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Current methods for annotating and interpreting human 
genetic variation tend to exploit a single information type  
(for example, conservation) and/or are restricted in scope (for 
example, to missense changes). Here we describe Combined 
Annotation–Dependent Depletion (CADD), a method for 
objectively integrating many diverse annotations into a single 
measure (C score) for each variant. We implement CADD as  
a support vector machine trained to differentiate  
14.7 million high-frequency human-derived alleles from  
14.7 million simulated variants. We precompute C scores 
for all 8.6 billion possible human single-nucleotide variants 
and enable scoring of short insertions-deletions. C scores 
correlate with allelic diversity, annotations of functionality, 
pathogenicity, disease severity, experimentally measured 
regulatory effects and complex trait associations, and they 
highly rank known pathogenic variants within individual 
genomes. The ability of CADD to prioritize functional, 
deleterious and pathogenic variants across many functional 
categories, effect sizes and genetic architectures is unmatched 
by any current single-annotation method.

A strength of genomic approaches in studying disease is the ability 
to replace informed but biased hypotheses with unbiased but generic 
ones, such as the equal treatment of all genetic variants in genome-
wide association studies (GWAS). However, for both rare variants 
of large effect and common variants of weak effect, the use of prior 
knowledge can be critical for disease gene discovery1–4. For example, 
exome sequencing is an effective discovery strategy because it focuses 
on protein-altering variation, which is enriched for causal effects5.

Although many existing annotation methods are useful for  
prioritizing causal variants to boost discovery power (for example, 
PolyPhen6, SIFT7 and GERP8), current approaches tend to suffer from 
one or more of four major limitations. First, annotation methods vary 
widely with respect to both inputs and outputs. For example, conser-
vation metrics8–10 are defined across the genome but do not use func-
tional information and are not allele specific, whereas protein-based 
metrics6,7 apply only to coding and often only to missense variants, 
thereby excluding >99% of human genetic variation. Second, each 
annotation method has its own metric, and these metrics are rarely 

comparable, making it difficult to evaluate the relative importance  
of distinct variant categories or annotations. Third, annotation  
methods trained on known pathogenic mutations are subject to major 
ascertainment biases and may not be generalizable. Fourth, it is a 
major practical challenge to obtain, let alone to objectively evaluate 
or combine, the existing panoply of partially correlated and partially 
overlapping annotations; this challenge will only increase in size 
as large-scale projects such as the Encyclopedia of DNA Elements 
(ENCODE)11 continually increase the amount of relevant data  
available. The net result of these limitations is that many potentially 
relevant annotations are ignored, while the annotations that are  
used are applied and combined in ad hoc and subjective ways that 
undermine their usefulness.

Here we describe a general framework, Combined Annotation–
Dependent Depletion (CADD), for integrating diverse genome  
annotations and scoring any possible human single-nucleotide variant 
(SNV) or small insertion-deletion (indel) event. The basis of CADD 
is to contrast the annotations of fixed or nearly fixed derived alleles in 
humans with those of simulated variants.  Deleterious variants—that 
is, variants that reduce organismal fitness—are depleted by natural  
selection in fixed but not simulated variation. CADD therefore  
measures deleteriousness, a property that strongly correlates with 
both molecular functionality and pathogenicity12. Notably, metrics 
of deleteriousness, in contrast to pathogenicity or molecular function-
ality, have major advantages. Whereas the latter are limited in scope  
to a small set of genetically or experimentally well-characterized muta-
tions and are subject to major ascertainment biases, deleteriousness  
can be measured systematically across the genome assembly (see  
refs. 8–10 and below). Further, selective constraint on genetic variants 
is related to the totality of their phenotype-relevant effects rather than 
to any individual molecular or phenotypic consequence. Measures of 
deleteriousness can therefore provide, in principle, a genome-wide, 
data-rich, functionally generic and organismally relevant estimate 
of variant effect.

RESULTS
Implementation of CADD
We identified differences between human genomes and the inferred 
human-chimpanzee ancestral genome13 where humans carry a  
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derived allele with a frequency of at least 95% (14.9 million SNVs 
and 1.7 million indels). Nearly all of these events are fully fixed in the 
human lineage, with fewer than 5% appearing as nearly fixed poly-
morphisms in the 1000 Genomes Project14 variant catalog (derived 
allele frequency (DAF) ≥ 95%). To simulate an equivalent number of 
de novo mutations, we used an empirical model of sequence evolu-
tion with CpG dinucleotide–specific rates and mutation rates locally 
estimated on a 1-Mb scale (Supplementary Note). Mutation rate 
parameters as well as the size distribution for indels were estimated 
from six-way primate genome alignments15.

To generate annotations, we used the Ensembl Variant Effect 
Predictor16 (VEP), data from the ENCODE Project11 and informa-
tion from UCSC Genome Browser tracks17 (Supplementary Table 1).  
Annotations spanned a range of data types, including conservation 
metrics such as GERP8, phastCons9 and phyloP10; regulatory infor-
mation11 such as genomic regions of DNase I hypersensitivity18 and 
transcription factor binding19; transcript information such as dis-
tance to exon-intron boundaries or expression levels in commonly 
studied cell lines11; and protein-level scores such as those generated 
with Grantham20, SIFT7 and PolyPhen6. The resulting variant-by-
annotation matrix contained 29.4 million variants (half fixed or nearly 
fixed human-derived alleles (‘observed’) and half simulated de novo 
mutations (‘simulated’)) and 63 distinct annotations, some of which 
were composites that summarized many underlying annotations 
(Supplementary Tables 1 and 2, and Supplementary Note).

We first assessed the validity of our general approach by construct-
ing a series of univariate models that contrast observed and simulated 
variants using each of the 63 annotations as individual predictors 
(Supplementary Note). Nearly all models were highly predictive 
for distinguishing observed and simulated variants (Supplementary 
Tables 3–5) and were consistent with expectation. For example, we 
found a nearly 20-fold depletion of nonsense variants, a 2-fold deple-
tion of missense variants and no depletion of intergenic or upstream 
or downstream variants (Supplementary Table 6). Nonsense and mis-
sense mutations that occurred near the start sites of coding DNA were 
more depleted than those occurring near the ends (Supplementary 
Table 7), and variants within 20, and espe-
cially within 2, nucleotides of splice junctions 
were also depleted (Supplementary Fig. 1). 

The best-performing individual annotations were protein-level met-
rics such as PolyPhen6 and SIFT7, but these evaluated only missense 
variants (0.63% of all variants in the training data are missense; of 
these, 88% had defined PolyPhen values and 90% had defined SIFT 
values). Conservation metrics were the strongest individual genome-
wide annotations (Supplementary Table 3).

We also examined correlations between annotations 
(Supplementary Fig. 2) and the value of adding interaction terms 
between annotations (Supplementary Fig. 3). Many annotations were 
correlated, and many interactions had area under the curve (AUC) 
values above 0.5, but only a handful of interacting pairs meaningfully 
improved a simple additive model. Overall, these analyses demon-
strate that substantial biological differences are present between the 
observed and simulated variants with respect to the 63 annotations 
and that linear models capture much of this information.

We next trained a support vector machine21 (SVM) with a linear 
kernel on features derived from the 63 annotations, supplemented 
by a limited number of interaction terms (Supplementary Fig. 4, 
Supplementary Tables 1 and 2, and Supplementary Note). Ten 
models, independently trained on observed variants and different 
samples of simulated variants, were highly correlated (all pairwise 
Spearman rank correlations > 0.99; Supplementary Fig. 5). An aver-
age of these models was applied to score all 8.6 billion possible SNVs 
of the human reference genome (GRCh37). To simplify interpreta-
tion in some contexts, we also defined phred-like22 scores (scaled C 
scores) on the basis of the rank of the C score of each variant relative 
to all 8.6 billion possible SNVs, ranging from 1 to 99 (Supplementary 
Note). For example, substitutions with the highest 10% (10−1) of all 
scores—that is, those least likely to be observed human alleles under 
our model—were assigned values of 10 or greater (‘≥C10’), whereas 
variants in the highest 1% (10−2), 0.1% (10−3), etc. were assigned 
scores ‘≥C20’, ‘≥C30’, etc.

Genome-wide properties of C scores
We first calculated the proportion of all possible substitutions with a 
given scaled C score having specific functional consequences (Fig. 1 
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Figure 1  Relationship of scaled C scores and 
categorical variant consequences. (a) Proportion 
of substitutions with a specific consequence 
for each scaled C score bin. (b) Proportion of 
substitutions with a specific consequence after 
first normalizing by the total number of variants 
observed in that category. The legend includes 
in parentheses the median and range of scaled 
C score values for each category. Consequences 
were obtained from Ensembl VEP16 
(Supplementary Note); for example, noncoding 
refers to changes in annotated noncoding 
transcripts. Detailed counts of functional 
assignments in each C score bin are provided in 
Supplementary Table 8. (c) Violin plots of the 
median C scores of potential nonsense (stop-
gain) variants for genes that harbor at least 5 
known pathogenic mutations48 (disease); are 
predicted to be essential23; harbor variants 
associated with complex traits41 (GWAS); harbor 
at least 2 loss-of-function mutations in 1000 
Genomes Project data49 (LoF); encode olfactory 
receptor proteins; or are in a random selection 
of 500 genes (other; Supplementary Note).
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and Supplementary Table 8). Although trained solely on differences 
between observed and simulated variants rather than on sets of known 
disease-causing variants that might introduce ascertainment bias,  
C scores were highest for potential nonsense variants (median of 37) 
and were next highest for missense and canonical splice-site variants 
(median of 15), whereas intergenic variants comprised the variants with 
the lowest C scores (median of 2). However, 76% of potential SNVs 
with C score of ≥20 were noncoding (falling into categories other than 
missense, nonsense, canonical splice site or stop loss), whereas 74% of 
potential missense and 18% of potential nonsense SNVs had C scores 
<20. Further, within each functional class, there were distinctions that 
are biologically relevant and are likely predictively useful. For example, 
potential nonsense variants—often treated as a homogeneous group in 
disease studies—in olfactory receptor genes had lower scores than vari-
ants in other genes, whereas potential nonsense variants in genes found 
previously to be essential23 had higher scores (Fig. 1, bottom, and 
Supplementary Fig. 6). C scores thus capture a considerable amount of 
information, both in comparisons of functional categories and analysis 
within specific functional categories. Of note, these distinctions were 
absent or muted with other measures, either owing to missingness (for 
example, for missense-only measures) or lack of functional awareness 
(for example, conservation measures cannot distinguish between a 
nonsense and a missense allele at a given position).

We next compared scaled C scores with levels of genetic diversity, 
finding that C scores were negatively correlated with the DAFs of vari-
ants listed by the 1000 Genomes Project14 or the Exome Sequencing 
Project24 (ESP) (Fig. 2a and Supplementary Figs. 7–9), depletion 
of human genetic variation from the 1000 Genomes Project catalog 
(Fig. 2b) and depletion of chimpanzee-derived variants (Fig. 2c). 
Notably, these validation data sets had minimal overlap with the 
observed subset for the training data, which consisted only of fixed 
or nearly fixed (DAF > 95%) human-derived alleles. Furthermore, 
although we could not fully eliminate confounding by these factors, 
the negative correlation between C scores and DAFs for standing 
variation was robust to controlling for variation in background selec-
tion, local GC content, local CpG density and site-based conservation 
(Supplementary Fig. 9).

C scores of functional or pathogenic variants
We next sought to assess the usefulness of CADD in prioritizing func-
tional and disease-relevant variation within five distinct contexts.

First, for KMT2D (MLL2), the gene mutated in Kabuki  
syndrome, C scores enabled the discrimination of a diverse set of 
disease-associated alleles25 from rare, likely benign variants listed in 
ESP24 (Wilcoxon rank-sum test P = 9.9 × 10−94; n = 210 disease asso-
ciated/679 likely benign). Other metrics were markedly inferior in 
terms of accuracy or comprehensiveness (Supplementary Fig. 10).

Second, for HBB, the gene mutated in β-thalassemia, C scores of  
disease-associated alleles26—a set of indels (n = 93) and SNVs (n = 119)  
with regulatory/upstream (n = 54), splicing (n = 37), missense (n = 22),  
nonsense (n = 18) and other effects—were significantly and more 
strongly correlated with 3 levels of phenotypic severity than other 
measures (Kruskal-Wallis rank-sum test P = 2.4 × 10−7; n = 48 mild/65 
intermediate/99 severe; Supplementary Fig. 11).

Third, pathogenic variants curated by the US National Institutes 
of Health (NIH) ClinVar database27 were well separated from likely 
benign alleles (ESP24 DAF ≥ 5%) matched to the same categorical con-
sequences (Wilcoxon rank-sum test P < 1 × 10−300, n = 8,174 patho-
genic/8,174 likely benign; Fig. 3 and Supplementary Figs. 12–16). 
We note that there was substantial overlap between ClinVar and the 
training data underlying PolyPhen. When the corresponding sites 
were excluded from the test data set or when PolyPhen was excluded 
as a training feature from CADD, C scores continued to outperform 
all or nearly all missense-only metrics and conservation measures 
(Supplementary Fig. 12).

Fourth, C scores strongly correlated with the number of 
observed somatic cancer mutations in TP53 (encoding p53) 
reported to the International Agency for Research on Cancer 
(IARC) (Spearman rank correlation = 0.38, P = 6 × 10−73, n = 2,068;  
Supplementary Note).

Fifth, we examined two enhancers28 and one promoter29 in which 
we previously performed saturation mutagenesis. C scores were  
significantly correlated with experimentally measured fold change in 
absolute expression from individual variants and were overall more 
significantly correlated than measures of sequence conservation 
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Figure 2  Relationship between scaled C scores 
and genetic variation. (a) Mean DAF by scaled  
C score for variants listed by the 1000 Genomes 
Project14 or ESP24. Dashed lines indicate mean 
DAF values, and confidence intervals indicate 
1.96 × s.e.m. for DAFs in each bin. (b) Under-
representation of polymorphic sites in 1000 
Genomes Project data. (c) Under-representation 
of chimpanzee lineage–derived variants. Under-
representation is defined as the proportion of 
1000 Genomes Project (b) or chimpanzee-
derived (c) variants in a specific scaled C score 
bin divided by the frequency with which that 
scaled C score is observed for all possible 
mutations of the human reference assembly  
(10C score/−10). The stronger under-representation 
of chimpanzee-derived variants relative to 1000 
Genomes Project variants is expected given that 
the former are mostly fixed or high-frequency 
variants (and have survived many generations of 
purifying selection), whereas the latter are mostly 
low-frequency variants. Depletion values in b,c 
for C score bins other than 0 are significantly 
different from expectation (binomial proportion 
test, all P < 1 × 10−11).
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(Spearman rank correlation of combined data = 0.31, P = 1.9 × 10−65, 
n = 2,847; Supplementary Fig. 17).

Collectively, these analyses demonstrate that CADD is quantitatively 
predictive of deleteriousness, pathogenicity and molecular functional-
ity, both protein altering and regulatory, in a variety of experimental 
and disease contexts. In each of these contexts, the predictive useful-
ness of CADD was much better than measures of sequence conserva-
tion, the only comprehensive type of variant score, and also tended to 
be better, in most cases substantially so, than function-specific metrics 
when restricted to the appropriate variant subsets.

Application of CADD to human genetics
We next considered how CADD might be useful in evaluating  
candidate variation within exome or genome-wide studies.

First, we analyzed de novo exome variants (SNVs and indels) iden-
tified in children with autism spectrum disorders30–34 (ASD) and 
intellectual disability35,36 along with unaffected siblings or controls, 
considering 88 nonsense, 1,015 missense, 359 synonymous, 32 canon-
ical splice-site and 150 other variants, including indels. Variants in 
affected children were significantly more deleterious than variants in 
unaffected siblings or controls when each disorder was considered 
separately (Supplementary Table 9) or in combination (ASD + intel-
lectual disability Wilcoxon rank-sum test P = 2.0 × 10−4, n = 1,130 
probands/514 controls). Additionally, de novo variants in probands 
with intellectual disability were significantly more deleterious than 

variants in probands with ASD (P = 4.7 × 10−5, n = 170 intellectual 
disability/960 ASD), suggesting a more deleterious global mutation 
burden in intellectual disability, which is consistent with the obser-
vation of increased sizes and numbers of copy number variants in 
intellectual disability relative to ASD37.

Second, it is well established that annotations such as PolyPhen and 
conservation scores are valuable in the sequencing-based identifica-
tion of disease-causal genes by virtue of their ability to highly rank 
pathogenic variants1,2,38. We therefore examined the distribution of 
C scores for variants in the genomes of 11 individuals representing 
diverse populations39,40, finding that CADD highly ranked known 
disease-causal (ClinVar pathogenic) variants within the complete 
spectrum of variation in personal genomes (Fig. 4, Supplementary 
Fig. 16 and Supplementary Tables 10 and 11). Furthermore, CADD 
was both more quantitative and more comprehensive in this task 
(for example, ~27% of pathogenic ClinVar SNVs were not scored by 
PolyPhen because of missing values or the restriction of PolyPhen to 
missense variation). Given its considerable superiority over the best 
available protein-based and conservation metrics in terms of ranking 
known pathogenic variants in the complete spectrum of variation 
within personal genomes, CADD will likely improve the power of 
sequence-based disease studies beyond that achieved with current 
standard approaches.

Finally, we analyzed CADD scores for SNPs identified by GWAS 
of complex traits, contrasting them with scores for nearby control 
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SNPs matched for allele frequency and genotyping array availability  
(Fig. 5 and Supplementary Note). We found that lead GWAS SNPs 
had significantly higher C scores than control SNPs (one-sided 
Wilcoxon rank-sum test P = 1.3 × 10−12, n = 5,498 GWAS/5,498 
control); nearby SNPs in linkage disequilibrium with lead SNPs (tag 
SNPs) scored lower on average than lead SNPs but also had signifi-
cantly higher scores than their matched controls (P = 5.1 × 10−107). 
Differences in C score remained significant after controlling for prop-
erties such as gene-body effect, gene expression level, conservation 
and regulatory element overlap; each of these properties was signifi-
cantly different (all P < 0.01) for associated and control SNPs, but 
none could fully explain discrepancies in C score (Supplementary 
Table 12 and Supplementary Note). C scores for trait-associated 
SNPs furthermore correlated with the size of the underlying associa-
tion study and with the statistical significance of the association itself 
(Fig. 5, Supplementary Fig. 18 and Supplementary Note), probably 
owing to the increased ability of larger studies and stronger associa-
tion statistics to enrich for causal variants. Although for the most part 
not causal, GWAS-identified SNPs, especially strongly associated lead 
SNPs from large studies, were found by our analysis to be enriched for 
causal variants, consistent with previously observed GWAS enrich-
ments for individual annotations11,41–44.

DISCUSSION
With CADD, we describe a generic, expandable framework for integrat-
ing information contained in diverse annotations of genetic variation 
into a single score. We demonstrate that in a variety of contexts this 
approach is better, in some cases modestly but in many cases dramati-
cally so, than other widely used annotations prioritizing functional and 
pathogenic variants. Further, beyond usefulness in any one setting, there 
are practical and conceptual advantages to CADD that should prove 
of major value to genetic studies of human disease. First, the informa-
tion content of many individual annotations is objectively merged into 
a single value, which is far preferable to ad hoc approaches for com-
bining annotations and is likely to improve performance, consistent 
with the benefits seen for consensus methods in missense mutation– 
specific annotation45. Second, CADD can readily incorporate expansions  
to existing annotations and entirely new annotations. This ability to 
indefinitely and readily integrate new information is crucial in light of 
projects such as ENCODE, which are continuously and rapidly expanding  
available annotations11. Third, CADD combines the generality of  
conservation-based metrics with the specificity of subset-relevant  
functional metrics (for example, PolyPhen), exploiting the advantages 
of both approaches while attenuating their respective disadvantages.

CADD also has a number of limitations that may restrict its use-
fulness in certain analyses or may represent areas for improvement. 
First, C scores measure reductions in variation, which correlate 
with deleteriousness but are also affected by the local mutation rate, 
background selection, biased gene conversion and other phenom-
ena, potentially limiting accuracy. Second, C scores reflect the pro-
portion of variants with a given annotation pattern that are visible to 
selection but may not capture differences in selective intensity; other 
approaches, such as polymorphism-to-divergence comparisons,  
may be more accurate for estimating selective coefficients46. Third, 
there is a great need for more gold-standard data, particularly for 
noncoding regions of the genome, the current paucity of which 
limits the development of better annotations as well as our ability to 
validate predictions. Fourth, it is at present not possible to precisely 
calibrate the relationship between CADD-estimated deleteriousness 
and the likelihood that a variant is pathogenic. As such, C scores are 
best interpreted in terms of likelihood of deleteriousness rather than 
likelihood of pathogenicity: for example, the quantifiable extent 
of depletion of a given C score from chimpanzee-derived alleles  
(Fig. 2c and Supplementary Table 11). Especially in discovering 
causal variants, CADD scores should be treated as one piece of infor-
mation contributing to the totality of evidence for pathogenicity  
and should be evaluated as a supplement, not a replacement, for 
genetic information.

The one-stop nature of CADD is likely to be of great practical and 
conceptual value to future sequencing studies. It will minimize the 
scope and diversity of annotations that have to be generated, tracked 
and evaluated by a laboratory or project and will reduce the need for 
ad hoc combinations of filters, scores and parameters as is now rou-
tinely carried out. For example, a standard approach in exome studies 
is to merge missense (with or without an annotation of damaging or 
a given level of conservation), nonsense and splice-disrupting vari-
ants into a single, internally unranked list of protein-altering variants 
before genetic analysis5. With CADD, one might avoid arbitrary filters 
or thresholds altogether, including both coding and noncoding vari-
ants on a single, meaningfully ranked list. For example, a recent study 
of recessive, non-syndromic pancreatic agenesis identified five causal 
noncoding variants that disrupted the function of a distal enhancer 
of PTF1A47. C scores for these noncoding, disease-causal variants 
(scaled scores between 23.2 and 24.5) rank them higher than 99.5% of 
all possible human SNVs, higher than 97% of missense SNVs in a typi-
cal exome and higher than 56% of pathogenic SNVs in ClinVar27.

Both in research and in the clinic, the capacity to define catalogs 
of genetic variants exceeds our ability to systematically evaluate their 
potential effects. This disparity will deepen as sequencing accelerates, 
genomes displace exomes and the array of functional categories and 
annotations expands. A unified, quantitative and scalable framework 
capable of exploiting many genomic annotations will be essential to 
meet the challenge posed. We anticipate that the model described 
here and the accompanying freely available precomputed scores for 
all possible GRCh37/hg19 SNVs (see URLs) will immediately be 
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Figure 5  C scores for GWAS SNPs are higher than for nearby control  
SNPs and are dependent on study sample size. The average scaled C 
score (y axis) is plotted for each category of SNPs, as indicated by color, 
relative to the sample size of the association study in which the SNP 
was identified (x axis). Sample size bins are log2 scaled and mutually 
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broadly useful and will improve over time, enabling better interpre-
tation of variants of uncertain significance in a clinical setting and 
improving discovery power for genetic studies of both mendelian 
and complex diseases.

URLs. CADD, http://cadd.gs.washington.edu/; Genome Variation 
Server (GVS), http://gvs.gs.washington.edu/GVS137/; CADD  
simulator, http://cadd.gs.washington.edu/simulator; GWAS catalog, 
http://www.genome.gov/gwastudies.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Simulated and observed variants. The basis of the CADD framework is to 
capture correlates of selective constraint as manifested in differences between 
simulated variants and observed human-derived changes. For simulated vari-
ants, we developed a genome-wide simulator of de novo germline variation. 
The simulator was motivated by the parameters of the General Time Reversible 
(GTR) model50, but, because the standard GTR model does not naturally 
accommodate asymmetric CpG-specific mutation rates, we used a fully empir-
ical model of sequence evolution with a separate rate for CpG dinucleotides 
and local adjustment of mutation rates (Supplementary Note). Simulation 
parameters were obtained from Ensembl Enredo-Pecan-Ortheus (EPO)13,15 
whole-genome alignments of six primate species (Ensembl Compara release 
66). A custom script and associated rate matrices underlying the genome-wide 
simulator have been made available (CADD simulator; see URLs). We applied 
these parameters to simulate SNV and indels on the basis of the human refer-
ence sequence (GRCh37).

For observed human-derived changes, we extracted sites where the human 
reference genome differed from the inferred human-chimp ancestral genome 
from the Ensembl EPO six-primate alignments defined above, excluding vari-
ants in the most recent data from the 1000 Genomes Project14 (variant release  
3 of 20110521) with a frequency of greater than 5% and including vari-
ants where the human reference carried an ancestral allele (i.e., matching 
the inferred human-chimpanzee ancestral sequence) but where the derived 
allele was observed with frequency of greater than 95% in 1000 Genomes 
Project data. We identified a total of 14,893,290 SNVs, 627,071 insertions and 
1,107,414 deletions (less than 50 bp in length).

Variant annotation matrix. We used Ensembl VEP (Ensembl Gene annotation  
v68)16 to obtain gene model annotation for single-nucleotide and indel  
variants. For SNVs within coding sequence, we also obtained SIFT7 and 
PolyPhen-2 (ref. 6) scores from VEP. We combined output lines describ-
ing MotifFeatures with the other annotation lines, reformatted to a pure  
tabular format, reduced the different Consequence output values to 17 levels,  
and implemented a 4-level hierarchy in case of overlapping annotations 
(Supplementary Note). To the 6 VEP input-derived columns (chromosome, 
start, reference allele, alternative allele, variant type (SNV/INS/DEL) and 
length) and 26 actual VEP output-derived columns, we added 56 columns 
providing diverse annotations (for example, mappability scores and seg-
mental duplication annotation as distributed by UCSC51,52; PhastCons and 
phyloP conservation scores53 for 3 multi-species alignments9 excluding the 
human reference sequence in score calculation; GERP++ single-nucleotides 
scores, element scores and P values54, also defined from alignments with the 
human reference excluded; background selection scores40,55; expression val-
ues, acetylation at histone H3 lysine 27 (H3K27), methylation at histone H3 
lysine 4 (H3K4), trimethylation at H3K4, nucleosome occupancy and open 
chromatin tracks provided for ENCODE cell lines in the UCSC super tracks52; 
genomic segment type assignment from Segway56; predicted transcription fac-
tor binding sites and motifs11; and overlapping ENCODE chromatin immuno-
precipitation and sequencing (ChIP-seq) transcription factors11, 1000 Genome 
Project14 and ESP57 variant status and frequencies and Grantham scores20 
associated with a reported amino acid substitution). A full description is pro-
vided in the Supplementary Note, and all columns of the obtained annotation 
matrix are listed in Supplementary Table 1.

Imputation and final training data set. In the annotations described above, 
some columns were not useful for model training or needed to be excluded 
from training as they differed between the simulated variants and the human-
chimpanzee ancestor differences for technical reasons (see the Supplementary 
Note for a complete list; note that no allele frequency information was used 
in model training). We imputed missing values in genome-wide measures 
by the genome average obtained from the simulated data or set missing  
values to 0 where appropriate (Supplementary Table 2). Further, we created 
an “undefined” category for categorical annotations to accommodate missing 
values. To deal with missing values in annotations that were not defined for a 
subset of variants (for example, information only available for protein-coding 
genes), we set the missing values to 0 and also created indicator variables that 
contained a 1 if the corresponding variant was undefined and a 0 otherwise. 

Because insertions and deletions may produce arbitrary length Ref/Alt and 
reference (oAA)/variant (nAA) amino acid sequence columns (and thus not 
a fixed number of categorical levels), these values were set to “N” for Ref/Alt 
and to “undefined” for nAA/oAA.

Sites from the simulation were labeled +1, and human-derived variants were 
labeled −1. Only insertions and deletions shorter than 50 bp were considered 
for model training, and the length column was capped at 49 bp for the predic-
tion of longer events. The ratio of indel events to SNV events obtained for the 
simulation was 1:8.46.

Model training. We generated 10 training data sets by sampling an equal 
number of 13,141,299 SNVs, 627,071 insertions and 926,968 deletions from 
both the simulated variant and observed variant data sets. To train each SVM 
model, processed data were converted to a sparse matrix representation after 
converting all n-level categorical values to n individual Boolean flags. We 
randomly selected 1% of sites (~132,000 SNVs, 6,000 insertions and 9,000 dele-
tions) for a test data set. All other sites were used to train linear SVMs using 
the LIBOCAS v0.96 library21. The SVM model fits a hyperplane as defined 
below. X1, …, Xn represent the 63 annotations described above (which expand 
to 166 features owing to the treatment of categorical annotations), W1,…,W11 
represent the Boolean features that indicate whether a given feature (out of 
cDNApos, relcDNApos, CDSpos, relCDSpos, protPos, relProtPos, Grantham, 
PolyPhenVal and SIFTval, as well as Dst2Splice ACCEPTOR and DONOR) 
is undefined, 1{A} is an indicator variable for whether event A holds, and D is 
the set of bStatistic, cDNApos, CDSpos, Dst2Splice, GerpN, GerpS, mamPh-
Cons, mamPhyloP, minDistTSE, minDistTSS, priPhCons, priPhyloP, protPos, 
relcDNApos, relCDSpos, relProtPos, verPhCons and verPhyloP. Because of 
the coding of categorical values using Boolean variables, the total number of 
features in this model is 949. 
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SVM models were trained, using various values for the generalization 
parameter (C), which assigns the cost of misclassifications. Model training 
convergence in 2,000 iterations (~70 h) for different settings of C is shown 
in Supplementary Figure 4. These results indicate that model training only 
converges within a reasonable amount of time for C values around 0.0025 
and below. We therefore trained models for all ten training data sets with  
C = 0.0025. We determined the average of the model parameters and used 
the average model.

Model testing and validation. We annotated all 8.6 billion possible substitu-
tions in the human reference genome (GRCh37) and applied the model to 
score all possible substitutions. When scoring sites with multiple VEP annota-
tion lines, we scored all possible annotations first and report the one with the 
highest deleteriousness after applying the four hierarchy levels. We mapped C 
scores to a Phred-like scale (scaled C scores) ranging from 1 to 99 on the basis 
of their ranking relative to all possible substitutions in the human reference 
genome, i.e., −10log10 (rank/total number of substitutions).

We used several data sets extracted from the literature and public databases 
to examine the performance of model scores (see the Supplementary Note 
for details). (i) We determined C scores for specific gene classes motivated 
by the analysis performed by Khurana et al.58 (i.e., HGMD48, non-immune 
essential genes described by Liao et al.23, GWAS genes as available from the 
catalog of published Genome-Wide Assocation Studies (GWAS catalog; 
see URLs), loss-of-function genes from MacArthur et al.49 and olfactory 
genes from the Ensembl 68 gene build). (ii) We downloaded 210 mutations 
in KMT2D (MLL2) associated with Kabuki syndrome from Makrythanasis  
et al.25. We complemented these with 679 putatively benign variants observed in 
ESP57. (iii) We downloaded a total of 119 SNVs, 30 insertions and 63 deletions  
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(all required to be at most 50 bp in length) within or near HBB that gave rise 
to α-thalassemia from HbVar26. Disease categories were used as defined by 
HbVar, except that all types that were not “beta0” or “beta+” were pooled into 
one category, “other.” (iv) We obtained the NCBI ClinVar27 data set (released 
16 June 2012) and extracted variants that were marked “pathogenic” or “non-
pathogenic (benign).” We also selected a set of apparently benign variants 
(allele frequency ≥ 5%) from ESP that were matched to the pathogenic ClinVar 
sites in terms of their consequence annotations. In addition, we generated a 
data set where we matched ESP and ClinVar frequencies to three decimal 
places of the alternative allele frequency. Because of the overlap of ClinVar 
and ESP variants with the PolyPhen training data set, we trained a separate 
classifier without the PolyPhen features, and we also examined performance 
on the subset of ClinVar and ESP variants not used for PolyPhen training. To 
compare the performance of CADD with that of other publically available 
missense annotations not used in model training, we downloaded scores from 
dbNSFP 2.0 (ref. 59). (v) We combined high-confidence de novo mutations 
from 5 family-based autism exome sequencing studies30–34, including a total 
of 948 probands with ASD and 590 unaffected siblings. Further, we obtained 
coding variants as described above for 2 family-based intellectual disability 
studies35,36, including 151 families with intellectual disability and 20 unrelated 
control families. (vi) We obtained data on fold change in expression for each 
base substitution in ALDOB and ECR11 enhancers from Patwardhan et al.28. 
This data set contained a total of 777 variants for ALDOB and 1,860 vari-
ants for ECR11. Further, we obtained the HBB promoter data of Patwardhan  
et al.29. The promoter data set contained a total of 210 variants associated with 
a fold change in expression. (vii) We obtained a list of 23,788 single-nucleotide 
somatic cancer mutations in TP53 that were reported to IARC. These muta-
tions correspond to 2,068 distinct variants; we recorded the number of times 
that each variant was reported. (viii) We obtained GATK VCF variant call 
files for all autosomes and the X chromosome from shotgun sequencing of 

11 men originating from diverse human populations40. (ix) We accessed the 
National Human Genome Research Institute (NHGRI) GWAS catalog on 18 
December 2012 and obtained 9,977 distinct SNP-trait associations spanning 
7,531 unique SNPs in 1000 Genomes Project data; these variants are referred 
to as “lead SNPs.” We used the Genome Variation Server (GVS; see URLs) to 
find all SNPs within 100 kb of a lead SNP that had a pairwise correlation of r2 
≥ 0.8 within Utah residents with ancestry from northern and western Europe 
(CEU). This resulted in the identification of an additional 56,538 unique SNPs, 
referred to as “tag SNPs.” We also developed “control” SNP sets, selected to 
match trait-associated SNPs for a variety of features that may bias SNPs found 
by GWAS in the absence of any causal effect.
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