/3 nonsynonymous
- Four fold degenerate (4) [all mutations produce synonymous change] - synonymous

Note: Three fold degenerate treated as two-fold.

Example: Degeneracy 1 Asp Thr Ala Val Sequence 1 GAC ACA GCG GTT

How many synonymous sites in sequence 1? First, assign degeneracy to each codon position.

Example: Degeneracy 1 1 Asp Thr Ala Val Sequence 1 GAC ACA GCG GTT

Example:				
Degeneracy 1	11			
	Asp	Thr	Ala	Val
Sequence 1	GAC	ACA	GCG	GTT

Example:					
Degeneracy 1	112				
	Asp	Thr	Ala	Val	
Sequence 1	GAC	ACA	GCG	GTT	

Example:	110				
Degeneracy 1	112	1 Thr	a 1a	Val	
Sequence 1	GAC	ACA	GCG	GTT	

Example:					
Degeneracy 1	112	11			
	Asp	Thr	Ala	Val	
Sequence 1	GAC	ACA	GCG	GTT	

Degeneracy 1	112 Asp	114 Thr	Ala	Val	
Sequence 1	GAC	ACA	GCG	GTT	

Degeneracy 1	112	114	11	
	Asp	Thr	Ala	Val
Sequence 1	GAC	ACA	GCG	GTT

Example: Degeneracy 1	112	114	114	1
	Asp	Thr	Ala	Val
Sequence 1	GAC	ACA	GCG	GTT

Example:					
Degeneracy 1	112	114	114	11	
	Asp	Thr	Ala	Val	
Sequence 1	GAC	ACA	GCG	GTT	

Example:					
Degeneracy 1	112	114	114	114	
	Asp	Thr	Ala	Val	
Sequence 1	GAC	ACA	GCG	GTT	

Example: Degeneracy 1 112 114 114 114 Asp Thr Ala Val Sequence 1 GAC ACA GCG GTT

How many nonsynonymous sites in sequence 1?

Example:							
Degeneracy 1	112	114	114	114			
	Asp	Thr	Ala	Val			
Sequence 1	GAC	ACA	GCG	GTT			
How many nonsyn	onyr	nous	sites	in sequence 1?			
8 nondegenerate sites 1 two fold degenerate site = 8.66 nonsynonymous sites							

Example:				
Degeneracy 1	112	114	114	114
	Asp	Thr	Ala	Val
Sequence 1	GAC	ACA	GCG	GTT
Sequence 2	GCC	ACT	TCG	GTT
	Ala	Thr	Ser	Val
Degeneracy 2	114	114	114	114
Sequence 2 has 8 nons For this comparison, w	ynonymo 7e averag	us sites e numb	and 4 s er from	ynonymous sites. 1 both sequences.
······································	- 10 66 . 1	$\rho = \rho / \rho$	22	

Example:									
Degenera	cy 1	112	114	114	114				
		Asp	Thr	Ala	Val				
Sequence	1	GAC	ACA	GCG	GTT				
Sequence	2	GCC	ACT	TCG	GTT				
		Ala	Thr	Ser	Val				
Degenera	cy 2	114	114	114	114				
There are 2 nonsynonymous changes,									
So $dn = 2/8.33$	3 = 0.2	24							
There is 1 sile	ent cha	ange	,						
So $ds = 1/3.67$	' = 0.2	27							
dn/ds = 0.24/0).27 =	0.88							
< 1 despite ha	ving 1	more	non	syno	nymous changes.				

Other factors can effect calculation of $d_{\rm N}/d_{\rm s}$

- Transition/transversion ratio – Transitions typically more frequent
- Pathway of substitution
- Codon bias

Counting differences

Two pathways between CCT and CAG:

Pathways	Syn Nonsyn	
$\operatorname{CCT}\left(\operatorname{Pro}\right) \leftrightarrow \operatorname{CAT}\left(\operatorname{His}\right) \leftrightarrow \operatorname{CAG}\left(\operatorname{Gln}\right)$	0	2
$\operatorname{CCT}(\operatorname{Pro}) \leftrightarrow \operatorname{CCG}(\operatorname{Pro}) \leftrightarrow \operatorname{CAG}(\operatorname{Gln})$	1	1
Average	0.5	1.5
Nearly all counting methods assume all path- likely.	ways are o	equally

Codon Bias

- Unequal codon usage results in reduced number of effective codon sites.
- Ignoring codon bias leads to underestimate of ds.

Problems with dn/ds for detecting selection

- Positive selection acting only on a few sites (binding cleft).
- Burst of positive selection followed by purifying selection (lineage specific events).
- Positive selection in promoter and non-coding regions.
- Positive selection for post-translational modification (glycosylation).

Reproductive proteins and ESTs coupled with d_N/d_S analysis

Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in *Drosophila* Wille J. Swarson⁺¹. Andrew G. Clark¹, Heidi M. Waldrp-Dall¹, Mariana F. Wolfner⁺, and Charles F. Aquadro⁺

*Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, thaca, NY 14853-2033, and "Institute of Molecular Evolutionary Genetics. Department of Biology Prenvivania State University. 268 Mueller Lab. University Park, PA 16802-231

Elevation of egg laying rate is regulated by seminal fluid protein in flies

- Seminal fluid by by accessory glands
- Seminal fluid can be artificially injected into female following mating to test for between species differences.

Ej. duct

Drosophila <u>Ac</u>cessory Gland <u>P</u>roteins (*Acps*)

- Induce egg laying/ovulation.
- Sperm storage.
- · Toxic to females (byproduct of other function?).
- Reduce remating rate.
- 18 known genes from estimated 100 Acps.

How to find Acps?

- · Find genes expressed in accessory gland
- · Look for male specific genes
- · Analyze for evidence of secreted proteins

With 200+ genes, how decide which might be important for species differences? It was an "evolutionary EST" screen

cDNA library made from <u>D. simulans</u> accessory glands

Is this limited to invertebrates

- Human versus Chimpanzee
- Data available from prostate ESTs
- · Blast human versus Chimpanzee
- Calculate d_N/d_S

Other genome wide scans

- · What adaptive changes occurred along human lineage
- · What genes have been subject to recent selective sweeps, and in what populations.
- 1. My gene is the fastest evolving gene between two organisms I am studying, it is the generation of the subject of the generation of generation of generation of generation of the subject of the generation of the subject of the generation of the subject of the
- Does the neutral model of molecular evolution allow for deleterious m
 Define two fold and four fold degenerate sites.
 Define a synonymous substitution.
 Define a nonsynonymous substitution
 What is codon bias?
 Do two fold degenerate sites evolve at the same rate as pseudogenes?

- Boscribe one way to test for positive Darwinian selection.
 Describe the difference between the neutralist model of molecular evolution and the selectionist model of molecular evolution.
- 10. Between two closely related species, my gene has 2 nonsynonymous and 1 synonymous difference, it is therefore been subjected to adaptive evolution. Is this statement correct?