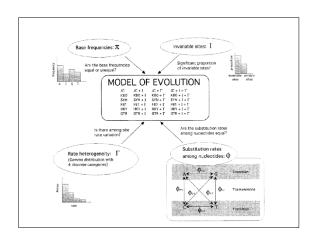
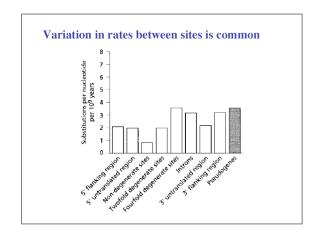

Questions? Lab reports

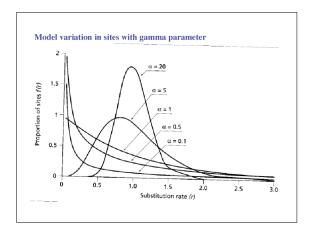
Models of DNA substitutions Rate matrices and choosing the appropriate model



Factors to consider

- · Base frequencies
- Substitution rates between nucleotides
- Invariable sites
- · Rate heterogeneity




Are base frequencies equal? GC content

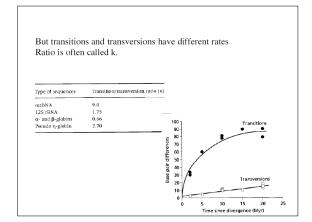
 $\mathbf{f} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$.

Site variation

- Do all sites evolve at same rate?
 - Synonymous sites (codons)
 - Ribosomal RNA
 - Coding and noncoding

Type of sequences	α
Nuclear genes	
Albumin genes	1.05
Insulin genes	0.40
c-myc genes	0.47
Prolactin genes	1.37
16S-like rRNAs, stem region	0.29
16S-like rRNAs, loop region	0.58
ψη-globin pseudogenes	0.66
Viral genes	
Hepatitis B virus genomes	0.26
Mitochondrial genes	
12S rRNAs	0.16
Position 1 of four genes	0.18
Position 2 of four genes	0.08
Position 3 of four genes	1.58
D-loop region	0.17
Cytochrome b	0.44

Substitution rates among nucleotides

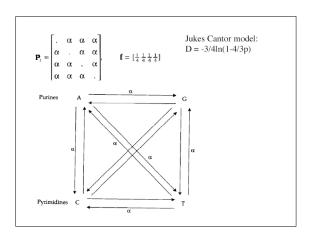

- · Equal rates
- · Transitions versus transversions

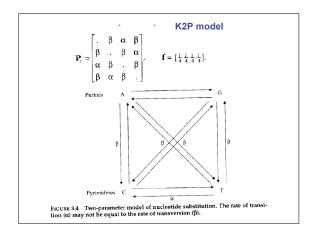
Transitions observed more often,
Even though more opportunities for transversions

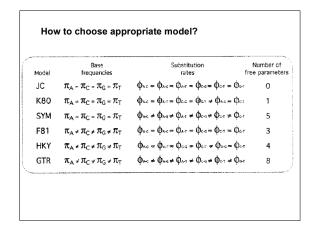
A
G
Transitions

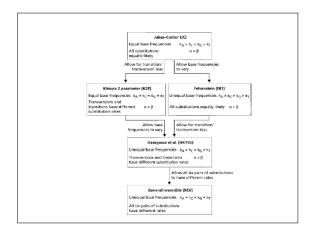
Transversions

Transversions


$$\mathbf{P}_{t} = \begin{bmatrix} p_{\text{AA}} & p_{\text{AC}} & p_{\text{AG}} & p_{\text{AT}} \\ p_{\text{CA}} & p_{\text{CC}} & p_{\text{CG}} & p_{\text{CT}} \\ p_{\text{GA}} & p_{\text{GC}} & p_{\text{GG}} & p_{\text{GT}} \\ p_{\text{TA}} & p_{\text{TC}} & p_{\text{TG}} & p_{\text{TT}} \end{bmatrix}$$


The substitution probability matrix can be computed or determined using simulations.


Matrix diagonal equal probability to maintain stationary frequencies of base pairs


Common models of DNA evolution

- Jukes-Cantor (JC)
 - Equal substitution rates and base freq.
- Kimura 2 parameter (K2P)
 - Transitions/transversion rates, equal base
- Felsensten 1981 (F81)
 - Unequal base freqs, equal subs. rate
- Hasegawa, Kisino and Yano (HKY)
 - Unequal base, transition/transversions rate
- General reversible (REV)
 - Unequal base freqs, all substitutions different rate

What assumptions did we make?

- All nucleotides change independently
- The subsituion rate is constant over time and in different lineages
- The base composition is at equilibrium
- The conditional probabilities of nucleotide substitutions are the same for all sites and do not change over time..

How do we choose an appropriate model?

- Calculate likelihood of model given data
- Compare likelihoods of nested models

What is maximum likelihood?

Comparison to probability theory:

Probability of # heads in 5 coin tosses

Heads	Prob.		
0	.03		
1	.16		
2	.31		
3	.31		
4	.16		
5	.03		

 $P(x) = (n!/(n-x)!)p^xq^{n-x}$

Same calculation for coins with different bias.

Bias of coin towards

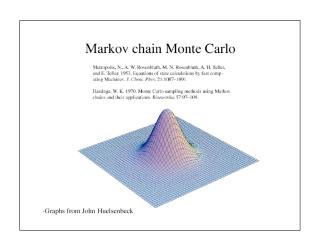
			Head	.s	
Heads	.1	. 3	. 5	. 7	. 9
0	.59	.17	.03	.00	.00
1	.33	.36	.16	.03	.00
2	.07	.31	.31	.13	.01
3	.01	.13	.31	.31	.07
4	.00	.03	.16	.36	. 33
5	.00	.00	.03	.17	. 59

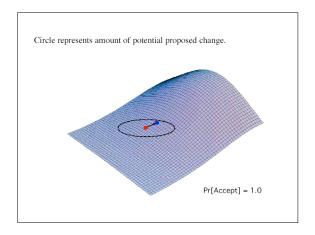
Maximum Likelihood (Box 5.1)

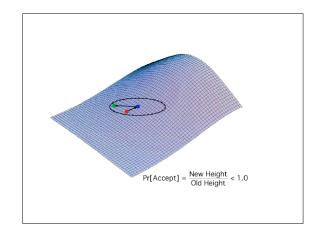
- L = Pr(D|H)
- Likehood = probability data (d) given the hypothesis (hypothesis).
- Often expressed as natural logarithms, or log-likelihood.

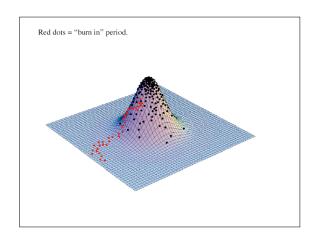
Calculating

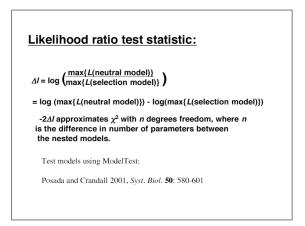
- Difficult to solve all possibilities, but some some problems this is possible.
- · Large number of calculations
 - Tree numbers
- · Need to estimate

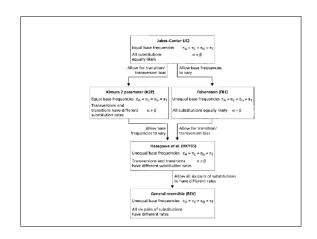

One way to get the likelihood is to estimate them using Makov Chain Monte Carlo methods.

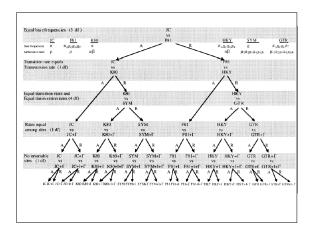

-analogy to walking up hill.

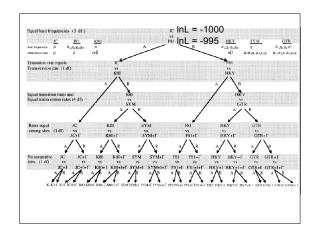

Markov Chain Monte Carlo

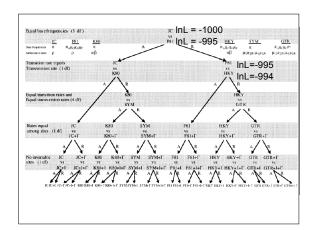

- Start with proposed state
- Perturb old state and calculate probability of new state
- Test if new state is better than old state, accept if ratio of new to old is greater than a randomly drawn number between 0 and 1.
- Move to new state if accepted, if not stay at old state
- Start over

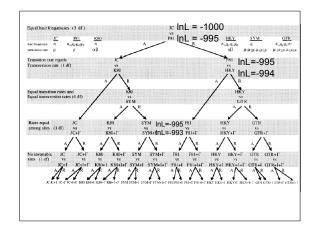

Caveats: The proposal mechanism is at the discretion of the programmer, but must satisfy a few basic requirements: all states must be reachable, the chain must be aperiodic, and the mechanism must be stochastic.








Test models


- Pair more general model with more complex
- Compare likelihoods of data given the model
- Test using LRT
- · Continue testing more complex models

Next week reading will be on website by Friday noon

· Want printout, stop by office