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Abstract—To broaden domain knowledge and enable advanced
analytics, machine learning (ML) algorithms increasingly utilize
comprehensive datasets across diverse sectors. However, these
disparate datasets held by various stakeholders raise concerns
over data heterogeneity, privacy, and security. Decentralized ML
research aims to protect data privacy and integrate knowledge
bases, especially knowledge graphs, to address data heterogeneity
challenges. Yet, the question of how to foster trustworthy collab-
orations in decentralized ML ecosystems remains underexplored.
This study pioneers two innovative socio-economic mechanisms
designed to ensure dependable collaborations with socio-ethical
integrity within a decentralized knowledge inference framework,
enabling participants to share knowledge while maintaining data
privacy and ethical standards. We employ an evolutionary game
theory model to analyze the dynamic interactions between re-
questors and workers, focusing on achieving a stable equilibrium
through theoretical and numerical evaluations. Furthermore, we
explore how various critical factors, such as incentive schemes
and the accuracy of identifying malicious workers, influence
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the system’s equilibrium, providing insights into optimizing
collaborative efforts in decentralized ML ecosystems.

Index Terms—Decentralized computing, evolutionary game
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I. INTRODUCTION

I
N the digital era, sensors, machines, smart edge devices,

or personal mobile computing devices are incessantly pro-

ducing vast quantities of data on a daily basis, compelling

the adoption of sophisticated analytical methodologies. Among

these, machine learning (ML) algorithms markedly outshine

traditional approaches in navigating the complexities of ex-

tensive data warehouses [1], thereby significantly augmenting

efficiency and competitive advantage in sectors such as manu-

facturing, logistics, and supply chain management. The recent

evolution of ML, especially through advanced large language

models (LLMs) such as GPT-4 and Gemini, has ushered in

breakthroughs in natural language processing domains, revo-

lutionizing capabilities in text analysis, linguistic translation,

and the generation of domain-specific responses. Such advance-

ments underscore the transformative impact of ML algorithms

and LLMs on many industry practices [2], [3].

It is widely acknowledged that the performance of a machine

learning (ML) algorithm is intrinsically linked to the volume

and integrity of the data it processes. However, this data is fre-

quently distributed across disparate locations, held by various

stakeholders. In practice, these stakeholders often possess ex-

pertise in distinct facets of the production or distribution chain.

Consequently, collaboration among diverse stakeholders be-

comes essential to navigate the complexities of modern supply

chains, driving innovation, ensuring customer satisfaction, and

adhering to regulatory standards. For example, the integration

of sensors, machines, smart edge devices, and personal mobile

computing devices owned by different stakeholders through

industrial Internet of Things (IoT) networks leads to the forma-

tion of sophisticated industrial IoT ecosystems. The availability

of real-time data enables these geographically separated, au-

tonomous systems to work together seamlessly as if they were

a single entity. This unified system is capable of conducting
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distributed data sharing and advanced analytics, facilitating es-

sential business processes within industrial IoT frameworks.

One notable application is the execution of advanced intelligent

fault diagnosis procedures, critical for maintaining the system’s

overall reliability, as highlighted in [4]. Thus, collaboration

through knowledge sharing is beneficial when obtaining ML

algorithms or LLMs for analysis or predictions for business

operations that involve different stakeholders.

However, the pursuit of collaborative efforts in deploying

ML techniques across various stakeholders has unearthed two

primary socio-technical challenges. First, privacy and secu-

rity concerns emerge as critical socio-ethical issues, especially

within complex systems operated by disparate entities [5]. To

address these concerns, distributed ML approaches like feder-

ated learning have been extensively explored. Federated learn-

ing enables the sharing of knowledge by training an ML model

on local datasets held by each stakeholder, thus mitigating data

privacy and security issues [6]. An industrial-scale federated

learning framework tailored for LLMs is discussed in [7]. Ad-

ditionally, adhering to the decentralized ethos of the Web 3.0

paradigm offers a pathway to surmount privacy and security

challenges. This involves leveraging socio-technical innova-

tions such as blockchain, consensus algorithms, and smart con-

tracts, facilitating collaboration among parties without the need

for central oversight or mutual trust [8]. The second challenge

revolves around data heterogeneity, complicating distributed

ML and knowledge sharing among stakeholders. To navigate

this challenge, research has focused on employing universal

knowledge bases (KBs), represented through knowledge graphs

known for their adeptness at managing data heterogeneity, as a

data source for ML algorithms. For instance, the application

of intelligent fault diagnosis using KBs represented by knowl-

edge graphs is investigated in [4]. Furthermore, the efficacy

of LLMs is enhanced when trained on knowledge graphs as

the data source [9], [10], addressing the “black-box” nature

and hallucination issues associated with LLMs [11]. In con-

clusion, for ML algorithms to be effectively integrated into

industrial settings and deliver comprehensive analytics or pre-

dictions, they must support collaborative knowledge sharing.

This involves aggregating domain knowledge held by various

socio-economic stakeholders through well-structured knowl-

edge representations, such as knowledge graphs. Doing so in a

decentralized fashion is crucial for overcoming the challenges

of privacy and security, as well as data heterogeneity.

To facilitate collaborative knowledge sharing across dis-

tributed knowledge graphs maintained by distinct stakehold-

ers, Ref. [12] presents a novel decentralized framework. This

framework empowers participants to collaboratively train a

reasoning model using a distributed path-based reasoning al-

gorithm. This algorithm integrates data from their respective

local knowledge graphs into a reasoning model. Knowledge

dissemination is facilitated through the sharing of the trained

reasoning model, allowing all participants to benefit from the

collective insights. The approach addresses privacy, security,

and data heterogeneity challenges by leveraging smart contracts

and blockchain technology for participant interactions, along-

side a decentralized knowledge inference algorithm capable of

learning from various independent knowledge graphs without

the necessity for direct data exchange. In this framework, a

participant, designated as the requestor, initiates the training

process, while subsequent participants evaluate their ability to

contribute as workers utilizing their local knowledge graphs.

The requestor then selects the most suitably evaluated worker

for collaboration. Given that knowledge is deemed a critical

asset, the development of effective socio-economic incentive

mechanisms is essential. These mechanisms should encourage

participants to share pertinent knowledge timely and identify

and exclude malicious participants to prevent the dissemination

of harmful data.

Within the framework proposed in [12], requestors select

workers based on their self-evaluation results in descending

order. Consequently, the quality of the model trained by the

framework largely depends on these self-evaluation results. If

requestors incentivize workers to participate in a knowledge-

sharing task with rewards, self-interested workers might be

motivated to inflate their evaluation results. However, the au-

thors of [12] assume that workers will report their evaluation

outcomes honestly, leading to the development of efficient and

accurate inference models. This assumption does not consider

the potential for worker dishonesty driven by self-interest. Such

dishonesty could conflict with the requestor’s objectives, high-

lighting a critical need for further investigation into the frame-

work’s design to ensure robustness and reliability in real-world

applications. In this research, we pioneer the introduction of

two mechanisms aimed at fostering reliable collaborations with

socio-ethical integrity within the decentralized framework for

knowledge inference proposed in [12]. The first mechanism we

introduce is a reputation system engineered to evaluate the trust-

worthiness of workers. This system enables requestors to make

informed selections of workers by considering both the work-

ers’ self-assessments and their established reputation scores.

The second mechanism, a spot-check system, allows requestors

to perform concurrent evaluations by engaging multiple work-

ers in collaborative training tasks. This approach is instrumental

in identifying workers who may have inaccurately represented

their capabilities, thus promoting socio-ethical integrity. To dis-

sect and understand the dynamics of decision-making between

workers and requestors under these mechanisms, we employ

evolutionary game theory. This theoretical model aids in analyz-

ing how both parties adapt their strategies over time, based on

the outcomes of their interactions. Our findings underscore the

critical role of spot-checks in effectively identifying dishonest

workers, which is paramount in encouraging integrity among

workers and optimizing the collective socio-economic welfare

of the system. The core contributions of our study are detailed

as follows:

1) This is, to our knowledge, the first work to integrate a rep-

utation system alongside a spot-check mechanism within

a decentralized knowledge sharing framework, leveraging

a decentralized machine learning algorithm. This novel

socio-economic approach aims to ensure worker honesty

and reliability.

2) We apply evolutionary game theory to meticulously

model the complex interplay between workers and
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requestors, taking into account their strategic decision-

making processes. Our analysis further explores how var-

ious key factors, such as the incentives for participation

and the effectiveness of identifying dishonest partici-

pants, impact the system’s equilibrium and socio-ethical

integrity.

3) Our theoretical deductions regarding the impact of these

factors are validated through numerical evaluations. No-

tably, our results highlight the paramount importance of

the precision of requestors’ spot-checks in fostering trust-

worthy collaborations.

The remainder of this article is structured as follows: Sec-

tion III provides an in-depth description of the proposed repu-

tation and spot-check mechanisms for ensuring socio-ethical in-

tegrity. In Section IV, we present the evolutionary game model

and analyze the equilibrium states of the system with regard to

socio-ethical integrity. Section V offers a detailed account of

the simulations conducted to evaluate the effectiveness of these

socio-economic models in maintaining socio-ethical integrity.

Section VI concludes the article.

II. RELATED WORK

A. Machine Learning Algorithms for Knowledge Graphs

Stakeholders across various domains collaborate to deliver

final products, necessitating distributed ML algorithms for en-

hanced analytics and predictions. This collaboration often faces

the challenge of data heterogeneity, as each stakeholder may

use unique data structures for their datasets. Addressing this,

knowledge graphs serve as a universal knowledge base, utilizing

graph-structured models like resource description framework

(RDF) triples to store and interlink entity descriptions, encap-

sulating both entities and their semantic relationships. In [13],

the authors introduced TransE, an algorithm that represents en-

tities and relations as low-dimensional vectors in an embedding

space, enabling the prediction of relationships between two

entities by analyzing the differences between their embeddings.

Authors in [14] expanded upon TransE to address one-to-many

and many-to-many entity relationships by mapping the knowl-

edge graph into a continuous vector space, enabling the ap-

plication of machine learning algorithms on these embeddings

to deduce specific relationships between entities. Despite the

utility of large-scale knowledge graphs, exhaustively verifying

the existence of specific relationships between two ontologies

is both time and resource-intensive. To address this, knowledge

graphs can be analyzed using graph topology algorithms, treat-

ing subjects and objects as vertices, and predicates as paths

connecting these vertices. The path ranking algorithm (PRA)

[15] is a notable method for reasoning within graphs, utilizing

a random walk to traverse from a head entity h to an end entity

t across specified lengths. For a given entity pair (h, t) and a

path r, PRA computes the feature value as the probability of

a random walk reaching t from h via r. This probability aids

in determining the presence of a particular relation r between

(h, t), with path feature weights refined through logistic regres-

sion. Although PRA offers a robust framework for reasoning

across extensive knowledge graphs, the unguided enumeration

of paths remains computationally demanding. To enhance ef-

ficiency, [16] introduced a path-constrained version of PRA,

focusing random walks on paths pertinent to a target entity

within a constrained length during training. Moreover, [17]

improved the predictive capability of path-constrained PRA by

integrating syntactic patterns from text corpora and semantic

patterns from background knowledge. Primarily applied for

link prediction and knowledge base completion, PRA aims

to discern the existence of a relationship between two nodes,

facilitating the discovery of new relations in applications.

B. Decentralized Machine Learning

Decentralized ML has been widely adopted in edge-based

ML, which markedly diminishes delays and bolsters ML appli-

cation efficacy in real-time scenarios. Meanwhile, distributed

knowledge inference has been studied to tackle the scalability,

performance, and KB isolation issues. However, such edge

intelligence mandates the orchestration among diverse ML ser-

vices across end devices, edge nodes, and cloud platforms, pre-

senting technical challenges. These include optimizing the al-

location and security of decentralized computational resources,

establishing connectivity among distributed edges for collab-

orative data management, and safeguarding distributed train-

ing and inference processes on confidential datasets [18]. To

tackle the privacy and security issue, emerging technologies

like blockchain, consensus algorithms, and smart contracts are

increasingly explored to facilitate collaboration in decentralized

systems without the need for central control or mutual trust.

This trend includes blockchain-based methodologies for decen-

tralized federated transfer learning [19], [20], trading systems

for federated learning [21], and decentralized mechanism for

distributed path-based reasoning using distributed knowledge

graphs [12], highlighting the diverse applications and poten-

tial of blockchain technology in enhancing decentralized ML

processes and collaboration. In this work, we explore incentive

mechanisms for the decentralized mechanism for distributed

path-based reasoning using distributed knowledge graphs pro-

posed in [12].

C. Incentivization and Evolutionary Game Theory

Focus on incentivization within decentralized machine learn-

ing is increasing [22], with smart contracts being explored

to motivate end device participation in decentralized learn-

ing frameworks [23]. Evolutionary game theory, pivotal in

analyzing strategic interactions within dynamically evolving

populations, merges classical game theory, evolutionary biol-

ogy, and mathematical modeling. This approach contrasts with

classical game theory’s assumption of fully rational players

in a transparent rule set. It accounts for bounded rationality

and informational constraints, diverging from traditional game-

theoretical models that feature abrupt strategic shifts and ma-

nipulative strategies [24]. Widely applicable, evolutionary game

theory informs strategies in industrial and economic sectors.

It elucidates strategic interdependencies among stakeholders,

impacting decision-making processes [25] and incorporates

psychological factors in strategy formulation [26]. In industry,
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it is a key tool for analyzing dynamics in different indus-

tries [27], [28]. Its utility extends to IoT task offloading [29],

crowdsourcing task distribution [30], and blockchain incentive

mechanisms [31], demonstrating its broad applicability in solv-

ing complex, real-world challenges. Furthermore, integrating

IoT devices with blockchain technology ensures a secure and

privacy-preserving IoT platform. An evolutionary game-based

pool selection algorithm is proposed for IoT devices to choose

an optimal cloud mining pool for blockchain mining tasks [32].

In [33], evolutionary game theory is leveraged to assist users in

selecting the most suitable server and code configurations for

opportunistically coded distributed computing, optimizing the

execution time for computationally intensive tasks. While exist-

ing studies primarily aim to incentivize computational resource

contributions, this paper proposes a novel incentive mechanism

designed to facilitate knowledge sharing among participants in

a decentralized setting, addressing a vital aspect that has been

less explored in the literature. Furthermore, in this work, we

use evolutionary game theory to model and analyze the decision

process of participants of a decentralized knowledge inference

framework with our proposed incentive mechanism.

III. SYSTEM DESIGN

In this work, we introduce an innovative incentive mech-

anism tailored for the decentralized framework designed for

crowdsourcing knowledge inference tasks, as proposed in [12].

This framework facilitates collaborative training by allowing

a requestor to initiate a request, to which workers respond by

self-evaluating their capabilities to fulfill the request. They then

communicate their self-assessments as confidence indicators to

the request matching interface, which is orchestrated through a

smart contract. The requestor proceeds to select the worker with

the most favorable confidence indicator for collaborative train-

ing. However, this model presupposes the veracity of workers’

self-reported confidence levels and does not address the critical

role of compensation as an incentive for workers to engage in

collaborative training tasks.

To mitigate these concerns, we introduce a novel mechanism

in which compensation from requestors is securely predeposited

into a smart contract and is automatically transferred to workers

upon successful task completion, as illustrated in Fig. 1. This

mechanism is designed with the aim of optimizing the utility

for both workers and requestors. Workers, under this system,

have motivate to report higher confidence indicators to increase

their chances of being selected for tasks, thus augmenting their

potential earnings. Conversely, requestors strive to achieve the

most superior results at the lowest possible cost. They favor

a system that guarantees worker honesty, thereby averting the

risk of financial resources being diverted to fraudulent workers,

which could result in inferior models and diminished invest-

ment returns.

Evidently, the accuracy of workers’ reported confidence lev-

els is pivotal for the system’s efficacy. As highlighted in [12],

the confidence indicator—reflecting the degree of alignment be-

tween the knowledge graphs of requestors and workers—plays

Fig. 1. Workflow of the proposed mechanism.

a critical role in influencing the outcomes of collaborative train-

ing. Generally, a higher confidence indicator is associated with

improved training performance. Specifically, the system em-

ploys path-based reasoning algorithms for decentralized knowl-

edge inference, executing random walks on the graph to identify

paths from a head entity h to a target entity t within defined

lengths. An essential component of collaborative is pinpointing

the handover entity ehq within the worker’s local knowledge

base. The absence of ehq can result in the reasoning agent

encountering a dead-end, adversely affecting training efficacy.

Therefore, even with a high degree of overall correspondence

between knowledge graphs, the lack of key entities like ehq can

hinder the enhancement of the trained reasoning model. This

raises a challenge for requestors in determining whether dimin-

ished training quality is due to inaccurately reported confidence

levels. To address this, we suggest the implementation of a

reputation system for workers alongside a spot-check mecha-

nism for requestors. These measures are aimed at evaluating

and fostering worker honesty, thereby enhancing the integrity

and effectiveness of the collaborative training process.

A. Reputation Mechanism Design

In conventional auction systems, requestors typically rank

multiple bidding workers according to assigned weights, se-

lecting the highest-ranked or a few top-ranking individuals for

tasks. As highlighted in [12], such rankings have traditionally

relied exclusively on workers’ self-assessed confidence indi-

cators, thereby creating a loophole for workers to overstate

their confidence for better selection prospects. To address this

issue, we introduce a novel reputation system, which assigns

each worker a dynamic reputation value reflective of their hon-

esty throughout the operation of the system. In this enhanced

mechanism, the final ranking of a worker is a function of both

their reputation and confidence levels. The smart contract in

this framework accordingly arranges the participating workers

for collaborative training, taking into account a combination of

their confidence indicators and reputation scores. This approach

effectively mitigates the risk of selecting malicious workers

who frequently submit inflated self-evaluations, thereby safe-

guarding the integrity and accuracy of the training process.
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Fig. 2. Proposed spot-check mechanism.

B. Spot-check Mechanism Design

We introduce a spot-check mechanism (as illustrated in

Fig. 2) that allows requestors to adjust workers’ reputation

scores dynamically based on their performance. Initially, all

participating workers are assigned the same reputation score.

In each collaboration cycle, the requestor is presented with two

options: proceed with standard training with the top-ranked

worker or initiate a spot-check. A spot-check entails selecting

not only the highest-ranked worker but also one or more lower-

ranked workers for the training task. This approach enables

the requestor to assess the reliability of workers by compar-

ing their training outcomes and self-reported confidence levels.

For simplicity, this model assumes a single requestor and two

workers, though the mechanism is designed to accommodate

more complex configurations with multiple participants. Both

workers undergo model training and spot-checking. In this

work, we assume that the spot-check algorithm has already been

designed and is implementable by requestors. However, it is

crucial to recognize that the results of a spot-check are not ab-

solute; higher confidence levels do not always guarantee better

training outcomes.

Thus, in our approach, the reputation score of a worker is

determined through a series of spot-checks across T rounds,

with the initial reputation score at 1. Throughout these rounds,

the requestor assesses the worker’s honesty. Let t1 denote

the count of rounds in which the worker is deemed honest,

and t2 the count of rounds in which the worker is consid-

ered malicious, fulfilling the equation t1 + t2 = T . The out-

come of the (T + 1)th round plays a crucial role in adjusting

the worker’s reputation. Specifically, if worker 1 is found to

be malicious in the (T + 1)th round, their reputation score

is reduced by the ratio t2/T . In contrast, if they are judged

to be honest in the (T + 1)th round, their reputation score

is increased by the ratio t1/T . A worker with a negative

reputation score is marked as consistently malicious. To be-

come eligible again for selection in standard training ses-

sions, such a worker must consistently exhibit honest behavior

over time.

IV. GAME MODEL

In this section, we utilize game theory to analyze the impact

of the spot-check mechanism and reputation system integrated

into our proposed framework on promoting worker honesty and

enhancing the overall social welfare for both requestors and

workers. Traditional game theory often assumes that partici-

pants are rational and aim to maximize their utility. However,

our framework accommodates a broader range of worker behav-

iors, including those that are non-cooperative and potentially

irrational. The interactions between requestors and workers in

our system are dynamic, characterized by continuous adaptation

and evolution, akin to an ongoing game. Given the complex-

ity of these interactions, evolutionary game theory emerges as

the most suitable analytical tool for our model, allowing us

to explore how strategies evolve over time in response to the

changing environment and participant behaviors. In evolution-

ary game theory, the process begins with both parties determin-

ing their respective payoff matrices. Using these matrices, each

party calculates their dynamic replicator equation, which guides

strategy adjustment. At the onset of the game, both parties select

an initial set of strategies. As the game progresses, if the dy-

namic replicator equation yields a positive value for a particular

strategy, it indicates that this strategy is more advantageous than

others. Consequently, the party will increase the likelihood of

selecting this strategy in future iterations. Conversely, if the

value is negative, the probability of choosing that strategy will

decrease. This iterative adjustment process continues, enabling

both parties to refine their strategies based on the outcomes

of their dynamic replicator equations. Equilibrium is achieved

when the dynamic replicator equations for both parties converge

to zero. This indicates that neither party can improve their pay-

off by unilaterally changing their strategy, resulting in a stable

state where strategy probabilities remain constant over time.

A. Payoff Matrix

In our system, we assume workers can either report their

actual confidence indicator or an inflated one, while the re-

questor has the option to conduct either normal training or

spot-checking. Moreover, when conducting normal training, the

requestor has the option to offer a high or low reward. We sum-

marize key notations of the model in Table I. Following our

system setup, the payoff matrix for both requestor and workers

is formulated in Table II.

As detailed in the table, when the requestor opts for nor-

mal training and the worker accurately reports their confidence

level, the requestor incurs costs comprising the worker’s reward

and the communication cost CR for each interaction with the

smart contract. The net value of the posttraining model is de-

noted by V . The requestor may choose to offer a high reward

RH or a low reward RL, resulting in respective payoffs of V −
RH − CR and V −RL − CR. Correspondingly, the worker’s

payoff for reporting truthfully is θRH − CT − CE for a high

reward, or θRL − CT − CE for a low reward. Conversely, if

the worker reports a false confidence level during normal train-

ing, affecting the model’s quality by ∆V and the likelihood

of selecting a dishonest worker by ǫ, the requestor’s payoffs
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TABLE I
DESCRIPTION OF NOTATIONS IN OUR SYSTEM MODEL

Notation Description

α The probability that requestors offer low rewards

x The probability that workers report their real confidence

y The probability that requestors conduct a spot-check

θ The probability of being selected to train a model when the worker reports its real confidence indicator

ǫ The probability of being selected to train a model when the worker reports its inflated confidence indicator

p The probability that requestors make correct judgment in spot-check

RL Low rewards offered by requestors

RH High rewards offered by requestors

RC Check rewards offered by requestors

V The value of the model a requestor obtains if the worker reports its real confidence

∆V The difference of the model value a requestor obtains if the worker reports its inflated confidence, compared to V

VR The value requestors receive if a malicious worker

CR Cost of requestors to perform an interaction with smart contract

CT Cost of workers to train the model

CE Cost of workers to do self-evaluation

CL Losses of workers being perceived as malicious by the requestors

TABLE II
PAYOFF MATRIX

Requestor

Normal training

(1− y)

Spot-check

(y)

High reward

(1− α)

Low reward

(α)
Checking reward

Worker

Real confidence

(x)

θRH − CT − CE

V −RH − CR

θRL − CT − CE

V −RL − CR

RC − CT − CE − (1− p)CL

−2(RC + CR)

Overvalued confidence

(1− x)

ǫRH − CT − CE

V +∆V −RH − CR

ǫRL − CT − CE

V +∆V −RL − CR

RC − CT − CE − pCL

−2(RC + CR) + VR

for choosing high or low rewards are modified to V +∆V −
RH − CR and V +∆V −RL − CR. The worker’s potential

earnings in such instances are either ǫRH − CT − CE for a

high reward or ǫRL − CT − CE for a low reward. During a

spot-check involving an honest worker, the worker is awarded

RC . The requestor’s payoff is enhanced by an additional VR

upon detecting a malicious worker, although this comes at dou-

ble the cost. Should a worker be erroneously classified as mali-

cious, they face a penalty of CL. Given p as the probability of

accurately identifying dishonest behavior, the requestor’s pay-

off is calculated as −2(RC + CR), while the honest worker’s

payoff is RC − CT − CE − (1− p)CL. In cases where a spot-

check identifies a malicious worker, the requestor’s payoff is

adjusted to −2(RC + CR) + VR, with the malicious worker’s

payoff being RC − CT − CE − pCL.

B. Analysis

We define the probability of a worker choosing to report

either a real or inflated confidence indicator as x and 1− x,

respectively. Similarly, the likelihood of a requestor opting for

normal training versus spot-check is denoted as y and 1− y,

correspondingly. Additionally, in scenarios where the requestor

conducts normal training, the probability of offering a low or

high reward is represented by α and 1− α, respectively. Based

on these probabilities, we then derive the expected payoff func-

tion for workers when they report a real confidence indicator as

E(x) = y(RC − CT − CE − (1− p)CL)

+ (1− y)(α(θRL − CT − CE)

+ (1− α)(θRH − CT − CE)). (1)

The expected payoff for workers to report an overvalued

confidence indicator is

E(1−x) = y(RC − CT − CE − pCL)

+ (1− y)(α(ǫRL − CT − CE)

+ (1− α)(ǫRH − CT − CE)). (2)

Then, the average return of workers is

E(x) = xE(x) + (1− x)E(1−x). (3)

In addition, the dynamic replicator equation of workers is

F(x) =
dx

dt
= x(E(x) − E(x))

= x(1− x)((1− y)(θ − ǫ)(αRL + (1− α)RH)

− yCL + 2ypCL). (4)

The expected payoff function for requestors to decide to

perform spot-checks is

E(y) = x(−2(RC + CR)) + (1− x)(−2(RC + CR) + VR)

=−2(RC + CR) + (1− x)VR. (5)

The expected payoff for requestors to decide to perform

normal training is

E(1−y) = x(V − αRL − CR − (1− α)RH)

+ (1− x)(−αRL + V +∆V − CR − (1− α)RH)

=−αRL + V − CR − (1− α)RH + (1− x)∆V.
(6)

The average return of requestors is

E(y) = yE(y) + (1− y)E(1−y) (7)

The dynamic replicator equation of requestors is

F(y) =
dy

dt
= y(E(y) − E(y)) = y(1− y)

(−2RC − CR − V + αRL + (1− α)RH

+ (1− x)(VR −∆V )). (8)

By combining (4) and (8), we construct the replication dy-

namic system. Setting (4) equal to 0 and (8) equal to 0, we

can determine the local equilibrium points (LEPs) of the sys-

tem. These are identified as: (0, 0), (0, 1), (1, 0), (1, 1), and

(x∗, y∗), where

x∗ =
−2RC − CR − V + αRL + (1− α)RH + VR −∆V

VR −∆V
(9)

and

y∗ =
(θ − ǫ)(αRL + (1− α)RH)

(θ − ǫ)(αRL + (1− α)RH) + CL − 2pCL

. (10)

An evolutionarily stable strategy (ESS) for LEPs can be

determined using the Jacobian matrix [24]:

J =

[

∂F (x)
∂x

∂F (x)
∂y

∂F (y)
∂x

∂F (y)
∂y

]

(11)
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TABLE III
EXPRESSION OF DETJ AND TRJ

Equilibrium point DetJ TrJ

(0,0) (θ − ǫ)(αRL + (1− α)RH)(−2RC − CR − V + αRL + (1− α)RH + VR −∆V ) (θ − ǫ)(αRL + (1− α)RH) + (−2RC − CR − V + αRL + (1− α)RH + VR −∆V )

(1,0) (2p− 1)CL(2RC + CR + V − αRL − (1− α)RH − VR +∆V ) (2p− 1)CL + (2RC + CR + V − αRL − (1− α)RH − VR +∆V )

(0,1) (ǫ− θ)(αRL + (1− α)RH)(−2RC − CR − V + αRL + (1− α)RH) −(θ − ǫ)(αRL + (1− α)RH) + (−2RC − CR − V + αRL + (1− α)RH)

(1,1) (2p− 1)CL(−2RC − CR − V + αRL + (1− α)RH) −(2p− 1)CL + (2RC + CR + V − αRL − (1− α)RH)

(x∗,y∗)
(−2RC−CR−V+αRL+(1−α)RH+VR−∆V )(2RC+CR+V−αRL−(1−α)RH)(θ−ǫ)(αRL+(1−α)RH)(1−2p)CL

(VR−∆V )((θ−ǫ)(αRL+(1−α)RH)+CL−2pCL) 0

where

∂F (x)

∂x
= (1− 2x)((1− y)(θ − ǫ)

(αRL + (1− α)RH)− yCL + 2ypCL) (12)

∂F (x)

∂y
=−x(1− x)((θ − ǫ)

(αRL + (1− α)RH) + CL − 2pCL) (13)

∂F (y)

∂x
= y(1− y)(−VR +∆V ) (14)

∂F (y)

∂y
= (1− 2y)(−2RC − CR − V

+ αRL + (1− α)RH + (1− x)(VR −∆V )).
(15)

The determinant and trace of the Jacobian matrix (denoted as

detJ and trJ, respectively) are presented in Table III. In addition,

an LEP qualifies as an ESS only if detJ is greater than 0 and trJ

is less than 0 [24]. We substantiate the ESS status of the five

identified LEPs in the subsequent analysis.

To streamline the mathematical representation of both detJ

and trJ, we introduce the variable a= (θ − ǫ)(αRL + (1−
α)RH). This variable a encapsulates the differential in average

returns for workers when contrasting the scenarios of reporting

actual confidence levels versus overvalued confidence. Here,

αRL + (1− α)RH represents the worker’s average return,

while θ − ǫ quantifies the disparity in the probability of selec-

tion by the requester under the conditions of genuine versus in-

flated confidence reporting. Additionally, we define b= (2p−
1)CL, representing the average loss incurred by the worker con-

sequent to penalties applied during spot-checks. Furthermore,

we define c and d as the partial derivatives of F (y) with respect

to y in points (0, 1) and (1, 0), respectively. More precisely, c=
2RC + CR + V − αRL − (1− α)RH − VR +∆V is desig-

nated as the rate of change in the requester’s expected return,

considering the implementation of spot-checks. In this context,

2RC + CR denotes the direct expense associated with spot-

checks, V − αRL − (1− α)RH symbolizes the expected yield

from the model trained by the worker, irrespective of the spot-

check application, and −VR +∆V represents the marginal loss

or gain relative to the spot-check. Conversely, d=−2RC −
CR − V + αRL + (1− α)RH delineates the rate of change

in the requester’s expected return, excluding the additional

outcomes associated with spot-checks. Table IV succinctly

TABLE IV
NOTATION INTRODUCED TO STREAMLINE DETJ AND TRJ

Symbol Formula

a (θ − ǫ)(αRL + (1− α)RH)

b (2p− 1)CL

c 2RC + CR + V − αRL − (1− α)RH − VR +∆V

d −2RC − CR − V + αRL + (1− α)RH

TABLE V
SIMPLIFIED EXPRESSION OF DETJ AND TRJ

Equilibrium Point detJ trJ

(0,0) −ac a− c

(0,1) bc b+ c

(1,0) −ad −a+ d

(1,1) bd −b− d

(x∗, y∗) −cdab

−(c+d)(a−b)
0

summarizes these introduced notations for ease of reference

and clarity.

Then, with the introduced variables a, b, c, and d, we can

simplify the representation of (x∗, y∗) as x∗ = (c/c+ d)> 0
and y∗ = (a/a− b). In addition, the simplified expression of

the detJ and trJ of the five LEPs are summarized in Table V.

Specifically, in the analytical model, a < 0 signifies a sce-

nario where the worker’s expected average return is higher

when they report an overvalued confidence level as opposed

to their actual confidence, whereas a > 0 indicates a lower

average return for workers when reporting overvalued confi-

dence compared to genuine confidence; b > 0 denotes that the

probability of obtaining an accurate result from a spot-check

p exceeds 0.5, whereas b < 0 indicates that the probability of

obtaining an accurate result from a spot-check p is below 0.5.

Since for our proposed spot-check mechanism to be feasible,

the requestor should be able to obtain an accurate result from

spot-check, we exclude the discussion of the scenario b < 0 in

the following discussion; c > 0 indicates an accelerating rate of

change in the requester’s expected return when the strategy of

performing spot-checks is considered, whereas c < 0 denotes

the rate at which the requestor’s expected return changes when

considering spot-checks is decreasing; and d > 0 implies that

the rate of change in the requester’s expected return without

considering the extra outcome of spot-check is also increasing.

d < 0 indicates a decelerating rate of change in the requester’s
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Fig. 3. Classification of different scenarios into five LEPs.

expected return in scenarios where spot-checks are not con-

sidered. Furthermore, considering all possible combinations of

different conditions of a, b, c, and d, we formulate 12 cases and

map them to the identified five LEPs. The detailed categoriza-

tion is shown in Fig. 3. Then, we formulate the identified five

LEPs as five propositions and analyze the ESS of the system

in details.

Proposition 1: When a < 0 and c > 0, E1(0, 0) is an ESS

where the requestor chooses normal training while the worker

chooses to report overvalued confidence.

Proof: This ESS is related to case 1 and case 2.

Case 1: When a < 0< b, c > 0, and d > 0
In this case, given the conditions c > 0 and d > 0, we can

deduce that c < c+ d, which implies 0< x∗ < 1 with x∗ =
(c/c+ d). For y∗ = (a/a− b), considering the condition a <
0< b, we can get a− b < 0 and a < (a− b), which leads to the

conclusion 0< y∗ < 1. Therefore, we conclude (x∗, y∗) exists

and there are totally five LEPs: (0, 0), (0, 1), (1, 0), (1, 1), and

(x∗, y∗). Table VI (Case 1) shows the local equilibrium stability

of these five points.

Case 2: When a < 0< b, and d < 0< c
In the proposed model, the parameters c and d play pivotal

roles in determining the existence of the equilibrium point

(x∗, y∗). Given the condition d < 0< c, c+ d=∆V − VR < 0
implies that the differential in the model’s value, as perceived by

the requester when the worker reports overvalued confidence,

is greater than the value loss incurred in identifying a mali-

cious worker. In this case, x∗ = (c/c+ d)< 0, which results

in x∗ < 0 that contradicts the probabilistic nature of x∗ as it

should logically be within the range [0, 1]. Hence, under these

conditions, the equilibrium point (x∗, y∗) does not exist. On

the other hand, d < 0 implies c > c+ d, leading to x∗ > 1. This

result is also inconsistent with the probabilistic boundaries of

x∗. Therefore, the equilibrium point (x∗, y∗) is non-existent in

this scenario as well. As a result, the model restricts the set

of potential equilibrium points to four (0, 0), (0, 1), (1, 0), and

(1, 1). Table VI (Case 2) analyzes the local equilibrium stability

of the four points respectively.

Proposition 2: E2(0, 1) is not an ESS where the requestor

chooses spot-check while the worker chooses to report over-

valued confidence.

Proof: Given b > 0, it is mathematically impossible for

both bc > 0 and b+ c < 0 to occur concurrently. Furthermore,

b > 0 indicates that the requester is correct in over half of the

spot-checks, making it strategically unsound for the worker to

report overvalued confidence when spot-checks are consistently

conducted. Therefore, under these conditions, E2(0, 1) cannot

be an ESS.

Proposition 3: When a > 0 and d < 0, E3(1, 0) is an ESS

where the requestor chooses normal training while the worker

chooses to report real confidence.

Proof: This ESS is related to cases 3-6.

Case 3: When 0< a < b, and d < 0< c
Given that 0< a < b, it follows that a− b < 0. Consequently,

y∗ = (a/a− b)< 0, which contradicts the identified range of

y∗. As analyzed in Case 2, d < 0< c implies that the iden-

tified range of x∗ is contradicted. Therefore, the only viable

points are (0, 0), (0, 1), (1, 0), and (1, 1). Table VI (Case 3)

provides an analysis of the local equilibrium stability for these

four points.

Case 4: When 0< b < a, and d < 0< c
Given 0< b < a, it follows that a− b > 0 and a > a− b,

leading to y∗ > 1, which does no’t satisfy the definition of y∗.

Similarly, as analyzed in Case 2, d < 0< c implies that the

identified range of x∗ is contradicted, implying that (x∗, y∗)
does not exist. Therefore, only four points are viable: (0, 0),
(0, 1), (1, 0), and (1, 1). Table VI (Case 4) examines the local

equilibrium stability of these four points.

Case 5: When 0< a < b, c < 0, and d < 0
As analyzed in Case 3, 0< a < b implies y∗ < 0, which

contradicts the identified range of y∗. Therefore, only the points

(0, 0), (0, 1), (1, 0), and (1, 1) are considered. Table VI (Case 5)

is used to analyze the local equilibrium stability of these

four points.

Case 6: When 0< b < a, c < 0, and d < 0
Given that c < 0 and d < 0, it follows that c+ d < 0 and

c < c+ d, which leads to 0< x∗ < 1. However, as analyzed

in Case 4, 0< b < a lead to y∗ > 1, which contradicts the

identified range of y∗. Consequently, (x∗, y∗) does not exist.

Therefore, we only consider the points (0, 0), (0, 1), (1, 0),
and (1, 1). Table VI (Case 6) is utilized to analyze the local

equilibrium stability of these four points.

Proposition 4: When b > 0 and d > 0, E4(1, 1) is an ESS

where the requestor chooses spot-check while the worker

chooses to report real confidence.

Proof: This ESS is related to cases 1, 7–11.

Case 1: According to previous analysis, E4(1, 1) is an ESS

in Case 1.

Case 7: When 0< a < b, and c < 0< d
As analyzed in Case 3, 0< a < b implies y∗ < 0, which con-

tradicts the identified range of y∗. Therefore, the only feasible

points are (0, 0), (0, 1), (1, 0), and (1, 1). Table VI (Case 7)

examines the local equilibrium stability of these four points.

Case 8: When a < 0< b, and c < 0< d as analyzed in

Case 1, a < 0< b implies 0< y∗ < 1 and y∗ is valid. From
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TABLE VI
STABILITY ANALYSIS FOR VARIOUS CASES

Case 1: a < 0< b, c > 0, d > 0 Case 2: a < 0< b, d < 0< c Case 3: 0< a < b, d < 0< c Case 4: 0< b < a, d < 0< c

detJ trJ Result detJ trJ Result detJ trJ Result detJ trJ Result

(0, 0) + − Stable (0, 0) + − Stable (0, 0) − ± Saddle (0, 0) − ± Saddle

(0, 1) + + Unstable (0, 1) + + Unstable (0, 1) + + Unstable (0, 1) + + Unstable

(1, 0) + + Unstable (1, 0) − ± Saddle (1, 0) + − Stable (1, 0) + − Stable

(1, 1) + − Stable (1, 1) − ± Saddle (1, 1) − ± Saddle (1, 1) − ± Saddle

(x∗, y∗) + 0 Center

Case 5: 0< a < b, c < 0, d < 0 Case 6: 0< b < a, c < 0, d < 0 Case 7: 0< a < b, c < 0< d Case 8: a < 0< b, c < 0< d

detJ trJ Result detJ trJ Result detJ trJ Result detJ trJ Result

(0, 0) + + Unstable (0, 0) + + Unstable (0, 0) + + Unstable (0, 0) − ± Saddle

(0, 1) − ± Saddle (0, 1) − ± Saddle (0, 1) − ± Saddle (0, 1) − ± Saddle

(1, 0) + − Stable (1, 0) + − Stable (1, 0) − ± Saddle (1, 0) + + Unstable

(1, 1) − ± Saddle (1, 1) − ± Saddle (1, 1) + − Stable (1, 1) + − Stable

Case 9: 0< b < a, c < 0< d Case 10: 0< a < b, c > 0, d > 0 Case 11: 0< b < a, c > 0, d > 0 Case 12: a < 0, b < 0, c < 0, d < 0

detJ trJ Result detJ trJ Result detJ trJ Result detJ trJ Result

(0, 0) − ± Saddle (0, 0) − ± Saddle (0, 0) − ± Saddle (0,0) – ± Saddle

(0, 1) − ± Saddle (0, 1) + + Unstable (0, 1) + + Unstable (0,1) – ± Saddle

(1, 0) + + Unstable (1, 0) − ± Saddle (1, 0) − ± Saddle (1,0) – ± Saddle

(1, 1) + − Stable (1, 1) + − Stable (1, 1) + − Stable (1,1) – + Saddle

(x∗, y∗) – 0 Saddle

c < 0< d, we can derive that c+ d > 0 and x∗ < 0, which

contradicts the identified range of x∗. (x∗, y∗) is not an ESS.

When c+ d < 0, we can derive |c|> |c+ d|, which leads to

x∗ > 1, also indicates (x∗, y∗) is not an ESS. Therefore, only

the points (0, 0), (0, 1), (1, 0), and (1, 1) are viable. Table VI

(Case 8) analyzes the local equilibrium stability of these points.

Case 9: When 0< b < a, and c < 0< d
As analyzed in Case 8, when c < 0< d, (x∗, y∗) is not an

ESS. As analyzed in Case 4, 0< b < a lead to y∗ > 1, which

contradicts the identified range of y∗, Thus, the only feasible

points are (0, 0), (0, 1), (1, 0), and (1, 1). Table VI (Case 9)

examines the local equilibrium stability of these points.

Case 10: When 0< a < b, c > 0, and d > 0
As analyzed in Case 3, 0< a < b implies y∗ < 0, which con-

tradicts the identified range of y∗. Therefore, the only relevant

points are (0, 0), (0, 1), (1, 0), and (1, 1). Table VI (Case 10) is

dedicated to analyzing the local equilibrium stability of these

four points.

Case 11: When 0< b < a, c > 0, and d > 0 as analyzed

in Case 1, c > 0, and d > 0 leads to 0< x∗ < 1. However, as

analyzed in Case 4, 0< b < a lead to y∗ > 1, which contra-

dicts the identified range of y∗. Consequently, the only valid

points are (0, 0), (0, 1), (1, 0), and (1, 1). Table VI (Case 11)

provides an analysis of the local equilibrium stability for

these points.

Proposition 5: When a < 0< b, c < 0 and d < 0, E5(x
∗, y∗)

is an ESS where the requestor and the worker will reach a mixed

equilibrium point.

Proof: This ESS is related to Cases 1, 11–12.

Case 1: According to previous analysis, E5(x
∗, y∗) is an

center point in Case 1.

Case 11: According to previous analysis, E5(x
∗, y∗) does

not exist in Case 11.

Case 12: When a < 0< b, c < 0, and d < 0

As analyzed in Case 1, a < 0< b confirms 0< y∗ < 1. As

analyzed in Case 6, c < 0 and d < 0 leads to 0< x∗ < 1. Hence,

(x∗, y∗) exists, leading to five LEPs: (0, 0), (0, 1), (1, 0), (1, 1),
and (x∗, y∗).

Table VI reveals that E1(0, 0), E2(0, 1), E3(1, 0), E4(1, 1),
and E5(x

∗, y∗) are all saddle points within this case scenario,

indicating instability. Therefore, E5(x
∗, y∗) is not an ESS, dis-

proving the proposition.

C. Summary

Out of the five LEPs E1(0, 0), E2(0, 1), E3(1, 0), E4(1, 1),
and E5(x

∗, y∗), we exclude the point E2(0, 1) since we only

discuss the scenario b > 0. Also, further analysis indicates that

E5(x
∗, y∗) is not an ESS, leaving E1(0, 0), E3(1, 0), and

E4(1, 1) as actual ESSs under specific conditions, as defined

in the propositions: 1) For the state E1(0, 0), the system is

expected to evolve towards a scenario where workers report

overvalued confidence while requestors conduct normal train-

ing. The ESS condition for this state is characterized by a < 0
and c > 0. Here, a < 0 implies that workers have a higher

probability of being selected by the requestor when they report

overvalued confidence. 2) The stateE3(1, 0) signifies a progres-

sion in the system where workers report real confidence and

requestors conduct normal training. For this ESS, the condition

is a > 0 and d < 0. Specifically, a > 0 indicates a higher likeli-

hood of worker selection by the requestor when real confidence

is reported, aligning with the ESS criteria for this scenario. 3) In

the state E4(1, 1), the system is expected to evolve towards

workers reporting real confidence and requestors conducting

spot-checks. This state meets ESS criteria when b > 0 and d >
0. Here, b > 0 indicates that the effectiveness of spot-checks

is greater than 0.5, aligning with the conditions for an ESS in

this scenario.
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TABLE VII
DEFAULT PARAMETERS FOR SIMULATION SETUP

RL RH V ∆V CR RC VR CT CE CL α θ ǫ p

E1(0, 0) 4 20 8 4 1 2 2 4 0.5 3 0.2 0.1 0.9 0.6

E3(1, 0) 3 6 5 2 1 2 6 4 1 50 0.5 0.5 0.4 0.6

E4(1, 1) 4 20 8 4 1 2 2 4 0.5 3 0.2 0.1 0.9 0.6

E5(x
∗, y∗) 4 17 8 4 1 3 6 4 0.5 3 0.2 0.1 0.9 0.6

V. NUMERICAL SIMULATION

This section simulates the dynamic decision-making between

workers and requestors, focusing on how factors such as re-

ward values and the accuracy of identifying malicious work-

ers affect system equilibrium. We omit the analysis of LEP

E2(0, 1) (proposition 2), assuming the feasibility of the spot-

check mechanism requires requestors to detect malicious work-

ers with a probability greater than 0.5.

A. System Simulation

Following the default parameters in Table VII, the simulation

results in four propositions are shown as follows:

Figs. 4(a) and 5(a) illustrate that the evolutionary model

consistently evolves towards the stable point E1(0, 0), start-

ing from initial points (0.1, 0.1) through (0.9, 0.9). This re-

sult confirms that E1(0, 0) is an ESS. The convergence of the

evolutionary path towards E1(0, 0) aligns with the theoretical

model’s analysis. Similarly, Figs. 4(b) and 5(b) demonstrate

that the evolutionary model consistently gravitates towards the

stable point E3(1, 0), starting from initial points (0.1, 0.1) to

(0.9, 0.9). The convergence of the evolutionary path towards

E3(1, 0) aligns with the analysis of the model, which iden-

tifies E3(1, 0) as an ESS. Furthermore, Figs. 4(c) and 5(c)

reveal that the evolutionary model consistently evolves towards

E4(1, 1), starting from initial points (0.1, 0.1) to (0.9, 0.9).
Hence, E4(1, 1) is established as an ESS, as analyzed using

our theoretical model. On the other hand, Fig. 4(d) indicates

E5(x
∗, y∗) is not an ESS. The system’s final state is not fixed

but varies dynamically, influenced by the initial strategies of

both requestors and workers, as illustrated in Fig. 5(d) with

workers and requestors strategies starting from initial points

(0.1, 0.1) to (0.9, 0.9). The evolutionary path depicted forms a

continuous cycle without reaching a stable point, aligning with

our model’s analysis. This result highlights the complexity and

variability inherent in this particular system configuration.

In summary, Fig. 4(a)–(c) reveal the dynamic evolution of

strategies between requestors and workers, demonstrating that

irrespective of their initial strategies, e.g., different choices of

reward values (RC) or spot-check rewards (RC), the system

ultimately converges to the corresponding ESS. In contrast, as

depicted in Fig. 4(d), no ESS emerges. The final outcome here

is fluid, influenced by the initial strategies of both requestors

and workers, reflecting the system’s inherent dynamism

and variability.

B. Parameter Simulation

Furthermore, our study explores how different reward val-

ues (RH ), model values (V ), and spot-check rewards (RC)

Fig. 4. Dynamic evolution of equilibrium points. (a) E1(0, 0). (b) E3(1, 0).
(c) E4(1, 1). (d) E5(x*, y*).

Fig. 5. Dynamic evolutionary paths with different initial points. (a) E1(0, 0).
(b) E3(1, 0). (c) E4(1, 1). (d) E5(x*, y*).

influence worker and requestor decision-making across scenar-

ios. Omitting further analysis on the unstable E5(x
∗, y∗), we

consolidate E1(0, 0) and E4(1, 1) into Scenario 1 and designate

E3(1, 0) as Scenario 2. Simulations initiate with both workers’

honesty and requestors’ spot-check accuracy set at a probability

of 0.5. This standard starting point, while keeping other vari-

ables fixed, allows the study to isolate and analyze the impact of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 30,2024 at 04:47:03 UTC from IEEE Xplore.  Restrictions apply. 



CHI et al.: INCENTIVIZING SOCIO-ETHICAL INTEGRITY IN DECENTRALIZED MACHINE LEARNING ECOSYSTEMS 11

Fig. 6. Sensitivity analysis of parameters for Scenario 1. (a) Sensitivity
of RH . (b) Sensitivity of V. (c) Sensitivity of RC . (d) Sensitivity of CR.
(e) Sensitivity of ∆V . (f) Sensitivity of RL.

distinct factors on the system’s dynamics. Results for Scenario

1 and 2 are depicted in Figs. 6 and 7, respectively.

Fig. 6(a) and 6(b) shows how the system’s ESSs change with

different RH (valued at 13, 15, 17, 19, 21) and V (valued at 4, 7,

10, 13, 16), respectively. When RH > 17 or V < 7, the system

gravitates to a strategy of overvalued confidence reporting with

more spot-checks. Conversely, with RH ≤ 17 or V > 7, the

requestor tends to perform more normal training. When V > 7,

the worker tends to be honest. Thus, High rewards incentivize

requestors towards spot-checks to mitigate worker dishonesty,

nudging workers towards honesty to avoid penalties. Higher V
values expedite the requestor’s transition to normal training,

suggesting that a sufficiently high model value from honest

workers encourages requestors to adopt this strategy.

Fig. 6(c) and 6(d) shows the impact of varying RC (valued at

2, 4, 6, 8, 10) and CR (valued at 1, 3, 5, 7, and 9). For RC > 2
or CR > 3, workers quickly shift towards reporting overvalued

confidence, while the requestor would perform less spot-checks

with higher RC and predominantly opt for normal training with

higher CR. Conversely, with RC ≤ 2 or CR < 3, workers are

more inclined to report real confidence, prompting requestors

Fig. 7. Sensitivity analysis of parameters for scenario 2. (a) Sensitivity
of RH . (b) Sensitivity of V. (c) Sensitivity of RC . (d) Sensitivity of CR.
(e) Sensitivity of ∆V . (f) Sensitivity of RL.

to favor spot-checks. Essentially, a high spot-check reward

or communication costs discourage requestors from conduct-

ing checks, prompting workers towards overvalued confi-

dence reporting.

Fig. 6(e) and 6(f) shows the impact of different ∆V (set to

−4, 0, 4, 8, and 12) and α (set to 0.1, 0.2, 0.4, 0.6, and 0.8),

respectively. With ∆V > 4 or α≥ 0.4, workers tend to adopt

overvalued confidence reporting while the requestor tends to

shift to normal training swiftly. With ∆V ≤ 4 or α < 0.4, a

smaller ∆V or α accelerates the system’s evolution towards

real confidence reporting from workers and more spot-checks

from requestors. This suggests that when the difference in the

model value is small or negative, the requestor tends to perform

more spot-checks, while a larger or positive value above four

discourages them. Moreover, a lower likelihood of low rewards

prompts requestors towards spot-checks, while a higher likeli-

hood encourages avoidance of spot-checks.

Fig. 7(a) illustrates the response of workers and the requestor

to varying RH values (set at 3, 5, 7, 9, and 11). An increase

in RH leads to a quicker evolution of worker honesty and

a reduced tendency of the requestor to perform spot-checks.
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Fig. 8. Sensitivity of the probability p that requestors make correct judgment
in spot-checks.

Similarly, Fig. 7(b) demonstrates the impact of different V
values (set at 3, 6, 9, 12, and 15). As the value V of the model

trained by an honest worker increases, both worker honesty

and the requestor’s reduced inclination for spot-checks are ob-

served. Additionally, Fig. 7(c), setting the value of RC as 2,

4, 6, 8, and 10, reveals that a higher RC encourages workers

evolving towards honesty and requestors less likely to engage

in spot-checks.

Fig. 7(d)–(f) shows the impact of different CR (set to 1, 3,

5, 7, and 9), ∆V (set to −8, −4, 0, 4, and 8), and α (set to

0.1, 0.3, 0.5, 0.7, and 0.9), respectively. Higher CR, ∆V or

α encourages the requestor to perform more normal training.

Meanwhile, workers are more inclined to report overvalued

confidence as CR rises. On the other hand, an increase in

∆V or α slows down the evolution towards workers reporting

real confidence.

Furthermore, Fig. 8 presents the reaction of workers and the

requestor to varying p values, which represent the probability of

correctly identifying a malicious worker. When p is below 0.5,

there is a tendency for workers to behave maliciously and for the

requestor to engage in spot-checks more frequently. At p equal

to 0.5, both workers and the requestor take longer to reach the

equilibrium point E3(1, 0). Conversely, when p exceeds 0.5, the

time taken to evolve to the equilibrium point decreases. Thus, as

p increases from 0.5, workers are more likely to act honestly,

and requestors are less inclined to perform spot-checks. This

finding confirms that, for our proposed spot-check mechanism

to be feasible, the requestor should be able to obtain an accurate

result from spot-checks.

C. Discussion

The simulation results offer critical insights into how various

factors, such as reward levels and the likelihood of detecting

malicious behavior, influence the system’s balance. Notably,

the precision of the requestor’s spot-checks plays a pivotal

role. An error rate above 0.5, indicating frequent misjudgments

regarding worker honesty, may drive the system towards an

unstable equilibrium characterized by inflated confidence re-

ports from workers and frequent spot-checks by requestors.

This scenario leads to escalated costs for requestors and an

increased risk of dishonest workers being erroneously deemed

honest, thereby impairing the system’s overall efficiency

and effectiveness.

Furthermore, the implementation of regular spot-checks by

the requestor is crucial for the reputation system’s efficacy. Typ-

ically, the requestor assigns tasks to the highest-ranked worker,

whose ranking is influenced by their reputation score multi-

plied by their self-assessed confidence level. The adjustment

of worker reputation scores following spot-checks ensures that

those accurately reporting their confidence are more likely to be

chosen for standard training tasks, thus effectively separating

them from those who inflate their confidence levels. Conse-

quently, this mechanism allows for a more precise ranking of

workers, fostering a balanced ecosystem within the system.

VI. CONCLUSION

This work pioneers the integration of a reputation system

coupled with a spot-check mechanism, aimed at fostering socio-

ethical integrity among workers within the context of decen-

tralized knowledge inference for knowledge graphs. Empirical

findings underscore the significance of effectively detecting

socially deviant behaviors among workers and the role of incen-

tive structures in promoting system-wide integrity. Specifically,

we observe that higher probabilities of identifying malicious

workers and offering increased rewards are instrumental in

accelerating the evolution toward an equilibrium. These in-

sights contribute to our understanding of how to optimize

strategic interactions within decentralized knowledge inference

ecosystems to ensure their success, sustainability, and equitable

knowledge sharing in real-world applications.
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