Phylogenetic methods

¢ Parsimony
e Maximum likelihood

¢ Distance

Weighted parsimony

¢ Transistion/transversion ratio
e Codons
— 3rd base position

e Stem - loops

Phylogenetic trees

e Efficiency

— How fast is the method
* Power

— How much data is needed
¢ Consistency

— Will it converge to the correct answer given enough
data

¢ Robustness

— Will violations of the assumptions result in poor
estimates

« Falsifiability

— Will the method tell us when the assumptions are
violated

How do we search such a large tree space?

s # Unrooted #Rooted
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10395
8 10395 135135
9 135135 2027025

10 2027025 34459425

20 22X102% 8.2X10%

50 28X10™ 27X107

100 1.7X 10 3.4X10"
1000 1.9 X 10%80 3.8 X 10283

PAUP*

Phylogenetic Analysis Using Parsimony

Phylogenetic Analysis Using Parsimony”®
(*and other methods)

“Phylogenetic Analysis Using PAUP”

Available for:

— Macintosh Classic (OS X/Carbon soon): full GUI interface

— MS Windows: command-line interface with enhancements (editor,
output scrollback, some menus)

— Unix/Linux/VMS: “Portable interface”

Capabilities

Tree searching under parsimony, distance, and maximum-likelihood
criteria

Exhaustive searching
Branch-and-bound

Criterion-based heuristics (stepwise addition, branch-swapping, star-
decomposition)

NJ, UPGMA
Bootstrapping/jackknifing for assessment of support
Inference of ancestral states using parsimony and maximum likelihood

Complete set of DNA substitution models including general time-
reversible (GTR=REV) and all of its submodels (JC, K2P=K80, HKY,
Tamura-Nei, etc.)

Import/export of other formats (GCG/MSF, Phylip, Mega, NBRF, etc.)




Searching for trees

3. Full search tree:

iy,
PN
N

Branch and bound algorithm:

The branch-and-bound algorithm for
exact solution of the problem of finding
an optimal parsimony tree. The search
tree s the same as for exhaustive
search, with tree lengths for a
hypothetical data set shown in boldface
type. Ifa tree Iying at a node of this
search tree has a length that exceeds
the current lower bound on the optimal
ree length, this path of the search tree
is terminated (indicated by a cross-bar),
nd the algorithm backtracks and takes
the next available path. When a tip of
the search tree is reached (i e.. when
we arrive at a tree containing the full set
of taxa), the tree is either optimal (and
hence retained) or suboptimal (and
rejected). When all paths leading from
the initial 3-taxon tree have been
explored, the algorithm terminates, and
all most-parsimonious trees will have
been identfied. Asterisks indicate
points at which the current lower bound
is reduced. See text for addtional
explanation, and circled numbers
represent the order in which
phylogenetic trees are visited in the
search tree.

Searching for trees
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Searching for trees
Heuristic search methods 0]

A greedy stepwise-addition search applied
o the example used for branch-an-bound
The best d-taxon tree is determined by
evaluating the lengths of the three trees
obtained by joining taxon D to tree 1
containing only the first three taxa, Taxa £
and F are then connected to the five and
seven possible locations, respectively, on
rees 4 and 9, with only the shortest trees
found during each step being used for the
next step. In this example, the 233-step tree
obtained is not a global optimum. Circled
numbers indicate the order in which
phylogenetic trees are evaluated in the
stepwise-addition search.

Once we obtain a tree, how do
we check nearby trees for a

better fit?

Searching for trees

Heuristic search methods continued
3 £ “«l

Nearest neighbor interchange:

All possible NNIs on NS
6-taxon tree: o N

Searching for trees

Heuristic search methods continued

Subtree pruning regrafting:

1 6




Searching for trees

Heuristic search methods continued
Trees resulting from SPR:
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One search path

starting tree

Drawing by David Maddison

Multiple islands

search path 1

Drawing by David Maddison

Plateaus

Drawing by David Maddison

Maximum Likelihood

1 This value of the
1 transition/transversion
| ratio maximises the

1 likelihood of the data

Ln likelihood

—
1 2 3 45 6 7 8 9 10
Transition/transvertion ratio

Likelihood calculations require...

» An explicit model of substitution that specifies change
probabilities for a given branch length:

(7[,\':\,\ Tl
Jukes-Cantor
Talea o alea Kimura 2-parameter
Hasegawa-Kishino-Yano (HKY)

TopTGa

T alra

Talaa

Zol'ra

Felsenstein 1981, 1984
General time-reversible

« An estimate of optimal branch lengths in units of expected
amount of change (v = rate x time)

Qv




Maximum Likelihood

One way to get the likelihood is to estimate them
using Makov Chain Monte Carlo methods.

-analogy to walking up hill.

Red dots = “burn in” period.
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Convergence = tested all of likelihood surface and found
maximum
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For an appropriately constructes
and adequately run Markov chain,
the proportion of the time any
tree 1s visited is a valid
approximation of the posterior
probability of that tree (= Bayes)

MC-Robot demo:
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How well do these methods
perform
» Simulate datasets.
» Estimate phylogeny using variety of
methods and models.

* Compare estimate to known answer.




‘Long branches'
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Example GTR Model (Felsenstein Zone)

Substitution rates:

Base frequencies:

QO> Q0>

=
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Performance of ML when its model is
violated (one example)

1000
Sequence Length

Performance of ML when its model is
violated (another example)

Modeling among-site rate variation with a gamma distribution...

Frequency

...can also estimate a proportion of “invariable” sites (p;,,)




Performance of ML when its model is “MODERATE”—Felsenstein zone
violated (another example)
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Extension to more taxa...

Estimating Parameters of ML Models

Goal of ML Estimation:

g 06 DENVS Find the combination of branch lengths,
g 08 -o-HKY+I model parameters, and topology that

L2 HKYer P : +

Ei, gz iparslmony optimizes the likelihood score.
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Estimating Parameters of ML Models

Goal of ML Estimation:
Find the combination of branch lengths,
model parameters, and topology that
optimizes the likelihood score.

Ideal Strategy:
Optimize all these variables on every tree
we examine during a tree search.

Successive-approximations Approach

1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).

Successive-approximations Approach

1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).

2: Estimate model parameters on current tree(s).

Successive-approximations Approach

1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).
2: Estimate model parameters on current tree(s).

3: Conduct ML analysis with model parameters fixed to values
obtained on previous free.

Successive-approximations Approach

1: Conduct initial analysis (i.e. parsimony) to get initial tree(s).
2: Estimate model parameters on current tree(s).

3: Conduct ML analysis with model parameters fixed to values
obtained on previous tree.

4: |s topology of new tree identical to that of previous tree?
Yes - Done.
No - Go back to step 2.

Model Selection

» Desirable to choose models that represent a good
compromise between realism and utility.
~ Models should be complex enough to incorporate important
features of evolutionary process but not so complex that
extra parameters absorb random errors (under-fitting versus
over-fitting)




.. Overparameterizing a model
Overparameterizing a model

=-330+134x - 1557 +0.816x°

- 0.0225x" +0.000335x°

- 0.00000255x° +0.00000000777x"
(> = 1.000)

Jukes-Cantor (JC)

Equal base frequencies  mq =i =g = 71
All substitutions a=p
equally likely

Model Selection

Desirable to choose models that represent a good
compromise between realism and utility

— Models should be complex enough to incorporate important
features of evolutionary process but not so complex that
extra parameters absorb random errors (under-fitting versus

Allow for transition/
transversion bias

Allow base frequencies

Kimura 2 parameter (K2P) Felsenstein (F81)

Equal base frequencies 7 = ¢ = ig = 7y | | Unequal base frequencies m # ic # ig # 7
Transversions and
transitions have different @+ Al substitutions equally likely o=

substitution rates

over-fitting)
Formal model selection strategies
— Likelihood ratio tests

— Akaike information criterion (AIC)
« AIC =-2In L+ 2k (k =“number of free parameters”)

Allow base Allow for transition/
frequencies to vary transversion bias

Hasegawa et al. (HKY85)
Unequal base frequencies 1 ¢ % g i
Transversions and transitions azp
‘have different substitution rates

Allow all six pairs of substitutions
to have different rates

General reversible (REV)
Unequal base frequencies i # fic # G % 7

Al six pairs of substitutions
have ditferent rates

ARATCTGCTAGCATGCA
. ORIGINAL DATA  AaATCTGCTACCATGCA
Is the branching order
onifi o BOOTSTRAPPED DATA SETS
significant: ARAAACCCGGCTCAGCA AATTGGAAGCCAAGGCA
. ARAAACCCGGCTCAGCA
* Bootstrap test for significance. AATTGGAACCCAAGGCA
* Resample data with replacement AATTTTTCCCCATTGCC AAAATCCCCCATGGGAA
AATTTTTCCCCATTGCC
» Reconstruct phylogeneny ARAATCCGCCATGGGRA
* Redo 100s of times ARTTTCCAAACCCCICA AATTGGCACCCCARRAC
] AATTTCCARACCCCTCA AATTGGCAGGCCARARC
* Build consensus tree, bootstrap values are
percent on times that branch was recovered. ARTTTGCCCCCCCCRAR ARATTCTTCCTGGCAAA
AATTTGCCCCCCCCAAA AAATTCTTCCTGGCAAA
ARATCCCGGTACTTGCA ARAATTTCCACCATTCA
ARATCCCGGTACTTGCA ARAATTTCCAGGATTCA




PAUP* demo




