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(simple_aae) or at alterations causing complex changes in the 
amino acid sequence (complex_aae).

To train the classifier, we generated a dataset with all avail-
able and suitable common polymorphisms and known disease-
causing mutations extracted from common databases and the 
literature. We cross-validated the classifier five times including 
all three prediction models and obtained an overall accuracy 
of 91.1 ± 0.1%. We also compared MutationTaster with similar 
applications (Panther3, Pmut4, PolyPhen and PolyPhen-2 (ref. 
5) and ‘screening for non-acceptable polymorphisms’ (SNAP)6) 
and analyzed the identical 1,000 disease-linked mutations and 
1,000 polymorphisms with all programs. For this comparison, 
we used only alterations causing single amino acid exchanges. 
MutationTaster performed best in terms of accuracy and speed 
(Table 1). A description of all training and validation procedures 
and detailed statistics are available in Supplementary Methods.

MutationTaster can be used via an intuitive web interface to 
analyze single mutations as well as in batch mode. To stream-
line and to standardize the analysis of NGS data, we provide Perl 
scripts that can process data from all major platforms (Roche 454, 
Illumina Genome Analyzer and ABI SOLiD). MutationTaster 
hence allows the efficient filtering of NGS data for alterations 
with high disease-causing potential (see Supplementary Methods 
for an example).

Present limitations of the software comprise its inability to analyze 
insertion-deletions greater than 12 base pairs and alterations span-
ning an intron-exon border. Also, analysis of non-exonic alterations 
is restricted to Kozak consensus sequence, splice sites and poly(A) 
signal. We will add tests for other sequence motifs in the near future. 
MutationTaster is available at http://www.mutationtaster.org/.

Note: Supplementary information is available on the Nature Methods website.
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MutationTaster evaluates disease-
causing potential of sequence 
alterations

To the Editor: Identification of pathogenic DNA sequence altera-
tions in patients with inherited diseases is one of the main tasks 
of human genetics. Next-generation sequencing (NGS) tech-
niques enable sequencing of hundreds of candidate genes, whole 
linkage intervals or the entire exome. This inevitably leads to 
the detection of vast numbers of alterations, all of which have 
to be tested for their disease-causing potential. A recent study 
revealed more than 3.5 million alterations in the whole genome 
of a single individual, roughly corresponding to 1,000 alterations 
per mega–base pair1.

Automated pre-evaluation of sequence variations can help 
to direct the subsequent in-depth analysis to the most promis-
ing candidates, hence saving time and resources. However, the 
currently available evaluation tools predict only the outcome of 
amino-acid exchanges and cannot process thousands of queries 
in a reasonable time.

To meet the challenges of handling high-throughput sequenc-
ing data, we developed MutationTaster, a free, web-based appli-
cation for rapid evaluation of the disease-causing potential of 
DNA sequence alterations. MutationTaster integrates informa-
tion from different biomedical databases and uses established 
analysis tools (Supplementary Methods). Analyses comprise 
evolutionary conservation, splice-site changes, loss of protein 
features and changes that might affect the amount of mRNA. 
Test results are then evaluated by a naive Bayes classifier2, which 
predicts the disease potential. A typical query is completed in 
less than 0.3 seconds.

Depending on the nature of the alteration, MutationTaster 
chooses between three different prediction models, which 
are either aimed at ‘silent’ synonymous or intronic alterations 
(without_aae), at alterations affecting a single amino acid  

Table 1 | Comparison of MutationTaster with other prediction tools
Software Number of identificationsa Percentageb Accuracy (%)c Speed (s)d

TP TN FP FN ND PPV NPV Predicted cases Common cases All cases
MutationTaster 859 855 145 141 0 85.6 85.8 85.7 86.1 85.7 0.3

PolyPhen 728 789 206 272 5 77.9 74.4 76.0 75.8 75.8 5

PolyPhen-2 (Var model) 773 666 211 134 216 78.6 83.2 80.7 81.9 72.0 >20

PolyPhen-2 (Div model) 776 655 222 131 216 77.8 83.3 80.2 81.3 71.5 >20

SNAP 789 403 362 185 261 68.5 68.5 68.5 68.3 59.6 >20

Panther 510 196 503 181 610 50.3 52.0 50.8 53.4 35.3 >20

Pmut 581 720 270 418 11 68.3 63.3 65.4 62.0 65.0 >20
aTP, true positive; TN, true negative; FP, false positive; FN, false negative; and ND, not determined. bPPV (positive prediction value) = TP / (TP + FP) and NPV (negative prediction value) = TN / (TN + FN). cAccuracy for 
predicted cases = (TP + TN) / (TP + TN + FP + FN); accuracy for common cases = (TP + TN) / (TP + TN + FP + FN), and only those cases predicted by all tools were included); and accuracy for all cases = (TP + TN) / (TP + 
TN + FP + FN + ND). Owing to the limitation of the other prediction tools to single amino acid exchanges, MutationTaster’s accuracy shown in this table only refers to the single amino acid exchange prediction model and 
should not be mistaken for the overall accuracy of 91.1%, which includes all three models. dMean time needed for one prediction via the web interface for the same five alterations.
We analyzed the identical 2,000 variations using each tool.
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mrsFAST: a cache-oblivious algorithm for 
short-read mapping

To the Editor: In addition to single-nucleotide variations and small 
insertions-deletions (indels), larger-sized structural variations (for 
example, insertions, deletions, inversions, segmental duplications 
and copy-number polymorphisms) contribute to human genetic 
diversity. In almost all recent structural variation discovery (SVD) 
studies, short reads from a donor genome have been mapped to a 
reference genome as a first step. The accuracy of such an SVD study 
is directly correlated to the accuracy of this mapping step, which also 
provides the main computational bottleneck of the SVD study.

Next-generation sequencing technologies provide increasingly 
longer reads (currently ~400 base pairs (bp) for the Roche 454 plat-
form and 2 ×100 bp for the Illumina platform). However, even with 
the increased read lengths, ambiguity in read mapping remains a 
problem. A human genome resequencing study1 using 36-bp reads 
has reported, on average, 1,628 mapping locations per read within 
two mismatches and indels. In our study, on a set of one million 
36-bp reads from a Yoruban individual (NA18507), we observed 
an average of 1,486 mapping locations within two mismatches and 

indels and 1,411 mapping locations when we allowed only two mis-
matches but no indels. The mapping multiplicity only reduced to 
615 locations for 50-bp reads within three mismatches, 185 locations 
for 75-bp reads within four mismatches and 140 locations for 100-bp 
reads within six mismatches (Table 1).

As structural variants are typically observed in repeat regions, it 
is critical to consider all possible mapping locations for each read. 
To address this need, recently developed mapping tools such as 
Maq2, Bowtie3, RazerS4 and Burrows-Wheeler alignment (BWA)5 
have options to report read multiplicities, but they do not capture 
all possible mapping locations. Bowtie and BWA use the Ferragina-
Manzini index6 (FMI), which is designed (and works effectively) 
for finding exact matches. Extending the FMI to handle mismatches 
or indels is only achieved by heuristic generalizations. As the read 
length and the corresponding number of mismatches and indels to 
be tolerated increase, these methods deteriorate exponentially in 
terms of speed and/or accuracy.

We developed ‘micro-read (substitutions only) fast alignment 
and search tool’ (mrsFAST), a cache-oblivious short read mapping 
algorithm that rapidly finds all mapping locations of a collection of 
short reads from a donor genome in the reference genome within 
a user-specified number of mismatches through indexing both the 
reference genome and the short reads, and executing a simple cache-
oblivious, all-to-all list comparison algorithm (Supplementary 
Note). We also developed mrFAST-CO, a version of mrsFAST that 
can handle indels and substitutions (equivalently, mrFAST-CO is 
a doubly indexed, cache-oblivious version of previously developed 
mrFAST1, a simple ‘seed and extend’–type mapping algorithm).

Like mrFAST, mrsFAST and mrFAST-CO are seed-and-extend 
algorithms. Such algorithms work by first placing a k-mer (seed) 
from a read by interrogating the index (in the form of a hash table 
for all k-mers and their respective loci) of the reference genome 
and then extending them by allowing at most a user-specified 
number of mismatches or indels. During the execution of the 
algorithms, the operating system copies the information related 
to the seed locations from the main memory to the much faster 
levels of cache memory, and the extension step is performed using 
the information stored in the cache. In a naive execution (in com-
parison to a cache-oblivious execution) of such a seed-and-extend 
algorithm, the seed mapping locations to be compared to the read 
would be streamed through the cache. As cache capacity is very 

Table 1 | Speed and accuracy of mapping

Read length 
(errors):

36 bp (2 errors) 50 bp (3 errors) 75 bp (4 errors) 100 bp (6 errors)

Algorithm Time 
(h:min)a

Reads 
mapped 

(%)b

Locations 
reported 

(millions)c

Time 
(h:min)a

Reads 
mapped 

(%)b

Locations 
reported 

(millions)c

Time 
(h:min)a

Reads 
mapped 

(%)b

Locations 
reported 

(millions)c

Time 
(h:min)a

Reads 
mapped 

(%)b

Locations 
reported 

(millions)c

Bowtie 5:14 91.65 1,404 3:13 92.73 610 NA NA NA NA NA NA

BWA 3:10 92.05 1,581 10:23 93.38 729 59:35 90.16 212 67:38 87.91 42

Maq 6:45 90.91 1,609 10:05 89.25 458 NA NA NA NA NA NA

mrFAST-CO 6:12 92.18 1,486 9:21 93.39 663 11:32 90.22 193 17:54 88.55 155

mrsFAST 2:00 91.79 1,411 1:55 92.91 613 2:00 89.35 177 2:49 87.27 138

RazerSd 10:17 91.79 <100 12:17 92.91 <100 12:00 89.35 <100 25:10 87.27 <100

BWAe 0:10 92.05 <1 0:15 93.38 <1 0:25 90.16 <1 7:04 87.91 <1
We mapped one million reads of indicated read lengths and within the given number of errors, to the human reference genome HG18 build 36 by indicated algorithms. All rows (except the 
last two) denote the time needed to report all mapping locations. Because of its high memory requirement, we could not run RazerS for read multiplicities >100. Note that in some columns 
the total number of mapping locations is higher for Maq or BWA than for mrsFAST or mrFAST-CO because Maq often returns mapping locations with an error rate higher than the user-specified 
rate and BWA returns certain mapping locations multiple times. NA, not applicable.
aTime required for mapping (on a single personal computer). bPercentage of the reads mapped. cTotal map locations reported (in millions). dMaximum multiplicity, 100. eSingle location.
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