

The basic idea of parsimony is to minimize the number of changes occurring on a phylogeny. Check all possible tree topologies and choose the shortest.

Distanc	e method	ds start	by calc	ulating
uista	Morpholo	ogy Mo	olecular (DNA)
HUMAN	111	111 <mark>CA</mark>	CTAC	ГСАТТ
GORILL	A 011	111 CA	стас	гсдтт
DOG	001	1 1 0 <mark>C A</mark>	СТАТ	САТС
FROG	000	0 1 1 <mark>C A</mark>	ΤΤΑΤΑ	CGTT
SHARK	000	0 0 0 <mark>C A</mark>	ΤΤΑΤΑ	CATT
	Human	Gorilla	Dog	Frog
Human	N. A.	Sec. 1	Statistics.	a state
Gorilla	2			
Dog	5	5	Call Sta	
Frog	8	6	7	The second
Shark	9	9	6	3

Which method should I use?

- Depends on the data being analyzed.
- Try all methods to determine if results are robust to model assumptions.
- My preference is for ML.

Some things we ignored

- Base composition
- Transition/transversion bias
- DNA substitution models
- Multiple substitutions
- Character weighting
- Choice of taxa

Does a tree generated from a gene sequence always give the species tree?

Is the branching order significant?

- Bootstrap test for significance.
- Resample data with replacement
- Reconstruct phylogeneny
- Redo 100s of times
- Build consensus tree, bootstrap values are percent on times that branch was recovered.

ORIGINAL DATA	AAATCTGCTAGCATGCA AAATCTGCTACCATGCA				
BOOTSTRAPPED DATA SETS					
AAAAACCCGGCTCAGC	A AATTGGAAGCCAAGGCA				
AAAAACCCGGCTCAGC	A AATTGGAACCCAAGGCA				
AATTTTTTCCCCATTGC	C AAAATCCCCCATGGGAA				
AATTTTTTCCCCATTGC	C AAAATCCGCCATGGGAA				
AATTTCCAAACCCCTC	A AATTGGCACCCCAAAAC				
AATTTCCAAACCCCTC	A AATTGGCAGGCCAAAAC				
AATTTGCCCCCCCAA	A AAATTCTTCCTGGCAAA				
AATTTGCCCCCCCAA	A AAATTCTTCCTGGCAAA				
AAATCCCGGTACTTGC	A AAAATTTCCACCATTCA				
AAATCCCGGTACTTGC	A AAAATTTCCAGGATTCA				