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As an OPTIMALITY CRITERION (see Glossary) in
phylogenetics, MAXIMUM LIKELIHOOD has been in use
almost as long as parsimony, which remains the
dominant method for phylogenetic analyses of
discrete (morphological and molecular) character
data. Unlike the other two major optimality criteria,
both parsimony and likelihood operate directly on
discrete character data rather than on a matrix of
pairwise distances. This allows parsimony and
likelihood methods to be used to estimate ancestral
character states, in addition to estimating the tree
topology. Felsenstein’s1 ‘pruning algorithm’ made it
feasible to apply the likelihood criterion to nucleic
acid sequence data. His freely distributed package of
computer programs for phylogeny inference, called
PHYLIP (Ref. 2), introduced the likelihood criterion
into molecular systematics and molecular evolution.

Felsenstein’s 1981 model1 was the first in a series of
improvements made to the pioneering model of Jukes
and Cantor3 and was the first to allow nucleotide
frequencies to differ (the Jukes and Cantor model3

assumes that the four types of nucleotide are present
in equal proportions). Further developments led to
models that accommodate both
transition–transversion substitution bias4 and
unequal nucleotide frequencies5,6. This trend 
culminated in the general time-reversible (GTR)
model, which not only allows unequal nucleotide

frequencies, but also allows each of the six possible
transitions between nucleotide states (i.e. A↔C, A↔G,
A↔T, C↔G, C↔T and G↔T) to occur at different rates7.

A further improvement, used in conjunction with
the abovementioned models, is the ability to
accommodate variation in substitution rates across
sites, using several methods8–10. One of the most
commonly applied methods for allowing rates to
vary among sites is the discrete gamma method,
which assumes that relative rates are distributed
according to a gamma distribution with a mean of 
1 and a variance of 1/α, where α defines the shape of
the distribution. Large values of α translate to a tiny
variance in relative rates (i.e. the rates at all sites
are almost equivalent), whereas small values (e.g.
0.01) result in an L-shaped distribution of relative
rates (most rates are low, but some rates are high).
Yang11 reviewed in depth this approach to
accommodating site-to-site substitution rate
heterogeneity, and other reviews of this and other
topics include Swofford et al.12, Huelsenbeck and
Crandall13 and Lewis14.

Some computer programs that are used to
determine phylogenies allow other options with
respect to modeling rate heterogeneity, including: 
(1) invariable sites models, in which a proportion of
sites is assumed incapable of undergoing
substitution15; (2) site-specific rates models, which
allow different rates for arbitrary subsets of sites
that correspond to different genes, introns versus
exons or different codon positions15; (3) hidden
Markov models which allow for correlation in the
rates at adjacent sites2; and (4) discrete gamma
models in which α can differ between subsets of
sites16. It is also possible to combine an invariable
sites model with a discrete gamma model, letting the
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Long restricted to the domain of molecular systematics and studies of

molecular evolution, likelihood methods are now being used in analyses of

discrete morphological data, specifically to estimate ancestral character states

and for tests of character correlation. Biologists are beginning to apply

likelihood models within a Bayesian statistical framework, which promises not

only to provide answers that evolutionary biologists desire, but also to make

practical the application of more realistic evolutionary models.

Bootstrapping: a statistical technique, first applied to phylogenetics
by Felsenstein39, in which new data sets are created by sampling
randomly  (and with replacement) from the original characters.
These new data sets (called bootstrap data sets) are of the same size
as the original. A desired quantity is computed for each bootstrap
data set and the resulting distribution is used to estimate the
dispersion that would be expected if the same number of new
independent data sets had been collected. Bootstrapping assumes
that the original characters were sampled independently.
Likelihood: a quantity that is proportional to the probability of the
data (or probability density, if the data are continuous-valued), given
specific values for all parameters in the model. The likelihood
function provides a means to estimate the parameters of the model.
Parameter values that are associated with the global maximum of

the likelihood function are termed maximum likelihood estimates
(MLEs).
Optimality criterion: a rule used to decide which of two trees is
best. Four optimality criteria are currently widely used:
Maximum parsimony – the tree requiring the fewest character state
changes is the better of the two trees.
Maximum likelihood – the tree maximizing the likelihood under the
assumed evolutionary model is better.
Minimum evolution – the tree having the smallest sum of branch
lengths (estimated using ordinary least squares) is better.
Least squares – the tree showing the best fit between 
estimated pairwise distances and the corresponding pairwise
distances obtained by summing paths through the tree is 
better.

Glossary
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gamma shape parameter (α) apply only to the
variable fraction of sites15.

This review focuses on new nucleotide sequence-
based models (codon and secondary structure
models), new applications of likelihood models
(discrete morphological characters) and a new
framework within which likelihood models can be
applied to phylogenetics (Bayesian inference). First,
models known as ‘codon models’ and ‘secondary
structure models’ allow evolutionary dependence
among nucleotide sites within the same codon and
between sites that are opposite one another in a stem
region of an rRNA gene, respectively. By contrast,
parsimony and previous likelihood models assume
that all nucleotide sites are evolutionarily
independent. Therefore, codon and secondary
structure models represent a significant step forward
by allowing recognized evolutionary correlations
between sites to be directly incorporated into a
phylogeny method. Second, likelihood is being applied
to discrete morphological characters, which have been
limited previously to the realm of parsimony analysis.
Applications that use likelihood models include the
estimation of ancestral character states and tests for
character correlation. Third, in addition to new
models, the very framework in which likelihood
models are used is changing. Likelihood models form
the basis of Bayesian statistical methods, and it is
only natural that Bayesian methods be applied to
phylogenetic problems already being addressed using
likelihood models.

Likelihood models that allow nonindependence

In 1994, Muse and Gaut17 and Goldman and Yang18

independently introduced likelihood models that
were designed to account for evolutionary
dependency among sites within codons. This is in
contrast to parsimony and previous likelihood
models, which were forced to assume independence
among sites in a gene sequence, even if the
independence assumption had been violated. For
instance, in genes that encode proteins, the three
nucleotide sites that form a single codon cannot
evolve independently of one another if there is
selection for a particular amino acid at the corre-
sponding site in the polypeptide.

Codon models
Codon models represent an important advance in
terms of the biological realism of substitution
models. Codon models take the genetic code explicitly
into account when computing the probability of a
change at a site across a branch. Thus, rather than
four possible states (A, C, G and T) there are 61 (64
possible codons, less the three stop codons), which
means that codon models require a great deal more
computational effort than classic DNA and RNA
substitution models. In particular, likelihood
methods consider each state in turn for every interior
node of a tree. Unlike parsimony, the score used for
comparing trees does not depend on any particular
combination of (unobserved) ancestral states. The
overall likelihood is a sum over all state
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A small portion of the full (61 × 61)
INSTANTANEOUS RATE MATRIX (see Glossary) for
the Muse and Gauta codon model is
illustrated (Table I). The quantities πA, πC, πG

and πT are the equilibrium nucleotide
frequencies, only three of which represent
free parameters of the model, because the
fourth can be obtained by subtraction. The
remaining two parameters in the model, α
(synonymous substitutions) and β

(nonsynonymous substitutions), are
relative rate parameters. The diagonal
elements are not shown, but can be
calculated by subtraction. All changes
between the codons that involve more than
one nucleotide substitution have an
instantaneous rate of zero. The remaining
elements represent single nucleotide
substitutions that result in a change from
one codon to another. The rate of any one

of this type of change depends on the
nucleotide frequencies (e.g. the rate is
lower for substitutions to a relatively rare
base) and the nature of the change
(synonymous versus nonsynonymous).
Reference 

a Muse, S.V. and Gaut, B.S. (1994) A likelihood
approach for comparing synonymous and
nonsynonymous substitution rates, with
application to the chloroplast genome. Mol. Biol.
Evol. 11, 715–724

Box Glossary

Instantaneous rate matrix: a square matrix of
substitution rate parameters that serves to define a
particular substitution model. The probability of
observing state j, given starting state i, changes with
time in a nonlinear fashion. The rate parameter
represents the slope of this curve evaluated at t = 0.
The elements on the diagonal are negative and equal
to the sum of the other rates in the same row. This
quantity is negative, because the probability of
observing state i, given that i was the starting state,
decreases with time.

Box 1.The anatomy of a codon model

Table I. Part of Muse and Gaut’s 61 ×× 61 instantaneous rate matrixa

Codon before  Codon after substitution (the ‘to’ state)

substitution

(the ‘from’ state) TTT TTC TTA TTG CTT CTC GGG 

(Phe) (Phe) (Leu) (Leu) (Leu) (Leu) … (Gly)  

TTT (Phe) – – – απC βπA βπG βπC 0 … 0
TTC (Phe) απT – – – βπA βπG 0 βπC … 0
TTA (Leu) βπT βπC – – – απG 0 0 … 0
TTG (Leu) βπT βπC απA – – – 0 0 … 0
CTT (Leu) βπT 0 0 0 – – –  απC … 0
CTC (Leu) 0 βπT 0 0 απT – – – … 0

GGG (Gly) 0 0 0 0 0 0 … – – –

… … … … … … … …
…
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combinations, in much the same way that the
probability of rolling a seven with two dice is a sum
over the six possible ways in which the numbers on
each die can add up to seven.

Although it would be possible to allow a different
rate for every possible transition between codons,
the estimation of so many parameters (3660 in
total) would require an unreasonable amount of
data. To keep the number of free (estimated)
parameters manageable, the two codon models that
have been proposed make some concessions. For

instance, neither model permits more than a single
change in any given instant (e.g. the rate of the
change AAA→AGC is 0). However, this is a
reasonable restriction, because two changes are
allowed to occur in two consecutive infinitesimal
periods of time.

The model by Muse and Gaut17 assigns rates to all
other possible changes (i.e. the changes that do not
require more than two nucleotide point mutations) on
the basis of two parameters that represent the rate of
synonymous and nonsynonymous substitutions,

Review

In Pagel’sa,b likelihood ratio test, two models are
considered, of which one is a more general version of
the other. Normally, the constrained model
represents the null hypothesis and is nested within
(i.e. is a special case of) the more general model.

A likelihood ratio test returns a significant result if
the data are better explained by the general model (for
which the maximum of the likelihood function is L1)
than by the constrained model that represents the null
hypothesis (for which the likelihood maximum is L0). A
ratio L1/L0 much greater than 1 indicates significance
and the likelihood ratio test statistic, defined as LR = 
−2(ln L0 – ln L1), is large and positive. LR is distributed as
a chi-squared random variable with degrees of freedom
equal to the difference in the number of free (estimated)
parameters between the two models if the null model is
perfectly nested within the unconstrained model.

The null hypothesis model for a test of correlated
evolution is based on the following instantaneous
rate matrix (Table I).

The same matrix is used for each character, but α and
β are estimated separately for each character. The
number of free parameters in the null model is thus
equal to 4. In practice, the TRANSITION MATRIX (see Glossary)
that corresponds to this rate matrix is computed for each
character (let the transition matrix for character 1 be P
and let that for character 2 be R), which allows
probabilities for specific events to be computed. For
example, the joint probability that character 1 remains in
state 0 and character 2 changes from state 0 to 1 across a
specific segment of the tree, is obtained as follows:

Pr(0→0,0→1) = P(0→0)R(0→1) [1]
The fact that the joint transition probability is the

product of the separate transition probabilities for
each character makes explicit the assumption of
independence in this model.

The general model enables (but does not force)
the evolution of the two characters to be correlated
and can account for simultaneous changes in the
characters by using a single matrix (Table II).

This model has eight free parameters. The
maximum-likelihood value under this model
approaches that of the null model if the characters are
evolving independently of one another. As in the
codon models, a rate of 0 is specified for events that
require two changes. The difference in the number of
free parameters is 8−4= 4, so the likelihood ratio test
statistic is nominally distributed as a χ2 random
variable with four degrees of freedom. LR might not
follow a χ2 distribution in this case, because the
models are not strictly nested (owing to the four rates
with values of 0 in the general model, but see Ref. b).
Pagel provides (in his computer program, DISCRETE)
the means for using parametric bootstrapping to
determine the significance level without making this
distributional assumption.

References

a Pagel, M. (1994) Detecting correlated evolution on phylogenies:
a general method for the comparative analysis of discrete
characters. Proc. R. Soc. London B Biol. Sci. 255, 37–45

b Pagel, M. (1997) Inferring evolutionary processes from
phylogenies. Zoologica Scripta 26, 331–348

Box  Glossary

Transition matrix: a matrix that shows the conditional probability

of observing state j given starting state i after some arbitrary amount

of time (t) for each pair of states i and j. This matrix can be derived

from the instantaneous rate matrix, which describes fully the

process at any given instant. (In this context, ‘transition’ should not

be confused with the same term that is used in conjunction with

‘transversions’.)

Box 2. Likelihood ratio test for character correlation

Table I. Instantaneous rate matrix for the null

hypothesis assuming evolutionary independence

Changing from: Changing to:

0 1

0 −α α
1 β −β

Table II. Instantaneous rate matrix for the general

hypothesis allowing evolutionary correlation

‘After’ state ‘Before’ state

0, 0 0, 1 1, 0 1, 1

0, 0 −a−b a b 0
0, 1 c −c−d 0 d
1, 0 e 0 −e−f f
1, 1 0 g h −g−h
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Bayesian inference involves interplay
between the likelihood function and the
prior and posterior distributions. To
illustrate this concept, consider the
following simplistic problem. Suppose a
black marble has come from one of two
urns that each contain millions of marbles.
The challenge is to decide from which urn
the marble was removed. Suppose further
that it is known that 40% of the marbles in
urn A and 80% of the marbles in urn B are
black. Choosing a marble from urn B
would be clearly more likely to yield a
black marble. Nevertheless, it is instructive
to calculate the posterior probability that
the marble came from urn B and to
compare this to the posterior probability
that it came from urn A.

Bayes’ Rule, which is used to obtain the
posterior probability from the likelihood and
prior probability, is based on the definition of
conditional probability. Accordingly, for two
events, A and B, the joint probability of A and
B equals the conditional probability of one,
given the other (i.e. ‘A given B’ or ‘B given
A’) multiplied by the probability of the
condition (Eqn 1):

Pr(A,B) = Pr(A)Pr(BA) = Pr(B)Pr(AB) [1]

Focusing only on the equation on the right,
dividing both sides by Pr(A) yields Bayes’
Rule (Eqn 2):

[2]

In the Bayesian framework, A
represents data and B a hypothesis (or
parameter):

Pr(BA) is termed the posterior probability
and is the probability of the hypothesis (or
parameter value), given the data.

Pr(AB) is termed the likelihood and is
the probability of the data, given the
hypothesis (or parameter value).

Pr(B) is termed the prior probability and
is the unconditional probability of the
hypothesis (or parameter value). This must
be specified by the investigator without
reference to the data.

Pr(A) is the unconditional probability of
the data, which can be obtained, using the
law of total probability, by calculating the
sum of the product Pr(B)Pr(A/B) for all
possible values of B. This serves as a
normalizing constant, which ensures that

the sum of the posterior probabilities is 1.
In this example, there is only one

datum (the black marble). Therefore,
computing the likelihood (probability of
the data, given the hypothesis) is
straightforward and is simply the
probability that a single marble is black,
given a particular urn hypothesis. The
likelihood is 0.4 for urn A and 0.8 for urn B.
If maximum likelihood were being used to
decide between the two urns, urn B would
be selected, because the likelihood of
drawing a black marble is greater for urn B
than for urn A (0.8 versus 0.4). However, to
choose a prior distribution that reflects
complete prior ignorance of which urn was
used when drawing the black marble, we
specify that the prior probability of each
urn is 0.5. The normalizing constant is
therefore (Eqn 3):

Pr(black marble chosen) = 

(0.5)(0.4) + (0.5)(0.8) = 0.6 [3]

The posterior probability can now be
computed for each urn as follows (Eqns 4,5):

[4]

[5]

Thus, the probability that the black
marble came from urn B, given the datum,
is two thirds. The posterior distribution is
often described as an updated version of
the prior distribution. In this case, the
posterior distribution (0.33, 0.67)
represents an updated version of the prior
distribution (0.5, 0.5), the evidence used for
the update being the fact that the single
marble drawn was black. A major benefit of
taking the Bayesian perspective lies in the
fact that it produces probabilities for

hypotheses of interest, which is exactly
what investigators desire. Likelihoods are
useful, but not easily interpreted, because
they represent the probability of the data
given the hypothesis rather than the
probability of the hypothesis given the
data.

A criticism of Bayesian approaches is
the subjectivity of the prior. Note that in
the example above (with only a single
datum), it would be necessary to stipulate
a prior probability for urn A that was
greater than two thirds to ‘rig’ the analysis
(that is, to ensure that the conclusion is in
favor of urn A). While the posterior
distribution always changes if the prior is
changed, the conclusions are usually not
overly sensitive to the prior and any effect
of the prior decreases as the amount of
data increases. A counterargument to the
subjectivity criticism is that subjectivity
that is inherent in the prior is explicit and
must be defensible.

In the example above, discrete
hypotheses were used. However,
continuous parameters are more often the
targets of Bayesian analyses. In such cases,
probability density functions replace the
probabilities of discrete hypotheses, but
Bayes’ rule is still applicable. Figure I
illustrates the prior and posterior density
curves for the parameter p (probability of
heads) in a simple coin-flipping experiment
in which six heads were observed for ten
flips. Two different prior distributions were
used, namely a flat [Beta(1,1), Fig. Ia] and a
more informative [Beta(2,2), Fig. Ib] prior
distribution. As an example of how such
curves could be used, the posterior
probability that p is between 0.45 and 0.55
could be obtained by integrating the
posterior density curve between 0.45 and
0.55.

Box 3. Prior and posterior probabilities
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Fig. I. Prior and posterior density curves for p (probability of heads) in a coin-flipping experiment, illustrating a
flat [Beta(1,1)] (a) and an informative [Beta(2,2)] (b) prior distribution.
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respectively (Box 1). By estimating only five
parameters (the two rate parameters and three
nucleotide frequency parameters), the entire 61 × 61
matrix of transition probabilities required to compute
the likelihood can be specified. The Muse and Gaut
codon model is implemented in Muse and Kosakovsky’s
‘Hypothesis Testing Using Phylogenies’ (HYPHY)
computer package19. The commonly employed HKY85
model5 also requires five parameters, but the two rate
parameters in this case represent the rates of
transitions and transversions, rather than
nonsynonymous and synonymous substitutions.

The codon model proposed by Goldman and Yang18

goes a step further in allowing both
transition–transversion bias and synonymous-

nonsynonymous substitution bias. This model also
allows biochemical differences among amino acids to
play a role in determining the rate at which changes
among amino acids occur. For example, a change from
one hydrophobic to another hydrophobic residue can
occur at a higher rate than a change from a hydrophobic
to a hydrophilic residue. Goldman and Yang’s model is
implemented in Yang’s Phylogenetic Analysis By
Maximum Likelihood (PAML) computer package16.

Secondary structure models
Secondary structure models represent an attempt to
add biological realism to analyses of genes with RNA
products that have a secondary structure. Tillier and
Collins20 and Muse21 independently introduced

TRENDS in Ecology & Evolution Vol.16 No.1 January 2001

http://tree.trends.com

34 ReviewReview

The principles behind Markov Chain
Monte Carlo (MCMC) methods can be
illustrated with a simple analogy. A robot
is allowed to ‘walk’ in a square field. The
robot takes steps that vary in length and
randomly selects a direction for each
step. The robot never leaves the field,
because if a step is about to take it
outside the boundary, it is reflected back
into the field. A representative path
followed by such a robot is illustrated in
Fig. Ia–c for 100 (Fig. Ia), 1000 (Fig. Ib)
and 10 000 steps (Fig. Ic). (The path lines
have been removed from Fig. Ic to clarify
the distribution of steps.) Note that, even
though the robot is walking randomly,
eventually every portion of the field is
visited if it is allowed to walk for long
enough.

Now suppose that two hills are present
(represented by bivariate normal densities
– one uncorrelated and with a correlation
coefficient of 0.9) and the robot is
programmed to use the following simple
rules (based on the local environment)
when taking steps:
• If a proposed step will take the robot

uphill, it automatically takes the step.
• If a proposed step will take the robot

downhill, it divides the elevation at the
proposed location by its current
elevation and only takes the step if it
draws a random number (uniform on
the open interval 0,1) that is smaller
than this quotient.

• The proposal distribution is
symmetrical, which means that the
probability of proposing a step from

point A to B is the same as that of
proposing a step from point B to A.
By following these rules, the path

followed by the robot will take it to points
in the field in proportion to their
elevation, with higher points being
visited more often than lower ones.
Letting the robot begin its walk near the
upper left-hand corner, its movements
are illustrated in Fig. Id–f for 100 (Fig. Id),
1000 (Fig. Ie) and 10 000 steps (Fig. If).
(As in Fig. Ic, path lines are not shown in
Fig. If.)

The robot’s movements can be used to
estimate the volume under any specified
portion of this landscape. In the example
above, if the first few steps (called the
‘burn-in’ stage) are disregarded then the
resulting distribution of points is a good
approximation of the landscape, which is a
mixture of two separate bivariate normal
densities. The longer the robot is allowed to
walk, the closer the approximation
becomes.

This analogy also illustrates one of the
pitfalls of approximating surfaces using
MCMC methods. Were the robot to take
only a few steps, it is clear that it would not
be likely to encounter the second hill.
Therefore, care should be taken to ensure
that Markov chains are run for long enough
to provide a good approximation of the
surface over the entire parameter space.
One simple way to investigate this is to run
several chains, each starting from a
different (randomly selected) starting point.
If the resulting approximations are
substantially different, this indicates that
none of the chains were run for long
enough.

Box 4. Markov Chain Monte Carlo methods

TRENDS in Ecology & Evolution
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models that can account for the evolutionary
dependence between nucleotide sites that are
opposite one another in the stem regions of an RNA
gene product. Following substitutions in these sites,
selection favors compensatory substitutions to
preserve the stability of stem regions and hence also
the secondary structure that is needed for the
catalytic activities of these RNA molecules. Muse’s21

model requires only a single additional free
parameter to account for the evolutionary correlation
between paired stem sites and reduces to a standard
nucleotide substitution model (the HKY85 model) if
no such correlation exists in the stem regions.

Applications of likelihood to discrete morphological

characters

The most common method for obtaining estimates of
ancestral character states for discrete morphological
characters involves parsimony optimization,
although likelihood-based alternatives have been
proposed22–24. Cunningham25 reviewed ancestral
character state estimation. I will therefore focus on a
different application of likelihood models in
inferences concerning morphological features,
namely testing for evolutionary correlation.

Pagel26 described a likelihood ratio test (Box 2) that
allows an investigator to determine whether two
discrete morphological traits are correlated to a greater
extent than can be explained simply by the phylogeny.
Two traits are evolutionarily correlated if a change in
state of one of the characters predisposes the other
character to change state soon after. For example, the
evolution of feathers on the forelimbs of dinosaurs is
correlated with the evolution of wings. In this case, the
appearance of feathers for reasons other than flight27

apparently encouraged a change from the state ‘wings
absent’ to ‘wings present’, which might not have 
otherwise occurred. Phylogenies impose correlations
on characters, even if those characters evolve
independently. Pagel’s test addresses whether an
evolutionary correlation exists between two characters
that acts to increase the observed correlation above and
beyond the level imposed by the phylogeny.

Suppose that two characters each change state just
once on a phylogeny and happen to change along the
same segment of the phylogeny. At first sight, this
coincidence might appear to be the result of an
evolutionary correlation. However, evidence to support
this interpretation would be weak, because the co-
evolutionary event occurred only once. By contrast, the
evidence of correlated evolution of the two characters
would be stronger if changes in the two characters co-
occur on many different parts of the phylogeny. Pagel
and others have emphasized the importance of using
explicit phylogeny-based methods for assessing the
strength of evidence for such correlations, because the
number of degrees of freedom available for the test can
otherwise be greatly exaggerated26.

In Pagel’s test, the null hypothesis is that the two
characters of interest have evolved independently.

The general (unconstrained) model allows for some
correlation in the evolution of the two characters.
The null model is a constrained version of the general
model, because the independence assumption
constrains the correlation to equal zero. The
maximum of the likelihood function under the
unconstrained model will, thus, approach that of the
constrained model as the correlation approaches
zero. If the true correlation is not zero, then the
maximum of the likelihood function under the
general model will be significantly larger than that
which can be attained by the null model, reflecting
the better fit of the general model. Pagel argues that
examination of the estimated values of the
parameters of the general model enables a
determination of which character is most likely to
have changed state first, precipitating a change of
state in the other character. However, such fine-
scaled interpretations should be made with caution,
because several parameters are estimated under this
model using data from only two characters.

An interesting example of the application of
Pagel’s method involves testing whether switches to
mutualism in fungi, either in the form of association
with algae (i.e. lichenization) or liverworts, are
associated with changes in the rate of molecular
evolution28. Lutzoni and Pagel28 began by classifying
a group of closely related Omphalina mushroom
species as either fast (F) or slow (S) evolving and as
either mutualistic (M) or nonmutualistic (N).
Estimates of the rate of evolution were based on
nuclear ribosomal DNA (nrDNA) from the 25S and
5.8S genes and the internal transcribed spacer (ITS)
region. They then obtained likelihoods for both the
null model (assuming independent evolution of both
mutualism and the rate of molecular evolution) and
the general model (in which the rate of evolution and
mutualism can be correlated). The three sets of data
fit the correlation model better than the
independence model. However, the improved fit was
only significant for the 25S data. Therefore, Lutzoni
and Pagel28 concluded that there is a correlation
between the rate of molecular evolution at the 25S
nrDNA locus and the evolution of mutualism. These
authors also looked at individual rate parameters
that were estimated in the nonindependence model.
For the 25S data, the estimated rate for the
transition M,S→M,F was significantly greater than
that for N,S→N,F, indicating that increases in the
rate of molecular evolution are more likely to occur in
lineages that are already mutualistic. Also (again for
the 25S data), the rate of the transition N,S→M,S
was significantly greater than that for N,S→N,F,
indicating that the tendency for slowly evolving
lineages to evolve mutualism is greater than the
tendency for nonmutualistic lineages to evolve fast
rates of molecular evolution. This ability to tease
apart the correlations among characters sets Pagel’s
method apart from other methods, which simply
assess whether a correlation exists.
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A Bayesian future for model-based phylogenetics?

Likelihood methods in phylogenetics take longer than
other methods. For large data sets, it is not uncommon for
single heuristic searches to take days, if not months, for a
computer to complete. Even when complete, such
analyses only represent a point estimate of a phylogeny. A
measure of support for individual clades requires BOOT-
STRAPPING, which effectively turns an already time
consuming analysis into one that requires a far greater
amount of time. This situation might eventually be
ameliorated by taking a Bayesian approach. Larget and
Simon29 have summarized the recent literature on Baye-
sian approaches to making inferences about
phylogenies29–34 (S. Li, PhD thesis, Ohio State University,
1996; B. Mau, PhD thesis, University of Wisconsin, 1996)
and have presented novel algorithms to estimate
simultaneoulsy the tree topology and provide a measure
of nodal support. These algorithms have the potential to
transform model-based phylogenetic inference.

Bayesian approaches to statistical problems involve
making inferences using the posterior distribution (or
simply ‘the posterior’) of hypotheses or parameters of
interest (Box 3). This is feasible when problems are
simple enough for an analytical formula for the
posterior to exist. However, for most ‘real’ problems,
models involve several parameters and, thus, a
complicated joint posterior for which there is no simple
formula. The posterior for an unrooted phylogenetic
tree, for example, involves at least the topology (a
discrete parameter) and 2N–3 branch length
parameters, where N is the number of tip nodes.

Fortunately, a technique exists for approximating
complicated posteriors, such as those that are
characteristic of problems that involve phylogenies.
The technique is called Markov Chain Monte Carlo
(MCMC) or the Metropolis–Hastings algorithm35,36.
The idea underlying MCMC is that a Markov chain
that takes the form of a correlated random ‘walk’
through the parameter space can be conducted in such
a way that any probability distribution (however
complicated) can be approximated by periodically
sampling values (Box 4). The approximation can be
made arbitrarily accurate by running the Markov
chain for a sufficient number of steps.

In phylogenetic applications, each step in a
Markov chain involves a random modification of the
tree topology, a branch length or a parameter in the
substitution model (e.g. substitution rate ratio). If the

posterior that is computed for a proposed step is
larger than that of the current tree topology and
parameter values, the proposed step is taken.
Proposed steps that result in downhill moves on the
posterior surface are not automatic and depend on the
magnitude of the decrease. The function that
determines the probability of a downhill step in this
case is based on the ratio of the new and current
posteriors. Using these rules, the Markov chain 
visits regions of tree space (sensu lato, including the
tree topology space and dimensions for other
parameters, such as branch lengths) in proportion to
their posterior.

For a practical example of how this method could be
used to answer a question posed by a systematist,
consider the question, ‘What is the probability that
group X is monophyletic?’ To answer this question, we
would run the Markov chain, sampling trees 
periodically. Suppose that in a sample of 100 000 trees,
group X appeared as a monophyletic group in 74 695
trees. The probability (given the observed data) that
group X is monophyletic is approximately 0.74695,
because the Markov chain visits trees in proportion to
their posterior probability. This value is a natural
measure of nodal support and is easier to interpret
than existing measures that are based on parsimony
(decay index and bootstrap values) or likelihood
(bootstrap values). Larget and Simon29 make the point
that only one run of the Markov chain is needed to gain
such information, compared to the many bootstrap
runs needed in a maximum likelihood analysis.

Another important application of MCMC in Bayesian
phylogenetic inference involves estimating divergence
times in a ‘relaxed molecular clock’ model, that is, a
model in which substitution rates vary across the
phylogeny, but in which rates in descendant lineages are
correlated with the rate in their common ancestor37,38.
MCMC methods provide Bayesian ‘credibility intervals’
for divergence dates without having to assume a perfect
clock and also allow considerable flexibility (and even
uncertainty) in how the clock is calibrated.

The ability of MCMC models to provide answers to
virtually any question that might be imagined by the
investigator is a thrilling prospect. The ability to
provide answers much more efficiently than is
possible with current likelihood methods should
make the Bayesian approach to phylogenetics well-
worth watching in the next few years.
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During the past decade, the explosion of molecular
techniques has led to the accumulation of a
considerable amount of comparative genetic
information at the population level. At the same time,
recent advances in population genetics theory,
especially coalescent theory, have generated powerful
tools for the analysis of intraspecific data. These two
developments have converted intraspecific
phylogenies into useful tools for testing a variety of
evolutionary and population genetic hypotheses.
Several phylogenetic methods, especially NETWORK

(see Glossary) approaches, have been developed to

take advantage of the unique characteristics of
intraspecific data. In this article, we summarize some
population genetics principles, explain why networks
are appropriate representations of intraspecific
genetic variation, describe and compare available
methods and software for network estimation, and
give examples of their application.

Gene genealogies

Given a sample of GENES, the relationships among
them can be traced back in time to a common
ancestral gene. The genealogical pathways
interconnecting the current sample to the common
ancestor constitute a GENE TREE or gene genealogy. A
gene tree is the pedigree of a set of genes and exists
independently of potential mutations. The only
portion of a gene tree that can generally be estimated
with genetic data is that portion marked by the
(potential) mutational events that define the different
ALLELES (Box 1). This lower resolution tree is the allele

Intraspecific gene evolution cannot always be represented by a bifurcating tree.

Rather, population genealogies are often multifurcated, descendant genes

coexist with persistent ancestors and recombination events produce reticulate

relationships.Whereas traditional phylogenetic methods assume bifurcating

trees, several networking approaches have recently been developed to

estimate intraspecific genealogies that take into account these population-

level phenomena.

Intraspecific gene genealogies:

trees grafting into networks

David Posadaand Keith A. Crandall
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