

$$\mathbf{P}_{t} = \begin{bmatrix} p_{AA} & p_{AC} & p_{AG} & p_{AT} \\ p_{CA} & p_{CC} & p_{CG} & p_{CT} \\ p_{GA} & p_{GC} & p_{GG} & p_{GT} \\ p_{TA} & p_{TC} & p_{TG} & p_{TT} \end{bmatrix}$$

The substitution probability matrix can be computed or determined using simulations.

	(-0.886	0.190	0.633	0.063
~	0.253	-0.696	0.127	0.316
2 =	1.266	0.190	-1.519	0.063
	0.253	0.949	0.127	-1.329

		То							
		A	С	G	т				
_	А	-0.886	0.190	0.633	0.063				
Erom	С	0.253	-0.696	0.127	0.316				
From	G	1.266	0.190	-1.519	0.063				
	т	0.253	0.949	0.127	-1.329				

			Т	<u>.</u>		
		A	С	G	т	
	А	-0.886	0.190	0.633	0.063	
From	С	0.253	-0.696	0.127	0.316	
	G	1.266	0.190	-1.519	0.063	
	т	0.253	0.949	0.127	-1.329	
Inter an ex parar	pretatio ponent neter –	on: If th tially dis -q _{ii} until	e proce stribute the ne	ess is in ed amo ext subs	state i, we unt of tim stitution o	e wait e with ccurs.

			Ende	ad In		
		A	C	G	т	
_	А	0.88	0.02	0.09	0.01	
Started	С	0.03	0.90	0.00	0.07	
In	G	0.31	0.01	0.67	0.01	
	т	0.04	0.20	0.04	0.72	

	Tra	ansition	probal	oilities	or t =
			Ende	ed In	
		А	С	G	т
	А	0.9180	0.0182	0.0577	0.0060
Started	С	0.0249	0.9346	0.0125	0.0279
In	G	0.1125	0.0182	0.8634	0.0058
	т	0.0241	0.0877	0.0113	0.8767
(Mor	nte C basec	arlo est I on a t	imates otal of	of tran 50,000	sition p simula

50,000 reps)			Ende	ed In			
		A	С	G	т		
-	А	0.9180	0.0182	0.0577	0.0060		
Started	С	0.0249	0.9346	0.0125	0.0279		
In	G	0.1125	0.0182	0.8634	0.0058		
	т	0.0241	0.0877	0.0113	0.8767		
Exact: $\mathbf{P}(t) = e^{\mathbf{Q}}$	t	Ended In					
-		A	С	G	Т		
	А	0.9191	0.0184	0.0563	0.0061		
	-	0.0245	0.9344	0.0123	0.0287		
Started	ГС						
Started In	ן С G	0.1127	0.0183	0.8627	0.0061		
Started	ГС						

_		A	с	G	т	
	А	0.4000	0.3000	0.2000	0.1000	
$\mathbf{P}(100,00) =$					0.1000	
$\mathbf{P}(100,00) =$	С	0.4000	0.3000	0.2000	0.1000	
P (100.00) =	C G	0.4000 0.4000	0.3000 0.3000	0.2000	0.1000	

Stationary probabilities (also called equilibrium frequencies, prior probabilities) of the states are the probability of finding the Markov chain in the state after an infinite amount of time.

$$\pi_{A} = 0.4$$
$$\pi_{C} = 0.3$$
$$\pi_{G} = 0.2$$
$$\pi_{T} = 0.1$$

$$Q = \begin{pmatrix} - & \pi_{C} & \kappa \pi_{G} & \pi_{T} \\ \pi_{A} & - & \pi_{G} & \kappa \pi_{T} \\ \kappa \pi_{A} & \pi_{C} & - & \pi_{T} \\ \pi_{A} & \kappa \pi_{C} & \pi_{G} & - \end{pmatrix} \mu$$

$$\kappa = 5$$

$$\pi_{A} = 0.4$$

$$\pi_{A} = 0.3$$

$$\pi_{A} = 0.1$$

$$Q = \begin{pmatrix} -0.886 & 0.190 & 0.633 & 0.063 \\ 0.253 & -0.696 & 0.127 & 0.316 \\ 1.266 & 0.190 & -1.519 & 0.063 \\ 0.253 & 0.949 & 0.127 & -1.329 \end{pmatrix}$$

What assumptions did we make?

- All nucleotides change independently
- The subsituion rate is constant over time and in different lineages
- The base composition is at equilibrium
- The conditional probabilities of nucleotide substitutions are the same for all sites and do not change over time..

Type of sequences	α
Nuclear genes	
Albumin genes	1.05
Insulin genes	0.40
c-myc genes	0.47
Prolactin genes	1.37
16S-like rRNAs, stem region	0.29
16S-like rRNAs, loop region	0.58
ψη-globin pseudogenes	0.66
Viral genes	
Hepatitis B virus genomes	0.26
Mitochondrial genes	
12S rRNAs	0.14
Position 1 of four genes	0.10
Position 2 of four genes	0.08
Position 3 of four genes	1.58
0-loop region	0.17
Cytochrome b	0.44

How do we choose an appropriate model?

- Calculate likelihood of model given data
- Compare likelihoods of nested models

What is maximum likelihood?

Comparison to probability theory: Probability of # heads in 5 coin tosses Heads Prob. 0 .03 1 .16 2 .31 3 .31 4 .16 5 .03 $P(x) = (n! / (n-x)!) p^{x}q^{n-x}$

ame calcula	tion for	coins	with di	fferent	bias.
Bias o	f coi	n tov	ards		
			Head	s	
Heads	.1	.3	.5	.7	. 9
0	. 59	.17	.03	.00	.00
1	. 33	.36	.16	.03	.00
2	.07	. 31	.31	.13	.01
3	.01	.13	.31	.31	.07
4	.00	.03	.16	.36	.33
5	.00	.00	.03	.17	.59

One way to get the likelihood is to estimate them using Makov Chain Monte Carlo methods.

-analogy to walking up hill.

Markov Chain Monte Carlo

- Start with proposed state
- Perturb old state and calculate probability of new state
- Test if new state is better than old state, accept if ratio of new to old is greater than a randomly drawn number between 0 and 1.
- Move to new state if accepted, if not stay at old state
- Start over

Caveats: The proposal mechanism is at the discretion of the programmer, but must satisfy a few basic requirements: all states must be reachable, the chain must be aperiodic, and the mechanism must be stochastic.

Likelihood ratio test statistic:

- $\Delta l = \log \left(\frac{\max\{L(\text{neutral model})\}}{\max\{L(\text{selection model})\}} \right)$
- = log (max{L(neutral model)}) log(max{L(selection model)})
- -2 Δl approximates χ^2 with *n* degrees freedom, where *n* is the difference in number of parameters between the nested models.

Test models using ModelTest:

Posada and Crandall 2001, Syst. Biol. 50: 580-601

