Phylogenetic methods

- Parsimony
- · Maximum likelihood
- Distance

Weighted parsimony

- Transistion/transversion ratio
- Codons
 - 3rd base position
- Stem loops

Phylogenetic trees

- Efficiency
 - How fast is the method
- Power
- How much data is needed
- · Consistency
 - Will it converge to the correct answer given enough data
- Robustness
 - Will violations of the assumptions result in poor estimates
- · Falsifiability
 - Will the method tell us when the assumptions are violated

How do we search such a large tree space?			
	s	# Unrooted	#Rooted
	3 4 5 6 7 8 9 10 20 50 100	1 3 15 105 945 10395 135135 2027025 2.2 X 10 ²⁰ 2.8 X 10 ⁷⁴ 1.7 X 10 ¹⁸²	3 15 105 945 10395 135135 2027025 34459425 8.2 X 10 ²¹ 2.7 X 10 ⁷⁶ 3.4 X 10 ¹⁸⁴

PAUP*

- Phylogenetic Analysis Using Parsimony
- Phylogenetic Analysis Using Parsimony* (*and other methods)
- "Phylogenetic Analysis Using PAUP"
- Available for:
 - Macintosh Classic (OS X/Carbon soon): full GUI interface
 - MS Windows: command-line interface with enhancements (editor, output scrollback, some menus) Unix/Linux/VMS: "Portable interface"

Capabilities

- Tree searching under parsimony, distance, and maximum-likelihood
- Exhaustive searching
- Criterion-based heuristics (stepwise addition, branch-swapping, star-decomposition) NJ, UPGMA
- Bootstrapping/jackknifing for assessment of support
- Inference of ancestral states using parsimony and maximum likelihood
- Complete set of DNA substitution models including general time-reversible (GTR=REV) and *all* of its submodels (JC, K2P=K80, HKY, Tamura-Nei, etc.)
- Import/export of other formats (GCG/MSF, Phylip, Mega, NBRF, etc.)

Maximum Likelihood

One way to get the likelihood is to estimate them using Makov Chain Monte Carlo methods.

-analogy to walking up hill.

For an appropriately constructes and adequately run Markov chain, the proportion of the time any tree is visited is a valid approximation of the posterior probability of that tree (= Bayes)

How well do these methods perform

- Simulate datasets.
- Estimate phylogeny using variety of methods and models.
- Compare estimate to known answer.

Estimating Parameters of ML Models

Goal of ML Estimation:

Find the combination of branch lengths, model parameters, and topology that optimizes the likelihood score.

Ideal Strategy:

Optimize all these variables on every tree we examine during a tree search.

Successive-approximations Approach

1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).

accessive-approximations Approach

1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).

2: Estimate model parameters on current tree(s).

Successive-approximations Approach

- 1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).
- 2: Estimate model parameters on current tree(s).
- Conduct ML analysis with model parameters fixed to values obtained on previous tree.

Successive-approximations Approach

- 1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).
- 2: Estimate model parameters on current tree(s).
- 3: Conduct ML analysis with model parameters fixed to values obtained on previous tree.
- 4: Is topology of new tree identical to that of previous tree? Yes - Done, No. Go back to step 2.

Model Selection

Desirable to choose models that represent a goo compromise between realism and utility

 Models should be complex enough to incorporate important features of evolutionary process but not so complex that extre parameters absorb random errors (under-fitting versus over-fitting)

Is the branching order significant?

- Bootstrap test for significance.
- · Resample data with replacement
- Reconstruct phylogeneny
- Redo 100s of times
- Build consensus tree, bootstrap values are percent on times that branch was recovered.

PAUP* demo