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A major interest in human genetics is to determine whether a nonsynonymous single-base nucleotide
polymorphism (nsSNP) in a gene affects its protein product and, consequently, impacts the carrier’s health. We
used the SIFT (Sorting Intolerant From Tolerant) program to predict that 25% of 3084 nsSNPs from dbSNP, a
public SNP database, would affect protein function. Some of the nsSNPs predicted to affect function were
variants known to be associated with disease. Others were artifacts of SNP discovery. Two reports have
indicated that there are thousands of damaging nsSNPs in an individual’s human genome; we find the number is
likely to be much lower.

A major interest in human genetics is to distinguish muta-
tions that are functionally neutral from those that contribute
to disease. Amino acid substitutions currently account for ap-
proximately half of the known gene lesions responsible for
human inherited disease (Cooper et al. 1998). Therefore, it is
important to determine whether a nonsynonymous single
nucleotide polymorphism (nsSNP) that affects the amino acid
sequence of a gene product can alter protein function and
contribute to disease.

The number of potentially damaging nsSNPs in a human
individual is also of major interest because if the number is
high, it can affect human welfare. Two groups, Sunyaev et al.
(2001) and Chasman and Adams (2001), have applied com-
putational tools that predict the effect of an amino acid sub-
stitution on protein function to nsSNPs. These groups esti-
mated that ∼ 20% and 30%, respectively, of nsSNPs damage
protein function. Based on these estimates, they proposed
that each individual has on average 2000 (Sunyaev et al. 2001)
and 9500 nsSNPs (Chasman and Adams 2001) that affect pro-
tein function and may contribute to health ailments.

Previously, we introduced SIFT , which uses sequence
homology to predict whether an amino acid substitution in a
protein will affect protein function (Ng and Henikoff 2001).
SIFT is based on the premise that important amino acids will
be conserved among sequences in a protein family, so
changes at amino acids conserved in the family should affect
protein function. Given a protein sequence, SIFT chooses
related proteins, obtains an alignment of these proteins with
the query, and, based on the amino acids appearing at each
position in the alignment, makes a prediction as to whether a
substitution will affect protein function. A position in the
protein query that is conserved in the alignment will be
scored by SIFT as intolerant to most changes; a position that
is poorly conserved will be scored by SIFT as tolerating most
changes. Unlike the tools of Sunyaev et al. (2001) and Chas-
man and Adams (2001), SIFT does not require structural in-
formation and therefore can be applied to a much larger num-
ber of proteins.

Here we apply SIFT to human disease and polymor-

phism databases. We find that SIFT ’s prediction ability is
similar to that of tools that require structural information.
However, we do not arrive at a similar conclusion concerning
the number of damaging nsSNPs in the human genome.
Rather, our detailed examination of the source of nsSNPs in
current databases reveals biases that inflated the other groups’
estimates.

RESULTS
We define a damaging nsSNP as a mutation whose resulting
amino acid substitution in the corresponding protein affects
protein function. We define an nsSNP as tolerated or neutral
if the resulting amino acid substitution in the protein does
not detectably alter protein phenotype. These definitions ex-
clude mutations that affect transcription, translation, splic-
ing, and other possible pretranslational alterations. Because
SIFT predicts on amino acid substitutions in the protein
product, it does not take into account these factors.

SIFT Analysis of Human Variant Databases
SIFT was applied to three different datasets of human vari-
ants and a summary of the prediction results is shown in
Table 1. The first dataset consisted of substitutions annotated
as involved in disease according to SWISS-PROT/TrEMBL
(Bairoch and Apweiler 2000). SIFT predicted 69% (3626/
5218) of these substitutions as damaging. Some of these sub-
stitutions may be functionally neutral but incorrectly anno-
tated as causing disease if they were observed in patients or
are in linkage disequilibrium with another mutation that is
causing the disease phenotype. Thus, 69% is a lower bound of
prediction accuracy on damaging substitutions.

A second dataset consisted of nonsynonymous polymor-
phisms in normal individuals detected by the Whitehead In-
stitute (Cargill et al. 1999). These nsSNPs (referred to as WI-
nsSNPs) represent an unbiased set of nsSNPs because they
were systematically detected and confirmed across many
genes in control individuals. Some of the WI-nsSNPs may
affect protein function, even though they were detected in
control individuals if the altered phenotype was recessive or
undiagnosed. Of the WI-nsSNPs, 19% (22/115) were predicted
by SIFT to be damaging (Table 1). However, these may be
neutral because there was no apparent difference between this
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value and SIFT ’s 20% weighted false positive error. Because
SIFT predicted most (69%) of the substitutions involved in
disease as damaging and most (81%) of the known polymor-
phisms as neutral, the results from these two datasets indicate
that SIFT can distinguish between damaging and neutral hu-
man nsSNPs.

A third dataset consisted of putative nsSNPs in dbSNP
(Sherry et al. 2001), one of the largest public SNP databases. Of
the proteins containing nsSNPs from dbSNP, 60% (1789/
3005) had enough homologs for SIFT prediction (Table 1).
For these proteins, 25% (757/3084) of the substitutions were
predicted to be damaging by SIFT . The weighted false posi-
tive error was calculated and indicated that if all of the nsSNPs
from dbSNP were functionally neutral, only 19% should have
been predicted as damaging.

We investigated the difference between the percentage
predicted to be damaging for dbSNP variants (25%) and that
expected if dbSNP contains only functionally neutral substi-
tutions (19%). Sixteen genes were chosen because they had a
high fraction of nsSNPs from dbSNP predicted to affect pro-
tein function. In the following sections, we show that the
apparent polymorphisms in these genes could be explained
by reasons other than SIFT prediction error (Table 2 for sum-
mary).

Substitutions Already Shown to Be Involved
in Disease
For 5 of the 16 genes with an excessive number of nsSNPs
predicted to be damaging, most of the nsSNPs came from
patients with disease, and the gene in which the nsSNPs were
detected had been shown or suspected to contribute to the
disease. These genes had a high fraction of nsSNPs predicted
to affect protein function because many of their variants in
dbSNP contribute to disease. SIFT correctly predicted 18/22
of the nsSNPs found in disease patients to affect protein func-
tion and 9/10 nsSNPs found in control patients as function-
ally neutral (Table 3). This provides additional evidence that
SIFT can distinguish between nsSNPs involved in disease and
those that are functionally neutral. All predictions for the five
genes are shown in Table 3; we highlight certain aspects of
SIFT by discussing several predictions in detail.

SIFT detects nsSNPs that are damaging to a protein, al-
though loss of protein function may not cause an obvious
phenotype. Although a protein may not play an important

role in the organism, if the amino acid substitution resulting
from an nsSNP occurs at a conserved position, it will be pre-
dicted to affect function. For example, some nsSNPs in the
melanocyte stimulating hormone receptor (MSHR) gene are
associated with a twofold risk for cutaneous malignant mela-
noma (Palmer et al. 2000). Although MSHR is not under
strong selection outside of African populations (Harding et al.
2000) and has a minor role in overall health, SIFT correctly
predicted the appropriate nsSNPs as damaging because the
amino acid substitutions occurred at conserved positions in
the protein alignment used for prediction.

Some nsSNPs might be damaging to the protein, but
their effects on health are difficult to ascertain. For example,
when a candidate gene for diabetes, the gene encoding per-
oxisome proliferator activated receptor � (PPAR�), was
screened for polymorphisms in diabetics and nondiabetics,
the nsSNP causing a L162V substitution in PPAR� was found

Table 2. List of the 16 Genes that Had the Highest
Fraction of dbSNP Changes Predicted to Be Damaging
by SIFT

Genes with nsSNPs that had previously shown to be
involved in disease
MSHR, encodes melanocyte stimulating hormone receptor
PPAR�, encodes peroxisome proliferator activated receptor
�
MTHFR, encodes methylenetetrahydrofolate reductase
FBN1, encodes fibrillin
APOA1, encodes apolipoprotein A-I

Genes containing dbSNP entries erroneously mapped from
pseudogenes
AGP1, encodes �1-acid glycoprotein
gene encoding hypothetical protein FKSG25

Gene containing damaging mutations in redundant motifs
gene encoding hypothetical protein FLJ20079

Genes with sequencing errors mistaken for polymorphisms
PSMB7, encodes proteasome subunit �7
MYL6, encodes myosin light polypeptide 6
RPL11, encodes 60S ribosomal protein L11
FAU, encodes 40S ribosomal protein S30
PSMC5, encodes 26S protease regulatory subunit 8
TJP2, encodes tight junction protein 2
EFNA2, encodes ephrin-A2
XDH, encodes xanthine dehydrogenase

Table 1. SIFT Prediction on Human Variant Databases

Datasets
Sequence
coverage

Amino acid
substitution
coverage

% Predicted
as damaging

Weighted false
positive error

Amino acid substitutions
annotated to be
involved in disease

76%
(462/606)

71%
(5218/7397)

69%
(3626/5218)

Hypothesis
not applicable

Polymorphisms detected
in normal individuals
(WI-nsSNPs)

77%
(53/69)

62%
(115/185)

19%
(22/115)

20%

Nonsynonymous
changes from dbSNP

60%
(1789/3005)

53%
(3084/5780)

25%
(757/3084)

19%

Sequence coverage is the percentage of proteins whose alignments contained enough diverse homologues so that
predictions could be made. Amino acid substitution coverage is the percentage of substitutions predicted on. The
weighted false positive error is the percentage of substitutions shown experimentally to be neutral that were incor-
rectly predicted as damaging.
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Table 3. nsSNPs from dbSNP Predicted to Be Damaging Were Shown to Be Involved in Disease

Melanocyte stimulating hormone receptor
Predictions supported by evidence

R151C Damaging Increased risk of cutaneous malignant melanoma
(CMM) (Palmer et al. 1999).

R160W Damaging Doubles risk of CMM (Palmer et al. 1999).
D294H Damaging Doubles risk of CMM (Palmer et al. 1999).
L60V Tolerated No association with CMM (Palmer et al. 1999, Box et

al. 2001).
R163Q Tolerated Detected from EST (Irizarry et al. 2000) and contig

comparisons (Sachidanandam et al. 2001). No
association with CMM (Box et al. 2001).

Prediction not supported by evidence
D84E Damaging Not associated with CMM (Healy et al. 1999; Palmer

et al. 1999).
Peroxisome proliferator activated receptor �

Prediction supported by evidence
R127Q Damaging Detected in diabetic (Au et al. 1998; Brookes et al.

2000).
L162V Damaging Detected in diabetics and controls (Au et al. 1998;

Brookes et al. 2000), but increases cholesterol and
apolipoprotein B levels in diabetics, and perhaps
nondiabetics (Flavell et al. 2000; Lacquemant et al.
2000; Vohl et al. 2000).

D304N Damaging Detected in diabetic (Au et al. 1998; Brookes et al.
2000).

R409T Damaging Detected in diabetic (Au et al. 1998; Brookes et al.
2000)

V227A Tolerated Found in similar frequencies in diabetics and
nondiabetics (Au et al. 1998; Brookes et al. 2000;
Hara et al. 2001).

A268V Tolerated Detected in diabetic (Au et al. 1998; Brookes et al.
2000) and EST comparison (Irizarry et al. 2000).
No association with diabetes or coronary heart
disease (Lacquemant et al. 2000).

Methylenetetrahydrofolate reductase (under balancing selection)
Prediction supported by evidence

A222V Damaging Common variant with diminished enzyme activity
and increased risk of vascular disease and neural
tube defects (Frosst et al. 1995) but also reduces
risk of adult acute leukemia (Skibola et al. 1999),
childhood leukemia (Wiemels et al. 2001), and
colon cancer (Ma et al. 1997).

E429A Damaging Common variant with diminished enzyme activity
(Weisberg et al. 1998) but reduces risk of adult
acute leukemia (Skibola et al. 1999).

Effect unknown
R68Q Damaging Detected by comparison of contig to reference gene.

Fibrillin
Prediction supported by evidence

D1113G Damaging In Marfan patient (Liu et al. 1997/1998).
C1153Y Damaging In Marfan patient (Bairoch and Apweiler 2000).
I2023T Damaging In Marfan patient (Liu et al. 1997/1998).
C2038Y Damaging In Marfan patient (P. Oefner, pers. comm.)
C2053F Damaging In Marfan patient (P. Oefner, pers. comm.).
C2500S Damaging In Marfan patient (P. Oefner, pers. comm.).
G2514R Damaging In Marfan patient (P. Oefner, pers. comm.).
C2110R Damaging In Marfan patient (P. Oefner, pers. comm.).
C2170F Damaging In Marfan patient (P. Oefner, pers. comm.).
P1148A Tolerated In control individual (Liu et al. 1997/1998).
V2018I Tolerated In control individual (P. Oefner, pers. comm.).
Y2113F Tolerated In control individual (P. Oefner, pers. comm.).
D2329E Tolerated In control individual (P. Oefner, pers. comm.).
P2278S Tolerated In control individual (P. Oefner, pers. comm.).

Prediction not supported by evidence
S1077P Tolerated In Marfan patient (Liu et al. 1997/1998).
V1667I Tolerated In Marfan patient (Liu et al. 1997/1998).
N1341S Tolerated In Marfan patient (Liu et al. 1997/1998).
N1282S Tolerated In Marfan patient (Liu et al. 1997/1998).
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at similar frequencies in both populations. SIFT predicted
this substitution to affect protein function (Table 3). The pre-
diction might appear incorrect based on the lack of associa-
tion with diabetes, but carriers of this nsSNP have higher cho-
lesterol levels and increased apolipoprotein B concentrations,
thus it has been proposed to increase the risk of coronary
artery disease (Vohl et al. 2000; Lacquemant et al. 2000). SIFT
was sensitive to this mutation and predicted it to be damaging
because the position of substitution is conserved among or-
thologous proteins and other nuclear hormone receptors pre-
sent in the alignment used for prediction. Because mutations
in proteins can have pleiotropic effects, a mutation that ini-
tially does not appear to have an effect but is predicted to
affect function by SIFT may have an effect that has not yet
been assayed for.

SIFT can detect overdominant nsSNPs in which the het-
erozygote has a selective advantage. Individuals severely de-
ficient in methylenetetrahydrofolate reductase (MTHFR) ac-
tivity develop mental retardation and cardiovascular disease
(OMIM #236250). However, reduced MTHFR activity can also
confer protection against child and adult acute leukemia and
colon cancer. SIFT correctly predicted the two common vari-
ants of MTHFR with reduced enzymatic activity to affect pro-
tein function (Table 3). A lowered risk for some diseases has
selected for these variants that reduce enzyme activity, de-
spite other detrimental effects on health. Overdominant nsS-
NPs can become common in a population although they af-
fect protein function. Common nsSNPs are often expected to
be functionally neutral; their identification as damaging to
the protein and perhaps maintained by overdominance may
lead to the understanding of some common diseases.

nsSNPs Erroneously Mapped from Pseudogenes
SIFT detected two genes for which the changes from dbSNP
were mistakenly mapped from pseudogenes (Table 2). Pro-
grams that identify SNPs by aligning ESTs (expressed se-
quence tags) or genomic sequences might detect base differ-
ences between the functional gene and a pseudogene and
erroneously report these differences as SNPs in the functional
gene. For example, AGP1, the gene encoding �1-acid glyco-
protein, was annotated to contain six missense changes in
dbSNP, but the source of the differences was ESTs from AGP2.
Although AGP2 is expressed, the protein has been suggested

to lack function because it has evolved at an unconstrained
rate (Merritt et al. 1990).

Damaging Mutations in Redundant Motifs
Like the pseudogene examples in the previous section, differ-
ences entered as nsSNPs into dbSNP for the gene encoding
FLJ20079 actually matched other regions of the genome.
However, this example is more complex because the other
regions may code for functional genes (Fig. 1). After we in-
ferred the hypothetical protein sequences from these regions,
we observed that the amino acids predicted to affect protein
function clustered in domains that were ancestrally derived
from zinc-finger domains but could no longer function as
zinc fingers (Fig. 1, dashed lines). Because these domains
aligned to functional zinc-finger domains during prediction,
the changes were predicted to affect protein function. These
regions would have acquired a substitution that rendered the
zinc finger nonfunctional; once the first deleterious substitu-
tion was acquired, other substitutions were allowed to accu-
mulate in the nonfunctional domain. Thus, studying the lo-
cation of amino acids predicted to be damaging in a protein
might reveal regions that have lost their function when
aligned to related sequences that have retained their function.

Sequencing Errors Mistaken for Polymorphisms
Most of the variation in the remaining eight genes with a high
fraction of nsSNPs predicted to be damaging originated from
comparison of sequences from ESTs and/or cDNA clones with
the reference gene (Table 2). These sequences had multiple
base changes with respect to the reference gene (http://
blocks.fhcrc.org/∼ pauline/SIFTing_databases.html). It is
doubtful that the observed differences are real SNPs occurring
together on a rare allele; it is more likely that errors occurred
in the EST sequencing or SNP interpretation procedure.

Among these eight genes, there were six nonsynony-
mous changes detected from sequences that were identical to
the reference gene except for the change causing the amino
acid substitution. These could be real nsSNPs found in the
population. For example, the nsSNP that causes a V39A sub-
stitution in proteasome subunit �7 was detected in five dif-
ferent individuals. Multiple independent observations sup-
port this as an nsSNP occurring in the human population and

Table 3. (Continued)

Apolipoprotein A-I
Effect unknown

D126H Damaging Detected in individuals from either the top or
bottom 2.5th percentile of a normalized blood
pressure distribution (Halushka et al. 1999).

R184P Damaging Detected in individuals from either the top or
bottom 2.5th percentile of a normalized blood
pressure distribution (Halushka et al. 1999).

K131N Tolerated Detected from comparison of ESTs (Garg et al. 1999)
and in an electrophoretic screening of newborns
(von Eckardstein et al. 1990).

Five genes with a high fraction of nsSNPs from dbSNP predicted to be damaging; these nsSNPs have been shown to be involved in disease.
The proteins that these genes code for are listed. Under each protein, the first column is the amino acid substitution caused by the nsSNP. For
example, the first row under melanocyte stimulating hormone receptor gives the prediction for an nsSNP that corresponded to a change from
the original amino acid R to amino acid C at position 151 in the melanocyte stimulating hormone receptor protein. The second column is the
SIFT prediction for that particular amino acid substitution, and the third column is evidence supporting or conflicting with the prediction.
Most predictions are supported by previously published evidence.
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SIFT predicted the V39A substitution as tolerated. The other
five substitutions were predicted to affect protein function by
SIFT . These could be real nsSNPs rather than errors from SNP
detection programs. As these were detected in single libraries,
they may be rare mutations under negative selection.

DISCUSSION

Identifying Damaging nsSNPs
Currently, there are more than a million SNPs in dbSNP that
can be screened for association with diseases. By predicting
the nsSNPs most likely to be damaging, the number of SNPs
screened for association with disease can be reduced to those
that most likely alter gene function. SIFT returned predic-
tions for 3084 of the 5780 nsSNPs in the dbSNP database
(Table 1). Of these 3084 substitutions, SIFT identified 757
that are likely to affect protein function; these are of higher
interest than nsSNPs predicted to be neutral because they are

more likely to contribute to disease. Not all of these variants
will be useful for screening for novel contribution to disease
because some were already known to be involved in disease.
Some mapped to pseudogenes and others were sequencing
errors; these were mistakenly interpreted as polymorphisms
but have no bearing on health.

If a marker is found to be associated with disease and the
marker is an nsSNP, prediction tools such as SIFT can provide
independent evidence as to whether the nsSNP itself contrib-
utes to disease. A major problem in association studies is the
high false positive signal of markers that appears to be asso-
ciated with disease when a large number of markers are tested
(Emahazion et al. 2001). nsSNPs in PPAR�, MTHFR, and MSHR
have been shown to be associated with disease, but assays for
reduction of protein function have only been conducted on a
fraction of them. Because carrying out the appropriate assays
may be time-consuming, SIFT can filter out nsSNPs that are
unlikely to affect protein function before experimentation.

Figure 1 Damaging mutations in redundant motifs. FLJ20079 is aligned with inferred proteins AA495878-hyp and AA180031-hyp. Protein
sequences were inferred by obtaining the EST sequences AA495878 and AA180031 from which the dbSNP variants were derived. AA180031 and
AA495878 were only 93% and 91% identical to the gene encoding FLJ20079, respectively, but 100% identical to other regions of the human
genome. Genomic sequences surrounding the region that matched AA180031 and AA495878 were retrieved and translated. The protein
sequences were aligned to FLJ20079 and the start of the proteins interpreted to be the first Met that aligned to FLJ20079. The inferred hypothetical
sequences were named AA180031-hyp and AA495878-hyp, from the ESTs from which they were derived. The nonsynonymous/synonymous ratio
(Yang 1997) for AA180031-hyp and AA495878-hyp with FLJ20079 is 0.50 and 0.55, respectively, indicating that these proteins are undergoing
purifying selection and may be functional. The three proteins contain zinc-finger motifs. Each putative zinc finger is indicated by a dashed or solid
line and the value beneath the line is the e-value score for the region from FLJ20079 with the C2H2 zinc-finger motif (IPB000822) (Henikoff and
Henikoff 1994). Regions with solid lines on top have the Cys and His residues involved in binding the zinc atom conserved in the three sequences.
Regions with dashed lines do not have at least one of the Cys and His amino acids and can no longer function as zinc-finger modules. Amino acids
predicted to be damaging by SIFT are the white characters against black background; most occur in regions that no longer function as zinc-finger
modules.
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Users can choose to minimize either false negative or false
positive error, tailoring SIFT predictions to their needs.

How useful are prediction programs such as SIFT for
detecting damaging nsSNPs in proteins with only subtle ef-
fects on health? A protein may play only a minor or redun-
dant role in the organism, so that if its function is altered the
organism is only mildly affected. Nevertheless, over the long
periods of evolution represented in an alignment, natural se-
lection will remove damaging substitutions from such pro-
teins and their homologs. For this reason, it was possible for
SIFT to predict nsSNPs in PPAR�, MTHFR, and MSHR as dam-
aging, although they have only minor effects on a carrier’s
health.

SIFT prediction accuracy for a particular protein will de-
pend on the alignment obtained. The sequences in the align-
ment are restricted to those homologous sequences that are
available in the protein database; therefore, the resulting
alignment information is expected to vary from protein to
protein. The protein alignments constructed by SIFT contain
paralogs as well as orthologs; therefore, active-site residues
specific to orthologs may not appear conserved. However, a
random mutation is more likely to affect structure than ac-
tivity because relatively few residues are involved at the active
site of the protein and many more are necessary for maintain-
ing structure. Thus, reasonable prediction accuracy was ob-
tained on the datasets when paralogs were included in the
alignment used for prediction, although the ideal alignment
is one composed of a diverse set of orthologs. As protein da-
tabases grow with data from sequencing whole genomes, a
larger number of orthologs will become available and SIFT
prediction should become more accurate.

Despite variation among protein families attributable to
different evolutionary pressures and the heterogeneous set of
sequence alignments used, our results show that SIFT works
sufficiently well on a large scale so that it can be used as a
first-pass filter to identify the substitutions worth pursuing.
SIFT performance is similar to that of tools that require struc-
ture, as described below, so a more refined approach may not
necessarily improve performance given the complexity of
protein evolution.

Comparison of SIFT with Other Prediction Tools
Approximately 30% of the proteins encoded by the human
genome are likely to be homologous to proteins with known
structures (Guex et al. 1999). Therefore, the prediction tools
of Sunyaev et al. (2001) and Chasman and Adams (2001),
which require structural information, are restricted to these
proteins. SIFT needs only homologous sequences for predic-
tion and was able to predict on 60% of the protein sequences
that contained dbSNP nonsynonymous variants (Table 1),
providing twice the coverage of other tools.

Although SIFT does not use structural information, all
three tools appear to perform similarly (Table 4). Sixty-nine
percent of amino acid substitutions annotated to be involved
in disease were predicted to be damaging by SIFT and by
Sunyaev et al. (2001). SIFT (Ng and Henikoff 2001) and Chas-
man and Adams (2001) predicted similarly for neutral substi-
tutions that did not alter LacI function; each had a false posi-
tive error of ∼ 30%. It is possible that SIFT performs similarly
to tools that use structural information because constraints
inferred from protein sequence alignments are based ulti-
mately on structural constraints.

Estimating the Number of Damaging nsSNPs in
an Individual
By extrapolating their results to the human genome, Sunyaev
et al. (2001) and Chasman and Adams (2001) have estimated
that an individual would have on average 2000 and 9500
damaging nsSNPs, respectively. Our results do not support
these estimates; the percentage of nsSNPs predicted to be
damaging in dbSNP (25%) was close to the false positive error
expected (19%) if all variants in dbSNP are functionally neu-
tral (Table 1). Moreover, we found that some of the 6% dif-
ference between these two estimates can be accounted for by
database contamination.

To calculate the percentage of nsSNPs that are damaging,
ideally one should use an unbiased set of nsSNPs, estimate the
percentage of nsSNPs predicted to be damaging, and then
subtract the false positive error for functionally neutral sub-
stitutions. The WI-nsSNPs dataset is an unbiased set of nsSNPs,
but because the genes screened were few in number and are
candidates for disease, one still should be cautious in extrapo-
lating from this dataset to the entire human genome. When
SIFT was applied to WI-nsSNPs, there was no significant dif-
ference between the percentage predicted to be damaging for
these SNPs and the false positive error (19% vs. 20%, respec-
tively), indicating that the number of damaging nsSNPs per
individual falls within our prediction error (Table 5).

What accounts for the difference in results? Chasman
and Adams (2001) estimated 27% of nsSNPs are damaging
based on the WI-nsSNPs but did not take into account their
false positive prediction error. Their tool calculates the prob-
ability that a substitution affects function, and if this is below
0.5, the substitution is predicted to be functionally neutral.
The 27% estimate was obtained by averaging the probabilities
for all WI-nsSNPs. This type of analysis will fail to get a 0%
estimate of damaging nsSNPs even if all substitutions are
functionally neutral. On a set of neutral substitutions, low
probabilities will correctly predict these substitutions as neu-
tral, but when the probabilities are averaged, a nonzero value
will be obtained. Because their approach cannot be used to
estimate the percentage of damaging nsSNPs, we instead ex-
amine the number of WI-nsSNPs that Chasman and Adams
(2001) predicted to be damaging and compare it with their
false positive error for functionally neutral substitutions. They
predicted 15% of the WI-nsSNPs as damaging (Table 5). This
is lower than their 31% false positive error observed for func-
tionally neutral substitutions (Table 4); therefore, no extrapo-
lation for the number of damaging nsSNPs in a human ge-
nome can be made.

In the case of Sunyaev et. al. (2001), we examined the
origin of the 79 nsSNPs they predicted to affect protein func-
tion and found that some are biased; therefore, they should
not be included in the estimate of damaging nsSNPs per in-
dividual. Eighteen of the 79 nsSNPs are found in the HLA class
I protein, most mapping to the peptide-binding region that is
favored by diversifying selection (Janeway and Travers 1996).
An additional 17 polymorphisms predicted to affect protein
function were first discovered in an individual or population
afflicted with disease in a gene known or suspected to con-
tribute to the disease. These are far more likely to be involved
in disease, and thus predicted as damaging, than random
nsSNPs. Three substitutions from in vitro mutagenesis studies
were also in the dataset. We were unable to account for the
origin of all 79 nsSNPs, but we concluded that at least 38
mutations were biased in the manner discussed above and are
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not representative of random nsSNPs (http://blocks.fhcrc.org/
∼ pauline/SIFTing_databases.html). After removing these mu-
tations, the percentage of polymorphisms predicted to be
damaging decreased to 19% (Table 5). After subtracting the
9% false positive error they reported, this reduces the propor-
tion of damaging nsSNPs to 10%.

The 9% false positive error reported by Sunyaev et al.
(2001) was based on applying their tool to substitutions that
have occurred between human proteins and their orthologs.
These substitutions have undergone millions of years of se-
lection and must have had selection coefficients very near
zero to become fixed (with the exception of substitutions that
have been driven by positive selection). Conditional muta-
tions, those that affect protein function conditional on an
environment that may no longer exist (Fay et al. 2001), are
excluded from Sunyaev et al.’s control set. Such substitutions
will exist as SNPs that will eventually be culled out over time,
but they have undetectable effects on an individual’s health.
Thus, Sunyaev et al.’s control set is the easiest set of substitu-
tions to predict on because even long evolutionary periods are
insufficient for them to be culled out. Hence, the 9% false
positive error is a lower limit for their prediction method. The
10% difference between Sunyaev et al.’s 9% false positive er-
ror and 19% nsSNPs predicted to be damaging (after correct-
ing for biased nsSNPs) is an estimate of damaging nsSNPs that
severely affect protein function, as well as the slightly delete-
rious nsSNPs that might eventually be removed by natural

selection. This latter class may be irrelevant to human disease.
Another study has estimated that ∼ 20% of nsSNPs are selected
against by comparing the frequencies of common and rare
nsSNPs (Fay et al. 2001). This estimate, like Sunyaev et al.’s,
includes damaging, as well as slightly deleterious, mutations.
The discrepancy between the two values may result from dif-
ferences in the datasets and their small sample sizes.

Based on the foregoing analysis, we were unable to con-
clude that the percentage of damaging nsSNPs that can affect
human health is as high as 20% to 30%. We suggest there is a
low number of nsSNPs that affect protein function in each
individual because estimates lie within false positive error.
This low number is supported by a study that examined the
prereproductive mortality in the children of first-cousin mar-
riages and estimated the average human is heterozygote for
1.4 lethal equivalents, or ∼ 0.002% of human genes (Bittles
and Neel 1994).We conclude that there are very few damag-
ing nsSNPs in an individual’s genome that could impact
health.

METHODS

Predicting Damaging Amino Acid Substitutions
SIFT uses sequence homology to predict whether an amino
acid substitution predicts protein function and has two major
steps (Ng and Henikoff 2001). In the first step, sequences
closely related to the protein are chosen and the alignment of

Table 5. Comparison of Amino Acid Prediction Tools on nsSNPs to Estimate the Percentage of nsSNPs that Affect Protein
Function in an Individual

Ng and Henikoff
Chasman and
Adams (2001) Sunyaev et al. (2001)

Sunyaev et al.
(corrected)

Dataset Prediction Dataset Prediction Dataset Prediction Dataset Prediction

% nsSNPs
predicted to
affect protein
function

�

WI-nsSNPs 19%
(22/115)a

WI-nsSNPs 15%
(8/53)b

nsSNPs from
public
databasesc

32%
(79/245)d

nsSNPs from
public
databases,
biased
mutations
removed

19%
(41/207)e

False positive error
(% neutral
substitutions
predicted to
affect protein
function)

=

LacI 20%a LacI 30%
(345/1131)f

Substitutions
between
human
proteins
and their
orthologues

9%
(41/399)d

Substitutions
between
human
proteins
and their
orthologues

9%
(41/399)g

% nsSNPs that
affect protein
function

No difference No extrapolation can
be made

∼ 20% ∼ 10%, after removing biased
nonsynonymous variantsb

For this estimation, an unbiased set of nsSNPs (detected from normal individuals) should be used and the false positive error subtracted from
the percentage of nsSNPs predicted to be damaging.
aFrom Table 1.
bFrom Table 7b of Chasman and Adams (2001).
cThe databases from which the polymorphisms were obtained also contained disease-causing mutations so are not representative of random
nsSNPs; see Discussion.
dFrom Table 1 of Sunyaev et al. (2001).
eSee Discussion, section “Estimating the Number of Damaging nsSNPs in an Individual.”
fCalculating the false positive error using the values from the leftmost column of Table 5 from Chasman and Adams (2001); this test set has
the highest total prediction accuracy. Out of 1131 substitutions in LacI that have no effect, 345 substitutions were predicted to affect function
(false positive error).
gThe value (41/399) used to calculate the false positive error was taken from Table 1 of Sunyaev et al. (2001). But since proteins with
contaminating variants were removed, this should be readjusted.
hSee Discussion for why the 9% false positive error is a lower limit and therefore the 10% is an overestimate of the percentage of damaging
nsSNPs that affect protein function.
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these sequences is what prediction is based on. In the second
step, a scaled probability for the substitution of interest is
calculated based on the amino acids observed at the position
of substitution in the alignment generated from the first step.
The substitution is predicted to affect protein function if its
scaled probability falls below a cutoff. In SIFT version 2
(available at http://blocks.fhcrc.org/∼ pauline/SIFT.html), the
method by which sequences are chosen for the alignment has
been changed. The user can opt for either a low false negative
error, which predicts most of the substitutions that affect pro-
tein function, or a low false positive error, which predicts
fewer substitutions that affect function but with a higher level
of certainty.

SIFT version 2 first obtains related sequences, which are
assumed to be functional, by searching SWISS-PROT/TrEMBL
(Bairoch and Apweiler 2000) with PSI-BLAST (Altschul et al.
1997) for two iterations (-e 0.0001, -h 0.002). The sequences
found by PSI-BLAST that are more than 90% identical to
each other are clumped together and a consensus sequence is
obtained for each clump by choosing the most frequently
occurring amino acid for each position in the sequence. An
iterative procedure is then used to choose the related se-
quences. The procedure starts by giving the query sequence to
PSI-BLAST to search among the consensus sequences. The
top hit is added and aligned to the query sequence. Conser-
vation, as measured by information content (Schneider et al.
1986), is calculated for each position in the alignment, and
the median of these values is obtained. The median conser-
vation can range from 4.3 (sequences nearly 100% identical to
each other) to 0 (all 20 amino acids are represented at the
majority of positions in the sequence alignment). If the me-
dian conservation over all positions does not fall below a user-
defined cutoff, the hit is retained in the alignment and a
PSI-BLAST checkpoint file is built from the alignment. The
checkpoint file is used as a query for PSI-BLAST to search
among the remaining consensus sequences and the highest-
scoring hit is added to the alignment only if the median con-
servation does not fall below the cutoff. The process repeats
and sequences are continually added to the growing align-
ment until the median conservation cutoff is reached.

For efficiency, a new PSI-BLAST search is conducted af-
ter five sequences have been added. Once the process stops
and the consensus sequences to be included determined, the
protein sequences corresponding to these consensus se-
quences are obtained and their PSI-BLAST alignment used.
To prevent the alignment from being contaminated by pseu-
dogenes or protein sequences containing the polymor-
phism, sequences >90% identical to the query sequence are
removed. SIFT allows a range of cutoffs, and similar results
are obtained when sequences 95% and 99% identical to the
query are removed (http://blocks.fhcrc.org/∼ pauline/SIFTing_
databases.html). The alignment is used for the second step of
SIFT prediction as described previously with the gap option
turned off (Ng and Henikoff 2001).

The user sets the median conservation cutoff to mini-
mize either false negative error or false positive error. We used
the mutation dataset from Escherichia coli LacI (Pace et al.
1997) to decide the range of median conservation values that
work best. When the median conservation ranges from 2.25
to 3.25, the total prediction accuracy (number correctly pre-
dicted/number total substitutions assayed) on LacI remains
the same (68%). Therefore, for prediction on the databases
described here, we used 2.75 as the median conservation cut-
off. If the sequences represented at the position of substitu-
tion had median conservation >3.25, this indicated that there
were not enough homologous sequences in the database;
therefore, no prediction was made.

When SIFT returns the prediction for an amino acid
substitution, it also returns the median conservation for the
sequences used in the alignment. A lower value provides
greater confidence that the prediction for a substitution has a

low false positive error because a low median conservation
value reflects that very diverse sequences were used in the
alignment. Then a substitution predicted to be damaging has
occurred at a position that has been well conserved among
the diverse set of proteins despite the diversity of amino acid
compositions at other positions. This indicates that the posi-
tion of substitution is constantly under negative selection;
therefore, it is likely that the change is damaging.

Databases
To identify amino acid substitutions involved in disease, we
searched SWISS-PROT 39.11 and TrEMBL 15.11 (http://
www.expasy.ch/sprot, Bairoch and Apweiler 2000) with the
keywords disease and mutation. We found 7397 disease-
causing substitutions from 606 proteins after removing any
substitution annotated as polymorphism or probable poly-
morphism.

nsSNPs in normal individuals were detected by the
Whitehead Institute (Cargill et al. 1999). This dataset, down-
loaded from http://www.genome.wi.mit.edu/cvar_snps, is re-
ferred to as WI-nsSNPs.

Amino acid variants from dbSNP (build #95) (http://
www.ncbi.nlm.nih.gov/SNP, Sherry et al. 2001) were found
by searching dbSNP for variants with FXN-“coding nonsyn-
onymous” in the organism Homo sapiens. Entries that listed
the amino acid position affected were retrieved. For a given
substitution, the reference amino acid was checked to match
the amino acid in the protein sequence corresponding to the
accession number referred to in the refSNP file. If the substi-
tution did not match, it was discarded. If a substitution was
referenced to more than one protein, such as in isoforms, the
duplicated substitutions were removed so that the substitu-
tion was represented only once. Only one substitution per
position was predicted on. After applying this filter, 5780 sub-
stitutions from 3005 protein sequences remained.

Database predict ions are avai lable at http://
blocks.fhcrc.org/∼ pauline/SIFTing_databases.html

Estimation of False Positive Error
To test the hypothesis that all substitutions from a database
are neutral, the percentage predicted to be damaging on the
test set was compared with the percentage predicted to be
damaging on a set of substitutions known to be neutral. More
than 4000 single amino acid substitutions had been intro-
duced into LacI and both neutral and negative phenotypes
were assayed (Pace et al. 1997). In our previous study, this
dataset was used to measure SIFT performance (Ng and Heni-
koff 2001). Because the effects of substitutions are known in
this protein, we used this dataset as a standard to calibrate the
expected prediction accuracy. SIFT ’s prediction accuracy for
LacI is 68% for all substitutions with a median conservation
cutoff of 2.75. However, the mutation data for LacI was gen-
erated from assaying 12 or 13 amino acid substitutions at each
position, and some of the amino acid substitutions tested
could not have occurred from a single base change, which is
presumed for substitutions in the polymorphism test set. Be-
cause performance on amino acid substitutions that require
multiple base changes has no relevance for the substitutions
assayed on the databases, and some types of substitutions will
occur more often than others, prediction accuracy must be
calibrated for the composition of the test set being predicted
on. The tolerated prediction accuracy weighted by composi-
tion of the test set was calculated as:

�
�ij
aai & aaj
subst observed
in LacI dataset

Tolerated
prediction
accuracy of
aai and aaj
for the LacI
dataset

✽
Fraction of aai and aaj

substitutions in nsSNP database
being predicted on (1)
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For example, 107/3084 variants from dbSNP that were pre-
dicted on were substitutions from Ala to Thr. SIFT accurately
predicts 75% of the Ala→Thr and Thr→Ala neutral substitu-
tions as tolerated in the LacI dataset. This is the left term in
Equation 1 for i = Ala and j = Thr. Rather than the right term
simply being 107/3084, the denominator is reduced because
not all combinations of substitutions were assayed in the LacI
dataset. Tolerated prediction accuracy based on the LacI data
is available for 2499 of the substitutions from dbSNP; thus,
the contribution of the Ala→Thr substitution to the weighted
tolerated accuracy is 0.75 *107/2499. The weighted tolerated
prediction accuracy is the sum over all substitutions aai and
aaj for which LacI tolerated prediction accuracy can be calcu-
lated and is weighted by the proportion of substitutions of aai

and aaj occurring in the polymorphism database. The
weighted false positive error is the weighted tolerated predic-
tion accuracy subtracted from 100.

Genes with a High Fraction of nsSNPs Predicted to
Affect Protein Function
We approximated the predictions for 217 genes with at least
three nsSNP entries from dbSNP according to a binomial dis-
tribution. SIFT , with median conservation 2.75, has a false
positive error of 0.30 for the entire LacI dataset. If x is the
number of substitutions predicted to be damaging by SIFT
and n is the total number of substitutions predicted on for the
protein, the probability that at least x variants predicted to
affect function is:

Pr (predicting at least x substitutions
damaging | n total substitutions &

false positive error of 0.3�
= �

i=x

n �ni � 0.7n−i0.3i

(2)

Genes with probability <0.1 were considered to have a high
fraction of nsSNPs predicted to affect protein function and
were further investigated.
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