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Abstract
Nonsynonymous single nucleotide polymorphisms (nsSNPs) are
coding variants that introduce amino acid changes in their corre-
sponding proteins. Because nsSNPs can affect protein function, they
are believed to have the largest impact on human health compared
with SNPs in other regions of the genome. Therefore, it is impor-
tant to distinguish those nsSNPs that affect protein function from
those that are functionally neutral. Here we provide an overview of
amino acid substitution (AAS) prediction methods, which use se-
quence and/or structure to predict the effect of an AAS on protein
function. Most methods predict approximately 25–30% of human
nsSNPs to negatively affect protein function, and such nsSNPs tend
to be rare in the population. We discuss the utility of AAS prediction
methods for Mendelian and complex diseases as well as their broader
applications for understanding protein function.
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Online Mendelian
Inheritance in Man
(OMIM): database
containing mutations
discovered in
patients and found in
genes known to be
involved in disease

Human Gene
Mutation Database
(HGMD): database
containing mutations
in genes known to be
involved in disease

Nonsynonymous
SNP (nsSNP): a
single nucleotide
polymorphism
located in a coding
region that causes an
amino acid
substitution in the
corresponding
protein

Amino acid
substitution (AAS)
prediction method:
bioinformatics tool
that evaluates
whether an AAS
affects protein
function

INTRODUCTION

Most genetic variation is considered neutral
but single base changes in and around a gene
can affect its expression or the function of its
protein products (11, 56). A nonsynonymous
or missense variant is a single base change
in a coding region that causes an amino acid
change in the corresponding protein. If a non-
synonymous variant alters protein function,
the change can have drastic phenotypic conse-
quences. Most alterations are deleterious and
so are eventually eliminated through purify-
ing selection. However, beneficial mutations
can sweep through the population and be-
come fixed, thus contributing to species dif-
ferentiation.

The importance of nonsynonymous sub-
stitutions in humans is illustrated by two
databases containing disease-causing vari-
ants, Online Mendelian Inheritance in
Man (OMIM) and Human Gene Muta-
tion Database (HGMD) (24, 62). In both
databases, nonsynonymous changes account
for approximately half of the genetic changes
known to cause disease. Although these
databases contain information primarily con-
cerning disorders caused by single Mendelian
lesions, it is likely that nonsynonymous
changes will play a similarly important role in
complex diseases because of their potentially
large impact.

The human population is estimated to
have 67,000–200,000 common nonsynony-
mous SNPs (nsSNPs) (8, 23, 35) and each
person is thought to be heterozygous for
24,000–40,000 nsSNPs (8). It would be time-
consuming, difficult, and expensive to ex-
perimentally characterize the impact of each
nsSNP on protein function. But because an
amino acid change can have a large impact
on fitness, a computational method that could
predict whether an amino acid substitution
(AAS) affects protein function would help re-
searchers prioritize AASs for additional study.
The observation that disease-causing muta-
tions are more likely to occur at positions that
are conserved throughout evolution, as com-

pared with positions that are not conserved,
suggested that prediction could be based on
sequence homology (39). It was also observed
that disease-causing AASs had common struc-
tural features that distinguished them from
neutral substitutions, suggesting that struc-
ture could also be used for prediction (68,
77). Since these studies were performed, a
plethora of AAS prediction methods based
on sequence and/or structure have become
available (7, 9, 14, 16–19, 27, 31, 33, 40–
42, 45–47, 53, 58, 59, 64, 65, 68, 69, 72,
73).

In this review we first survey existing AAS
prediction methods and summarize the his-
tory of the field. We also offer practical advice
for researchers who would like to use AAS pre-
diction methods. Next, we look at the useful-
ness of AAS prediction methods in identify-
ing candidate mutations responsible for both
Mendelian and complex diseases. Third, we
discuss other applications of AAS prediction
methods. Finally, we discuss likely future im-
provements of such methods.

METHODOLOGY OF AMINO
ACID SUBSTITUTION
PREDICTION

Basic Methodology

AAS prediction methods use sequence
and/or structural information for prediction.
Prediction is feasible because mutations
that affect protein function tend to occur at
evolutionarily conserved sites (Figure 1a)
and/or are buried in protein structure
(Figure 1b). These observations came from
several early studies that used AASs found
in disease genes in affected individuals (39,
68, 77). These studies assumed that these
substitutions affected protein function,
thereby causing disease. These studies also
assumed that a majority of nsSNPs in hu-
mans or the substitutions observed between
humans and closely related species are
functionally neutral. When Wang & Moult
(77) modeled disease-causing mutations
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onto their corresponding wild-type protein
structures, they found that 83% of disease-
causing mutations affected protein stability.
By applying the stability criterion and
several other structural criteria, they could
detect 90% of disease-causing mutations. In
contrast, only 30% of neutral nsSNPs were
detected with the same set of rules, which
suggests that their rules could be used to
distinguish disease-causing mutations from
neutral nsSNPs. Using both structure and
sequence, Sunyaev et al. (68) could detect
70% of disease-causing mutations and only
17% of neutral substitutions. Based on anal-
ysis of protein sequences, Miller & Kumar
(39) showed that disease-causing AASs are
overabundant at conserved sites.

Based on these observations, AAS predic-
tion methods using either sequence and/or
structural information were introduced, some
of which were also implemented as Web
servers [Table 1; Supplemental Table 1 (fol-
low the Supplemental Material link from the
Annual Reviews home page at http://www.
annualreviews.org.)] (7, 9, 14, 16–19, 27, 31,
33, 40–42, 45–47, 53, 58, 59, 64, 65, 68, 69,
72, 73). The typical procedure used by AAS
prediction methods is shown in Figure 2. To
make a prediction, AAS prediction methods
can use sequence, structure, and/or annota-
tion. Sequence-based AAS prediction meth-
ods (14, 18, 19, 42, 45, 58, 69, 73) accept
an input sequence and search it against a
sequence database to find homologous se-
quences. A multiple sequence alignment of
the homologous sequences reveals what posi-
tions have been conserved throughout evolu-
tionary time, and these positions are inferred
to be important for function. The AAS pre-
diction method then scores the AAS based
on the amino acids appearing in the multi-
ple alignment and the severity of the amino
acid change. An amino acid that is not present
at the substitution site in the multiple align-
ment can still be predicted to be tolerated
if there are amino acids with similar physio-
chemical properties present in the alignment.
For example, if a protein sequence alignment
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Figure 1
(a) The probability that a mutation will cause a disease increases
monotonically with an increase in the degree of site conservation.
Nonsynonymous SNPs found in normal individuals are assumed to be
benign and their probabilities show the opposite trend where their
occurrence decreases with the degree of site conservation. The benign
synonymous SNPs do not change amino acids and should be predominantly
neutral. As a result, their probability is uniform across sites, regardless of
whether or not the site is conserved. Figure from Reference 75; licensee
BioMed Central Ltd. (This is an Open Access Article: Verbatim copying
and redistribution of this article are permitted in all media for any purpose.)
(b) The solvent accessibility of an amino acid residue in a protein reflects the
degree of the residue’s exposure to the surrounding solvent in the protein
structure. The relative probability of disease-causing mutations is highest in
the protein interior and lowest on the protein surface. The benign SNPs
show the reverse trend, as their relative probability is highest on the surface
and lowest in the protein interior. Figure from Reference 75; licensee
BioMed Central Ltd. (This is an Open Access Article: Verbatim copying
and redistribution of this article are permitted in all media for any purpose.)
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Table 1 Amino acid substitution (AAS) prediction methods available on the Internet∗

Method and Web site Interface Performance Algorithm
SIFT
http://blocks.fhcrc.org/
sift/SIFT.html (45–47)

Input: Protein sequence and AAS,
protein sequence alignment and AAS,
dbSNP id, or protein id

Output: Score ranges from 0 to 1,
where 0 is damaging and 1 is neutral

FN error: 31%
FP error: 20%
dbSNP: 25% predicted

to be damaging
Coverage: 60%

Using sequence
homology, scores are
calculated using
position-specific scoring
matrices with Dirichlet
priors

PolyPhen
http://www.bork.embl-
heidelberg.de/PolyPhen
(64, 65)

Input: Protein sequence and AAS,
dbSNP id, HGVbASE id, or protein id

Output: Score ranges from 0 to a
positive number, where 0 is neutral,
and a high positive number is
damaging

FN error: 31%
FP error: 9%
dbSNP: 32% predicted

damaging
Coverage: 81%

Uses sequence
conservation, structure
to model position of
amino acid substitution,
and SWISS-PROT
annotation

SNPs3D
http://www.snps3d.org/
(82, 83)

Input: dbSNP id, protein id, literature
search, or gene ontology

Output: Scores from structure-based
SVM and sequence-based SVM
reported separately. Score <0 is
damaging. Mutation on protein
structure can be visualized

Structure-based SVM
FN error: 26%
FP error: 15%
Coverage: 14%
Sequence-based SVM
FN error: 20%
FP error: 10%
Coverage: 71%
Predicted damaging in

dbSNP: 25%

Structure-based support
vector machine uses 15
structural factors

Sequence-conservation
support vector machine
uses five features that
capture sequence
conservation

PANTHER PSEC
https://panther.applied
biosystems.com/methods/
csnpScoreForm.jsp (73)

Input: Protein sequence and AAS
Output: A negative score is damaging,

zero is neutral, and positive is
gain-of-function

FN error: 59%
FP error: N/A
Coverage: 40%
dbSNP: 9% predicted

damaging

Uses sequence homology;
scores are calculated
using PANTHER
Hidden Markov Model
families

PMUT
http://mmb2.pcb.ub.es:
8080/PMut/ (16–18)

Input: Protein id, protein sequence, or
multiple sequence alignment

Output: Score ranges from 0 to 1,
where 0 is neutral and high scores are
predicted to be damaging. Mutation
on protein structure is shown

FN error: 21%
FP error: 17%
When structure is

included:
FN error: 12%
FP error: 10%

Prediction provided by
one of two neural
networks. Neural
network uses internal
databases, secondary
structure prediction, and
sequence conservation

TopoSNP
http://gila.bioengr.uic.
edu/snp/toposnp (64, 65)

Input: Protein id or protein sequence
Output: Can view position of mutation.

Location of substitution on protein
(surface, internal, or pocket) and
conservation reported separately

Results are stored so an input protein
sequence not in the database will not
be processed

FN error: 12%
FP error: N/A
dbSNP: 68% predicted

to be damaging

Classifies substitution as
buried, on the surface, or
in a pocket of the
protein’s structure. Also
provides conservation
score based on Pfam
protein alignments

∗False negative (FN) error rate is the percentage of substitutions predicted to be functionally neutral on a set of AASs that are known to affect
protein function. These substitutions come from a mutagenesis set or those suspected to be involved in disease. False positive (FP) error rate is the
percentage of substitutions predicted to be damaging on substitutions known to be functionally neutral. For some methods, error rates were not
reported and are marked as N/A in the table. The coverage shown in this table is for dbSNP (60) and not for mutations in disease genes. Disease
genes tend to have higher coverage because they are well studied. Coverage depends on databases, so methods published later tend to have more
coverage than those published earlier. For a more complete list of AAS prediction methods, see Supplemental Table 1. (Follow the Supplemental
Material link from the Annual Reviews home page at http://www.annualreviews.org.)
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Input protein sequence and
amino acid substitution

Apply scoring rules for prediction

Structure Sequence Annotation

Search a protein 
structure database.  

Model input sequence on 
to structure of top hit

Assess features at the 
site of the amino acid 
substitution, such as 
solvent accessibility,

 B-factor, etc.

Search a protein 
sequence database and 

obtain homologous 
sequences

Score amino acid 
substitution according to 
amino acids appearing in 

the multiple sequence 
alignment, taking into 

account conservation and 
the physiochemical 

properties of amino acids 
present

Take annotation from 
SWISS-PROT database 

or use prediction 
programs, such as 
those that predict 

transmembrane regions 
or secondary structure, 
to annotate the input 

sequence

Output AAS prediction 

Figure 2
Flowchart for amino
acid substitution
(AAS) prediction.
Input typically
consists of the
protein sequence and
AASs. The method
can use sequence
and/or structural
features for
prediction. Some
methods also use
annotation to aid in
prediction.

shows tyrosines and tryptophans at a particu-
lar site, one would expect that the other aro-
matic amino acid, phenylalanine, would also
be tolerated at that site. The probability of
observing a particular AAS at a site can be es-
timated from an appropriate model of protein
conservation, and substitutions that are un-
likely to be observed at a site are expected to
reduce protein stability or function.

Structure-based AAS prediction methods
(9, 27, 65, 69, 72) take an input sequence and
find the best match against a protein structure
database. Because most structure-based AAS
prediction methods use general structural fea-
tures surrounding the site of substitution and
do not require detailed information at the

atomic level, they can model the substitution
onto the structure of a homologous protein
rather than require the exact structure of the
input sequence. AAS prediction methods then
examine the position of the AAS and can take
into account several structure factors such
as solvent accessibility, carbon-beta density,
crystallographic B-factor, and the difference
in free energy between the new and the old
amino acid. Based on these structural features,
structure-based AAS prediction methods fol-
low rules to arrive at a prediction.

AAS prediction methods can also incor-
porate annotations to refine prediction. The
Swiss-Prot database annotates the positions of
a protein that are located in the active site,
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are involved in ligand binding, are part of
a disulfide bridge, or are involved in other
protein-protein interactions (1). AAS predic-
tion methods can use this information to guide
prediction (17, 18, 68, 69, 77). For example,
if the position of the AAS is annotated as
involved in ligand binding, then the AAS is
predicted to affect the protein. Also, one can
use sequence-based predictions of secondary
structure and solvent accessibility and incor-
porate this annotation into the scoring scheme
(18, 31).

Direct comparisons between AAS predic-
tion methods are difficult because they were
trained and tested on different data sets using
different versions of sequence and structural
databases as resources. The performance of an
AAS prediction method depends on the data
sets the method is tested on. AAS prediction
methods are typically tested on two types of
data sets: a nonneutral set, which contains sub-
stitutions assumed to affect protein function,
and a neutral set, which contains substitutions
assumed to have no effect. An AAS prediction
method should predict the substitutions in
the nonneutral set to be damaging to protein
function. The percentage of non-neutral sub-
stitutions incorrectly predicted to be tolerated
is an approximation of the false negative er-
ror rate. The AAS prediction method should
also predict the majority of the substitutions
in a neutral set as having no effect on protein
function. The percentage of neutral substitu-
tions incorrectly predicted to affect protein
function approximates the false positive error
rate. The best AAS prediction methods mini-
mize both false negative and false positive er-
ror rates.

Popular nonneutral sets include data from
laboratory mutagenesis experiments (36, 49,
54, 80), human disease proteins where many
mutations have been characterized (3, 21,
22, 25, 32, 50, 55, 70), and human disease
databases such as OMIM, HGMD, or Swiss-
Prot (1, 24, 62), which contain AASs that have
been found in patients. Currently, the muta-
genesis data sets represent only a few pro-
teins, so caution should be used in extrapo-

lating results. For the data sets that contain
mutations found in disease genes, it is as-
sumed that the AAS found in the patient is
the causative variant. However, the database
entry is not necessarily the etiological variant.
Instead, it could be in linkage disequilibrium
with the causative variant. Alternatively, the
causative mutation could be in an unscreened
gene.

Popular neutral sets include substitutions
that cause no phenotypic effect in mutagenesis
experiments (36, 49, 54, 80) and nonsynony-
mous single-nucleotide mutations that have
been fixed during divergence between human
and a closely related species. The false posi-
tive error rate based on the first set tends to be
higher than the second set because mutations
deemed neutral in laboratory experiments are
those that do not give a detectable pheno-
type. However, such mutations could have too
small an impact on protein function or re-
quire alternative environmental conditions to
reveal phenotypic effects (46). In the second
set, substitutions between human and another
species have undergone millions of years of
evolutionary selective pressure, whereas those
with negligible selection coefficients and very
small effects on protein function have been
eliminated.

There are many AAS prediction meth-
ods available and it is beyond the scope of
this review to critique and compare every
method. We have tried to summarize the ma-
jor points of each method (Supplemental
Table 1). It is encouraging that progress is
being made in that overall prediction per-
formance has improved over early meth-
ods, and many methods are now available
to the research community as Web servers
(Table 1).

Caveats for Using Structure in
Prediction

AAS methods that use only protein struc-
ture provide fewer predictions than meth-
ods that use sequence because there are far
fewer protein structures than sequences for
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which homology can be found. The percent-
age of amino acid substitutions that can be
predicted by an AAS method is defined as the
method’s coverage. Coverage for AAS meth-
ods that rely on protein structure only is ap-
proximately 14% (83), whereas coverage for
AAS methods that use sequence can be as
high as 81% (53). Notably, most methods
now have a sequence-based score and anal-
ysis of structure has become an option of-
fered by the methods. Sequence-based cov-
erage should continue to improve, because
large-scale sequencing projects are deposit-
ing predicted protein sequences into public
databases at an increasing rate, whereas de-
termination of three-dimensional (3D) struc-
tures remains a challenging endeavor.

Even when a structure is available, predic-
tion based solely on protein structure can be
misleading because the protein’s structure is
often determined in the isolated context of
a crystal and cannot take into consideration
supramolecular interactions. Structure-based
AAS prediction methods tend to predict
positions on the surface of the protein as
neutral. Although substitutions at sites buried
in protein structure are more likely to be
damaging than surface residues, substitutions
at sites that appear to be solvent-accessible in
the crystal structure may also be important
for function. These sites might be involved
in intermolecular interactions with proteins
that are absent from the 3D structure of the
single protein. For example, the β-globin
E6V substitution causes sickle-cell anemia.
The substitution occurs on the surface of the
protein and leads to formation of hemoglobin
aggregates that underlie the sickling phe-
notype. E6V is incorrectly predicted to be
benign by a structure-/sequence-based AAS
prediction method, Polymorphism Pheno-
typing (PolyPhen) (71), whereas it is correctly
predicted by a sequence homology-based
AAS prediction method, Sorting Intolerant
From Tolerant (SIFT). One possible way
to compensate for such misprediction is to
identify surface pockets or depressed regions
in the protein’s structure, which can be

Polymorphism
Phenotyping
(PolyPhen): a
popular structure-/
sequence-based
amino acid
substitution
prediction method
available on the
Internet
(http://www.bork.
embl-heidelberg.
de/PolyPhen/)

Sorting Intolerant
From Tolerant
(SIFT): a popular
sequence-based
amino acid
substitution
prediction method
available on the
Internet
(http://blocks.fhcrc.
org/sift/SIFT.html)

inferred to be potential functional binding
regions, as done in the AAS prediction
method topoSNP (64, 65).

Some AAS methods use structural and
functional annotation from the Swiss-Prot
database in addition to structure and sequence
modeling (17, 18, 68, 69, 77). The functional
annotation is used to identify the residues that
are part of a binding site, active site, or disul-
fide bond. It is presumed that changes at these
types of sites would have major effects on
protein function. Hence, substitutions occur-
ring at these positions are predicted to affect
function. One would think that use of such
annotation would improve prediction, but a
recent study shows that use of Swiss-Prot
functional annotation decreases the overall
prediction accuracy (83). Although use of
Swiss-Prot annotation reduces the false neg-
ative rate by 1.6%, it increases the false posi-
tive rate by 2.1%. Therefore, caution is war-
ranted when interpreting results, based solely
on functional annotation, in which an AAS is
predicted to be damaging.

When the structure of the query pro-
tein is not available, AAS prediction meth-
ods model the query protein’s structure based
on a homolog. If the homolog is too distantly
related, prediction accuracy can suffer. Chas-
man & Adams (9) obtained their best predic-
tion results when the query protein was at least
60% identical to its homolog. Yue & Moult
(82) found that prediction is best when the
sequence identity between the query protein
and the homologous protein is greater than
40%. The false positive rate for their AAS
prediction method increased by 11% when
structures with less than 40% sequence iden-
tity were used (82).

Caveats for Using Sequence
in Prediction

The first step for all sequence-based AAS
prediction methods is to choose homologous
sequences, whether manually or automati-
cally. Because the amino acids appearing in
the aligned sequences form the basis of the
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Figure 3
For some amino acid substitution (AAS) prediction methods, researchers
can submit a multiple sequence alignment for their protein of interest;
using orthologs in the multiple sequence alignment instead of paralogs
gives better performance. Blue points represent prediction accuracy based
on an alignment of the input protein and five sequences randomly chosen
from a group of orthologs and paralogs. The red point is the prediction
accuracy based on a multiple sequence alignment of the input protein
sequence and five orthologs. Figure from Reference 67. Published with
permission from Genome Research, Volume 15, copyright by Cold Spring
Harbor Laboratory Press.

scoring and the prediction, the sequences and
their alignment are extremely important, and
users can take an active role in this prediction
step, which determines the quality of their
predictions. The optimal set of sequences is
distantly related orthologs. Using orthologs
instead of paralogs can improve performance
by 8%, even when there are few sequences
(67) (Figure 3).

Users should be cautious even with pro-
teins that are judged to be orthologous based
on phylogeny. Orthologous genes in differ-
ent species are derived from a common an-
cestor, but they may not necessarily have the
same function. If function has changed, then
amino acids that are important for the func-
tion of one protein may not necessarily be
important for the function of the ortholog,
and hence may have changed without any se-
lection pressure. For example, 2% of disease-
causing mutations in human genes are identi-
cal to the sequences of their respective mouse
orthologs, suggesting that even though these
positions have huge phenotypic effects on
human health, they have different roles or
are no longer important in mice. If the or-
thologs in alignment have slightly different

functions, then the positions that differentiate
function among orthologs may be incorrectly
predicted.

Although functional differences between
orthologs can result in misprediction by AAS
methods, prior knowledge that orthologs have
different functions can be used to identify
which amino acid(s) caused the functional
change. For example, AlcR is a transcrip-
tional regulator whose activation depends on
the presence of an inducer in one Bordetella
species but not in another species (5). Al-
though the AlcR genes are clearly orthologs
in the genus, they behave differently in dif-
ferent species. To find the amino acid change
underlying this behavioral difference, the au-
thors of this study used the AAS prediction
method, SIFT, which predicted that a seem-
ingly conservative change (S103T) should not
be tolerated. The authors deduced that this
residue was likely responsible for inducer de-
pendence, which they subsequently proved
by showing that S103T eliminated inducer
dependence.

Most AAS prediction methods do not take
DNA sequence into account. As a result,
they can miss changes that alter splice sites
or changes in regions under positive selec-
tion. By ignoring DNA sequence differences,
these methods might incorrectly predict sub-
stitutions at sites under positive selection to
be neutral because of the many amino acids
present at that position. However, the AAS
prediction method of Fleming et al. (19) uses
the DNA sequences of homologous genes in
addition to protein sequences to find sites un-
der positive selection. The nonsynonymous-
to-synonymous substitution rate ratio is al-
lowed to vary at different amino acid sites and
positions with high ratios are posited to be un-
der positive selection. It is assumed that amino
acid changes at these positions affect pro-
tein function. Thus, knowledge of positively
selected sites can lower the false negative
error.

It is often assumed that the protein
sequence derived from the reference se-
quence genome is functional and the “disease”
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mutation reduces protein function. But in
some instances, the amino acid correspond-
ing to the more common allele reduces pro-
tein function and a mutation causes gain-of-
function. Thomas et al. (73) noticed this phe-
nomenon when they applied their AAS pre-
diction method PANTHER PSEC to mu-
tations likely to cause disease. They found
that the reference amino acid was predicted
to damage protein function whereas the dis-
ease mutation was predicted to be function-
ally neutral for a small percentage of the
cases (0.1%). This type of prediction re-
veals two things. First, it suggests that the
human protein sequence has reduced func-
tion compared with orthologous proteins in
other organisms. Second, it predicts that
the “disease” mutation returns protein func-
tion to a level similar to that in ortholo-
gous proteins. Thus the mutation can be
thought to have a gain-of-function effect
in humans. Characterizing this mutation in
model organisms may be inappropriate be-
cause the common human allele has reduced
protein activity compared with that in model
organisms.

Both structure and sequence are useful for
prediction. Having a structure appears to pro-
vide prediction performance that is equiva-
lent to having four homologous sequences,
with information from structure and sequence
complementing each other (59). Finally, it is
important to understand that these are pre-
dictions only. They are meant to guide future
experiments and not to be used directly in a
clinical setting (71).

USEFULNESS OF AMINO ACID
SUBSTITUTION PREDICTION
METHODS IN HUMAN
VARIATION AND DISEASE

Nonsynonymous SNPs

There are an estimated 67,000–200,000 com-
mon nsSNPs in the human population (8, 23,
35), with each person expected to be heterozy-
gous for 24,000–40,000 nsSNPs (8). Given

this large number of nsSNPs and the obser-
vation that single AASs can have a large effect
on an organism or species, it is of great in-
terest to identify which nsSNPs affect protein
function and, consequently, may affect human
health.

nsSNPs in the human population are ob-
served less frequently than expected from the
overall mutation rate, which is evidence that
they are under strong purifying selection (8,
23, 63). Specifically, if a random mutation
were to occur in a coding region, it should
lead to an amino acid change two thirds of the
time, but nsSNPs comprise only half of the
observed coding SNPs in the human genome
(8). Furthermore, nsSNPs that cause a non-
conservative amino acid change in the corre-
sponding protein (for example, hydrophobic
amino acid to a charged amino acid) survive
at approximately half the rate of conservative
nsSNPs (for example, a hydrophobic amino
acid changed to another hydrophobic amino
acid). These data strongly support the notion
that AASs play an important role in human
health. By providing information about which
substitutions are selected against, AAS predic-
tion methods can help identify which nsSNPs
may be involved in disease.

Putative nsSNPs are catalogued in the
dbSNP database maintained by NCBI, which
currently contains >50,000 nsSNPs (dbSNP
build 124) (60). Of these nsSNPs, 25–30% are
predicted to reduce protein function by most
AAS prediction methods (46, 69, 83). Such
nsSNPs have a lower minor allele frequency
distribution than those that are predicted to
be functionally neutral (33–35, 69, 78). This
suggests that damaging nsSNPs are being ac-
tively selected against and confirms that AAS
prediction methods can successfully identify
putatively damaging nsSNPs that play an
important role in health. In one study, the
AAS prediction method SIFT was applied to
nsSNPs found in genes implicated in DNA
repair, cell cycle arrest, apoptosis, and detox-
ification (78). nsSNPs with low minor allele
frequency (<6%) were predicted by SIFT to
be damaging to the protein twice as often as
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common nsSNPs (>10%). In a second study,
less than 2% of common nsSNPs in en-
vironmental response genes were predicted
to be damaging by AAS prediction meth-
ods PolyPhen and SIFT (34, 35). In a third
study, SIFT was applied to nsSNPs found
in membrane transporter genes (34). Of the
nsSNPs with minor allele frequency <0.01,
between 0.01 and 0.10, and >0.1, 40%, 13%,
and 5% of nsSNPs were predicted to be
damaging, respectively. The authors found
that general-purpose AAS scoring matrices,
such as BLOSUM62, could not distinguish
nsSNPs by minor allele frequency. Thus, ap-
plication of AAS prediction methods to large
nsSNP data sets has confirmed that putatively
damaging nsSNPs are selected against and are
likely to have an impact on their respective
proteins.

Experimental studies of individual pro-
teins have also confirmed the accuracy of AAS
prediction methods. In one study, Brooks-
Wilson et al. (6) studied mutations in E-
cadherin that cause hereditary diffuse gastric
cancer. They used SIFT to predict that three
missense mutations found in families with dif-
fuse gastric cancer would be damaging to E-
cadherin function, and all three were con-
firmed to be damaging using in vitro assays.
In a second study, Zhang et al. (84) examined
the variants in PEPT1, a protein involved in
transporting drugs across the cell membrane.
nsSNPs found in the gene for PEPT1 were
tested in vitro. The single SNP that reduced
transport capacity was predicted by SIFT to
affect protein function. This polymorphism
may be important in drug delivery for phar-
macogenetics. In a third study, SIFT was used
to predict categories of cancer risk. Mutations
in the gene encoding melanocyte stimulating
hormone receptor (MSHR) increase the risk
of skin cancer. Kanetsky et al. (30) identified
risk variants in the gene for MSHR from ei-
ther published literature or using SIFT pre-
dictions. The ability to assign an individual to
a risk category was found to be similar when
using either published literature or SIFT
prediction.

In summary, AAS prediction methods
have proven useful for identifying damaging
nsSNPs involved in human disease. Experi-
mentally characterizing an AAS can be expen-
sive and time-consuming, and AAS prediction
methods provide a valuable resource to sub-
stantially reduce the effort.

Application to Mendelian Disease

AAS prediction methods have succeeded in
distinguishing nonsynonymous changes that
cause simple Mendelian diseases from neutral
nsSNPs that do not. AAS prediction meth-
ods are trained and tested on AASs that were
identified in disease genes in afflicted indi-
viduals from databases such as OMIM (24),
HGMD (62), and Swiss-Prot (1). It is assumed
that these substitutions found in patients af-
fect protein function and cause disease as a
result. Currently, most of the diseases repre-
sented by the genes in these databases segre-
gate in a Mendelian manner, which suggests
that they are caused by single deleterious le-
sions. Most AAS prediction methods predict
that 70–90% of the AASs catalogued in these
disease databases are damaging, whereas only
10–20% of variants in neutral data sets are
predicted to be damaging (Table 1). This
demonstrates that AAS prediction methods
can distinguish between AASs that cause
Mendelian disease and neutral AASs. In
this way, AAS prediction methods can help
narrow down candidate nsSNPs to iden-
tify the causative lesion within a large ge-
nomic region implicated in disease by linkage
studies.

Although most simple Mendelian diseases
remain rare because of purifying selection,
some become relatively common in popu-
lations because of overdominant selection.
Overdominant selection occurs when the het-
eroyzgote carrier has higher fitness than
both the mutant and normal homozygotes.
The E6V substitution in β-globin mentioned
above is common in certain populations be-
cause heterozygous carriers are more resis-
tant to malaria than normal homozygotes,
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whereas individuals homozygous for the rare
allele have sickle-cell anemia. In this example,
the AAS affects protein function but is main-
tained in the population because reduced ac-
tivity correlates with an advantageous effect.
Another well-known example is overdomi-
nance associated with methylenetetrahydro-
folate reductase (MTHFR) alleles. Variants
that reduce MTHFR activity can cause mental
retardation and cardiovascular disease in car-
riers. Reduced MTHFR activity is thought to
have been beneficial to an individual’s over-
all fitness during recent human evolution,
so MTHFR variants damaging to protein
function have became common in human
populations. Because overdominant nsSNPs
can severely affect protein function, they may
be detected by AAS prediction methods, and
both E6V in β-globin and overdominant
MTHFR missense alleles are predicted to be
damaging by SIFT (Reference 46 and data not
shown).

Application to Complex Diseases

Although AAS prediction methods can iden-
tify nsSNPs involved in Mendelian diseases,
their usefulness in studying complex diseases,
such as hypertension, diabetes, and heart dis-
ease, is still being explored. Complex genetic
diseases are those that cannot be mapped to
single loci, which might indicate an interac-
tion between multiple loci or an interaction
with the environment, or both. Two general
models have been proposed to explain the na-
ture of genetic variation underlying complex
disease (4, 51, 52, 85). The common disease-
common variant model predicts that the vari-
ants of a particular locus that contribute to
disease are few but common in the popula-
tion and that complex disease results from
interactions between variants of many differ-
ent genes. The common disease-rare variant
model predicts that there are many etiological
variants at a locus, and each variant is present
at a low allele frequency in the human popu-
lation. In this section, we discuss how useful
AAS prediction methods might be for detect-

ing variants involved in complex disease ac-
cording to the two models.

Common disease-common variant. Ac-
cording to the common disease-common vari-
ant hypothesis, variants that are common in
the population, with minor allele frequency
greater than 5% or 1%, contribute to disease.
If nsSNPs involved in complex disease can be
categorized according to the rules of struc-
ture and sequence conservation that AAS pre-
diction methods have been trained on, then
current AAS prediction methods will be use-
ful in identifying these common etiological
variants. A list of common nsSNPs that have
been associated with complex disease has been
compiled (28, 37). When the AAS prediction
method PANTHER PSEC was applied to
this set of disease-causing nsSNPs, the score
distribution was different from the distribu-
tion for Mendelian disease mutations (74).
More importantly, the score distribution of
these disease-associated nsSNPs is indistin-
guishable from the distribution for normal
human variation (Figure 4). The authors con-
clude that nsSNPs involved in complex dis-
eases caused by common variants do not occur
at highly conserved positions, and thus cannot
be detected by current AAS prediction meth-
ods. The data set of nsSNPs known to be in-
volved in common disease is relatively small
compared with the set of mutations known
to be involved in Mendelian disease. As more
causative common variants implicated in com-
plex disease are discovered, it will be interest-
ing to see if future studies yield similar results.
If so, new rules will need to be formulated to
predict the common polymorphisms involved
in complex disease.

AAS prediction methods can still be useful
in identifying the etiological variants in hap-
lotypes. Haplotypes are particular combina-
tions of alleles that are observed in a popu-
lation. When a haplotype is associated with
affected individuals, the variants belonging to
the haplotype are all candidates for being the
causative mutation. If a haplotype contains
a set of missense alleles, one can use AAS

www.annualreviews.org • Amino Acid Substitutions on Protein Function 71

A
nn

u.
 R

ev
. G

en
om

. H
um

an
 G

en
et

. 2
00

6.
7:

61
-8

0.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 F

re
d 

H
ut

ch
in

so
n 

C
an

ce
r 

R
es

ea
rc

h 
C

en
te

r 
- 

A
rn

ol
d 

L
ib

ra
ry

 o
n 

09
/0

1/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV285-GG07-03 ARI 8 August 2006 1:43

C
u

m
u

la
ti

ve
 f

ra
ct

io
n

0.6

0.8

1.0

0.2

Mendelian disease (HGMD)

0.4

0

SubPSEC score

–8–10 –6 –4 –2 0

Neutral model

Normal variation (dbSNP)

Complex disease

Figure 4
Amino acid substitution (AAS) prediction methods may not be able to
identify disease variants in the common disease/common variant model.
Cumulative distributions of scores from the AAS prediction method
PANTHER subPSEC are shown. A subPSEC score of 0 is predicted to be
functionally neutral and very negative scores are predicted to be damaging
to protein function. Distributions are shown for mutations involved in
Mendelian disease (red), common variants associated with complex disease
(blue squares), neutral and “normal” human variation (yellow and green,
respectively). Figure from Reference 74, Volumes 90–102. Copyright c©
1993–2005. Natl. Acad. Sci. USA. All rights reserved.

prediction methods to prioritize which
nsSNP may be the etiological variant (84).

Common disease-rare variant. According
to the common disease/rare variant hypothe-
sis, low-frequency variants with strong effects
on a locus can contribute to disease (52). That
is, some “complex” diseases could actually
be simple Mendelian diseases, but are caused
by different allelic variants in different indi-
viduals. Identifying these rare causative vari-
ants requires sequencing genes in many indi-
viduals. This process would uncover a large
number of missense variants but only a few
may contribute to disease. Below we discuss
two studies that used AAS prediction methods

to distinguish the causative missense variants
from neutral variants.

A study on the plasma levels of HDL
cholesterol (HDL-C) demonstrates the use of
AAS prediction methods to detect rare dele-
terious alleles that contribute to common dis-
ease (10). Low levels of HDL-C are a ma-
jor risk factor for coronary atherosclerosis.
Three candidate genes involved in Mendelian
forms of low HDL-C levels were sequenced
in apparently normal individuals and a larger
number of rare nsSNPs were found in peo-
ple with low levels of HDL-C compared with
those with high levels of HDL-C. The au-
thors then applied the AAS prediction method
PolyPhen on the nsSNPs. The fraction of
nsSNPs predicted to be damaging in individ-
uals with low levels of HDL-C is highly sig-
nificant for two of the genes: p = 9 × 10−13 for
ABCA1 and p = 0.0003 for LCAT (Table 2).
In the third gene, APOA1, only one nsSNP
was detected, and although it was predicted to
be damaging, this is not statistically significant
(p = 0.09). If technological advances permit us
to inexpensively sequence the coding regions
of many individuals, one could possibly iden-
tify the genes and variants involved in disease
by the increased number of nsSNPs and the
significantly high proportion of nsSNPs pre-
dicted to be damaging in the affected pop-
ulation. Even with a Bonferroni correction
taking into account the approximately 30,000
genes in the human genome, the result of
ABCA1 is still significant at p = 10−8. The re-
sult of LCAT is no longer significant at the
genome-wide level. This could be compen-
sated for by detecting more variants, which re-
quires sequencing, or improved performance
of AAS prediction methods to reduce the false
positive error.

Another study on the role of mitochon-
drial mutations in Parkinson’s disease again
shows that applying AAS prediction meth-
ods to rare variants can identify genes of in-
terest (61). Seven genes in the mitochondrial
genomes from normal individuals and patients
with Parkinson’s disease were sequenced.
The authors’ AAS prediction method could
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Table 2 A significantly high fraction of rare variants in individuals at risk for coronary atherosclerosis are
predicted to be damaging by the amino acid substitution (AAS) prediction method PolyPhen (10)∗

Gene Number of nsSNPs detected
Number predicted to be possibly or

probably damaging by PolyPhen
Cumlative p-value, assuming

0.09 false positive rate
Low levels of HDL-C, at risk for coronary atherosclerosis
ABCA1 25 17 9∗10−13

APOA1 1 1 0.09
LCAT 5 4 0.0003
High levels of HDL-C
ABCA1 4 2 0.04
APOA1 0 0 NA
LCAT 1 0 0.91

∗The list of nsSNPs and their predictions from Cohen et al. (10) was compiled. For clarity, the two populations studied (256 Dallas County
residents and 263 Canadians) were combined and duplicated SNPs were counted only once. The p-value was calculated from a binomial
distribution, with the probability that a nonsynonymous (nsSNP) would be predicted to be damaging set to 0.09, Polyphen’s false positive rate
on neutral substitutions (69).

distinguish patients from controls with 100%
accuracy and two genes were identified to
have more putative damaging missense vari-
ants compared with controls. In this case, all
genes had a similar proportion of missense
variants. Only by applying their AAS predic-
tion method were the authors able to identify
two genes that may be involved in Parkinson’s
disease. Because mutations in mitochondrial
DNA become more abundant with increasing
age, the role of rare missense variants may play
an important role in late-onset diseases such
as Parkinson’s disease and Alzheimer’s disease.
Because there already exists technology for
resequencing mitochondrial genomes (38),
one may be able to study the common dis-
ease/rare variant model in diseases suspected
to involve the mitochondria.

If common diseases cannot be explained by
common variants, then there will be a strong
incentive to sequence coding regions to test
the common disease/rare variant hypothesis.
Preliminary studies show that AAS prediction
methods play an important role in predict-
ing which rare missense variants are delete-
rious. Moreover, as technologies for discov-
ering rare variants advance, AAS prediction
methods will become increasingly important
for identifying disease genes in genome-wide
studies.

OTHER APPLICATIONS OF AAS
PREDICTION METHODS

Interspecies Comparisons

AAS prediction methods are often applied to
polymorphisms within a species, but they can
also be used on the fixed substitutions across
species. Because AAS prediction methods pre-
dict which amino acids are damaging to pro-
tein function, they can identify which genes
are under relaxed or neutral selection in a par-
ticular species.

Interspecies comparisons show that do-
mesticated species have a higher number
of putative damaging SNPs than the wild
species. The Chicken Polymorphism Con-
sortium sequenced three domestic breeds of
chicken and compared these data to those
obtained from a wild line (79). For the non-
synonymous substitutions fixed between the
domestic and wild lines, the alleles found
in domestic breeds were more than twice as
likely to be predicted as damaging by the
AAS prediction method SIFT compared with
those in the wild line. This result suggests that
domestic breeds are under relaxed selection,
perhaps because they live in a less harsh en-
vironment, which has allowed for damag-
ing substitutions to become fixed in the do-
mesticated species. In another interspecies
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comparison, the missense substitutions be-
tween two species of domesticated rice were
studied and a higher density of predicted dam-
aging substitutions occurred in regions un-
der positive selection (G.S.K. Wong, per-
sonal communication). Because gene loss may
sometimes be adaptive (48), the result sug-
gested reduced function of some genes in rice
could be an adaptive response to domestica-
tion.

These studies suggest that AAS pre-
diction methods can provide insights into
phenotypic differences observed between
species. Because of false positive error, it
would be difficult to study this on an in-
dividual gene basis. However, by grouping
genes within protein families or pathways,
it may be possible to identify pathways that
have undergone relaxed selection in certain
species.

Large-Scale Mutagenesis

AAS prediction methods can be applied to
large-scale, reverse genetics projects, in which
mutations are introduced randomly in the
genome of an experimental organism, and to
random mutagenesis projects, when a gene
of interest is saturated with mutations (4, 22,
26, 36, 49, 51, 52, 54, 80, 85). When there
are many missense mutations in the gene(s)
of interest, assaying all missense mutations
can be expensive and time-consuming. AAS
prediction methods can be used to priori-
tize missense mutations that are most likely
to affect protein function and alter pheno-
type. TILLING is one example of a large-
scale reverse genetic strategy that uses an AAS
prediction method (SIFT) to prioritize which
missense mutations are likely to reveal a phe-
notype (26). TILLING has been applied to
a wide range of organisms: Arabidopsis, ze-
brafish, maize, Drosophila, and Lotus. Because
AAS prediction methods are automated and
general, they can be widely applied to help
researchers prioritize which AAS to charac-
terize in genes of interest.

CONCLUSIONS

The presence of many AAS prediction meth-
ods and their broad use underscores their im-
portance. Prediction accuracy has gradually
improved, but few head-to-head comparisons
exist (29, 35, 71, 81). Moreover, as the number
of servers providing AAS prediction increases,
it will become increasingly difficult for inves-
tigators to interpret the predictions.

These problems are similar to those faced
by the protein structure prediction commu-
nity 10 years ago. Critical Assessment of
Techniques for Protein Structure Prediction
(CASP) (43) was motivated by the need to
fairly assess structure prediction programs in
order to advance structure prediction meth-
ods; we propose a similar solution for AAS
prediction methods.

Every two years, CASP releases the
sequences of proteins for which structure is
known, but not yet available to the public.
Researchers return predictions which are
then compared with known structure, and
the efficacy of each prediction method is
assessed. Because investigators in the CASP
program work on the same proteins during a
specified period of time, the CASP program
offers a valuable way to summarize which
methods improve structure prediction and
this ultimately advances the field. As auto-
mated structure prediction methods have
become increasingly successful, there is now a
server competition that runs continuously as
structures are released, with results assessed
automatically (57).

A similar server competition could be
implemented for AAS prediction. Once a
disease-associated variant is mapped, the re-
sponsible nsSNP and benign control nsSNPs
could be sent to participating servers and
the results immediately evaluated. Obtain-
ing suitable data sets is difficult because each
data set has its own advantages and disadvan-
tages. For example, some of the AASs ob-
tained from patients in the OMIM database
may not necessarily be the causative vari-
ant, which will artifactually inflate the false
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negative error. But if one method has a higher
accuracy on both neutral and damaging data
sets, then, despite the inaccuracies of the test
sets, the prediction method can be assessed
to be better. Moreover, as genome-wide mu-
tagenesis projects generate phenotypic data
(26), more accurate data can be obtained and
tested.

In addition to accuracy, AAS prediction
methods can be evaluated based on coverage.
Coverage depends on the source and version
of structure and sequence databases used. The
number of sequences and structures increase
every year so coverage is expected to increase
simply because more information is available.

Most methods today offer confidence
scores or an estimate of the degree to which
a substitution is damaging. One could also
test how well an AAS prediction method’s
score correlates with phenotypic severity; the
MAPP method and the method by Mooney
et al. (42, 67) have already demonstrated
promising results as their scores correlate with
phenotypic severity. AAS prediction meth-
ods could also be assessed according to their
ability to predict how the substitution affects
the protein: whether it increases or decreases

function, affects structure, or which domain
or function is affected for multifunctional
enzymes.

Finally, the main benefit of such a com-
petition is that investigators would have ac-
cess to unified prediction. Currently, CASP
manages a metaserver that collects predictions
from other servers to obtain a consensus struc-
ture. A metaserver for AAS prediction could
do the same, so that researchers studying pro-
tein variation could easily obtain a consensus
prediction, with the best accuracy available.

The progress that has been made over the
past few years with AAS prediction meth-
ods is promising: methodology has improved
and applications have proliferated. AAS pre-
diction methods have proven successful for
Mendelian traits and may eventually play an
important role in identifying complex disease
variants. Because AASs are a source of funda-
mental changes between and within species,
AAS prediction methods will continue to be of
major importance in the future. These meth-
ods, in conjunction with those that predict
gene regulatory and splicing variants (12, 13,
15, 20, 66, 76), will guide us to a better under-
standing of functional diversity in genomes.

SUMMARY POINTS

1. Approximately half of the known disease-causing mutations result from amino acid
substitutions (AASs).

2. AAS prediction methods can successfully distinguish between AASs that cause
Mendelian disease and functionally neutral AASs.

3. Automated AAS prediction methods have been applied on a genome-wide scale.

4. Nonsynonymous SNPs (nsSNPs) predicted to be damaging tend to have low minor
allele frequencies, which indicates purifying selection and validates AAS prediction
methods.

5. AAS prediction methods have been applied to individual genes and predictions have
been experimentally confirmed.

6. Currently, AAS prediction methods cannot distinguish between common variants
involved in common disease and normal variation.

7. AAS prediction methods can identify rare variants involved in common disease. When
putative damaging rare variants are classified by gene, disease genes can be identified.
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8. AAS prediction methods can be used on a wide range of problems, such as analysis of
interspecies differences and large-scale mutagenesis projects.

FUTURE DIRECTIONS

1. Because there are many new and improved amino acid substitution (AAS) predic-
tion methods with complementary strengths, better accuracy should be possible by
combining prediction methods. A competition similar to the Critical Assessment of
Techniques for Protein Structure Prediction (CASP) would help to evaluate progress
and identify strengths and weaknesses of prediction algorithms.

2. While the genetics community is actively engaged in discovering genetic variants
involved in complex disease, AAS prediction methods will need to be continually
reassessed and possibly redesigned for optimal prediction of complex disease-causing
variants.

3. Although AASs currently account for a large proportion of the genetic variation con-
tributing to human disease, new bioinformatics methods that evaluate gene regulatory
and splicing variants will broaden our understanding of functional variation.
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