
EdgeToll: A Blockchain-based Toll Collection
System for Public Sharing of Heterogeneous Edges

Bowen Xiao1, Xiaoyi Fan2, Sheng Gao3 and Wei Cai1
1School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172 China

2Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver V6T1Z4 Canada
3School of Information, Central University of Finance and Economics, Beijing 100081 China

Email: bowenxiao@link.cuhk.edu.cn, xiaoyif@ece.ubc.ca, sgao@cufe.edu.cn, caiwei@cuhk.edu.cn

Abstract—Edge computing is a novel paradigm designed to
improve the quality of service for latency sensitive cloud appli-
cations. However, the state-of-the-art edge services are designed
for specific applications, which are isolated from each other.
To better improve the utilization level of edge nodes, public
resource sharing among edges from distinct service providers
should be encouraged economically. In this work, we employ the
payment channel techniques to design and implement EdgeToll,
a blockchain-based toll collection system for heterogeneous pub-
lic edge sharing. Test-bed has been developed to validate the
proposal and preliminary experiments have been conducted to
demonstrate the time and cost efficiency of the system.

Index Terms—edge, blockchain, pricing, system, testbed

I. INTRODUCTION

Cloud computing has transformed everything as a service
[1] nowadays. Nevertheless, latency sensitive cloud applica-
tions, e.g. interactive multimedia systems, are still struggling
from the unacceptable delay introduced by the network round-
trip time (RTT). Edge computing [2], an emerging computing
paradigm in future 5G network [3], is designed to improve the
quality of services (QoS) for time-critical cloud applications,
especially in the mobile scenarios. In contrary to the remote
cloud server, edge nodes are nearby infrastructures, a.k.a.
cloudlet, providing software services to the end users. On the
other words, edge serves as an intermediate between a terminal
device and the cloud to facilitate computing at the proximity
of data sources.

However, the state-of-the-art edge platforms are specifically
designed for customized applications, rather than a public
service for various applications and distinct user groups. For
example, an edge node deployed for power plants will not
handle video processing requests from a mobile game player,
even it has been staying in an idle status for a long time. The
isolation among different applications significantly reduces
the utilization level of edge resource, which still requires
continuous maintenance work. Despite security considerations,
one critical issue in preventing public edge resources sharing is
the lack of motivation for the edge infrastructure provider. An
incentive mechanism is still facing challenges and technical
issue from a real-world implementation. First, there is no
public third-party trustworthy proxy to collect toll fees for
multiple edge service providers. The heterogeneous nature
of edge deployments requires a transparent resource bidding
platform operated independently. Second, the toll fee for a

general service request is relatively small. It may be hard to use
legal tender for resource pricing. Third, distinct edge platforms
may adopt different pricing schemes and credit systems, which
prevent the resource consumers from leveraging available
edges nearby.

On the other hand, the blockchain system [4] has introduced
a transparent, trustworthy and unformed ecosystem for multi-
ple independent parties. This feature makes it a perfect solution
to the toll collection problem in heterogeneous public edge
sharing. The immutable and open source smart contracts [5]
driven by blockchain enables a transparent profit distribution
scheme among multiple edge service providers in an au-
tonomous manner. In addition, by leveraging cryptocurrency,
the edge nodes from multiple service providers are able to
use a unified, fine-granularity, and transparent pricing method
to charge users. From the users’ perspective, it is convenient
to spend one cryptocurrency in consuming resources from
multiple parties, which highly increase the availability of
edge services. In fact, the blockchain-based toll system can
minimize the cost for both providers and the users, given the
business rules are well-defined: there will be no centralized
operators to pocket the difference as its profit.

Nevertheless, existing blockchain systems are still in their
preliminary stages. Most well-known blockchain systems are
suffering from the high cost of gas fee and unacceptable
latency introduce by the Proof-of-Work (PoW) [6], while the
others, who minimize the overhead by adopting other con-
sensus models (e.g., Delegated-Proof-of-Stake from EOS1),
are not well recognized as full decentralized platforms. This
imposes a big challenge for the toll collections systems for
frequent but small amount transactions, e.g. the one we are
proposing. In this work, we design and implement EdgeToll,
an open source toll collection system for heterogeneous public
edge sharing. By leveraging the technique of payment chan-
nel, EdgeToll provides a transparent, quick and cost-efficient
solution to encourage participation of edge service providers.

The remainder of this paper is organized as follows. We
reviewed related work in Section II and presented the overview
of the proposed system in Section III. We then present the
technical design and test-bed implementation in Section IV
and Section V, respectively. Based on our development, the

1https://eos.io/



experiments are conducted to validate our system in Sections
VI. Section VII concludes this paper.

II. RELATED WORK

A. Cloud and Edge Integration

Integrating edge to cloud platform involves a series of re-
search topics in data and computational offloading. Traditional
approach offloading schemes adopt virtualization techniques
to host multiple copies of virtual machines in both cloud and
edges [7], while another group of researchers has investigated
the possibility of dynamic code partitioning [8] [9]. However,
despite the form of offloading, the edge nodes intrinsically
provide resource services for end users through direct net-
work connectivity. In this work, we assume the end users
are requesting micro-services installed in the edge nodes to
simplify our model.

B. Decentralized Applications and Payment Channel

The blockchain [4] data structure, together with the peer-to-
peer (P2P) system and the proof-of-work (PoW) [6] consensus
model, makes the decentralized ledger for cryptocurrencies
became a reality [10]. Known as Blockchain 2.0, Ethereum
[11] was implemented to facilitate decentralized applications
(dApps) [12], which have been extended to various areas,
including initial coin offerings, social networks, networked
games, and IoT. In this work, we write smart contracts to
develop a decentralized toll collection system for edge service
sharing among multiple parties, which perfectly demonstrate
the benefits of dApps. To overcome the long response latency
and the monetory costs introduced by frequent transactions,
the payment channel [13] technique is designed for “off-
chain” transactions, which allow users to make multiple to-
ken exchanges with a minimum number of smart contract
invocations. The state-of-the-art payment channels can be
classified into two types: uni-directional payment channel and
bi-directional payment channel. An uni-directional payment
channel only allows single directional transactions, while a bi-
directional payment channel [14] allows both parties to send
transactions. The duplex payment channel is composed of two
uni-directional payment channels, which allows transactions to
be sent from both directions.

III. SYSTEM OVERVIEW

In this section, we present the overview for the proposed
system. As illustrated in Fig. 1, edge nodes, and end users
should register corresponding addresses in the blockchain
before they can participate in the proposed system. These
addresses, being accessed with the private keys known to their
owners, are the destinations of cryptocurrency tokens. From
the perspective of the end user, he/she needs to discover nearby
edge nodes that provide the services and pay the corresponding
cost after the services are delivered. In case of multiple edge
nodes available, the user can choose one from these candidates,
in terms of their performance and offered price. On the other
hand, the edges can select their service recipients from the
perspective of task complexity and bidding price, if there are

multiple end users competing for the same resources. Note
that, all payments should go through a smart contract to
guarantee the transparency of the system.

Fig. 1. The System Architecture for EdgeToll

However, the proposed system will consume significant
tokens as gas fee when the users pay their toll to the edge
nodes. Also, the long transaction delay will also disable high
frequent service delivery to the users. Therefore, we may
need to create payment channels to minimize the overhead
of payment transactions. Nevertheless, it is impossible for a
user to establish payment channels to a lot of edge nodes,
since there will be another overhead here: the users need to
lock certain among of tokens to open the channel, while he/she
may only interact with one edge once.

IV. SYSTEM DESIGN

In order to solve the above issue, we employ an open
source proxy as a service matching server and the payment
intermediate. The first functionality of the proxy is to match
the appropriate service provider and recipient. This process
can be optimized with artificial intelligence (AI) algorithms.
Alternatively, this process can be a result of a series of compe-
titions and cooperation to be modeled with game theory. In our
implementation, the proxy always adopts greedy algorithms
to minimize users’ cost and maximize the edge nodes’ profit
under different scenarios. The second role of the proxy is
the intermediate of users and the edges. An end user only
opens one payment channel to the proxy, while the proxy open
payment channels to the edges. Of course, different edge nodes
from the same service provider may share the same blockchain
wallet, which can significantly reduce the number of payment
channels. In this work, since the payment from users to the
proxy, from the proxy to the edge service providers, are uni-
directional, we adopt the uni-directional payment channel.

Fig. 2 illustrates the sequence diagram for the proposed
EdgeToll system. Edges can be deployed by any companies
or individuals. For any edge who want to join in the EdgeToll
public sharing platform, a registration to the proxy is required



as its initialization process. Through the registration, an edge is
requested to provide its blockchain address and its IP address:
the former one is serving as the destination of toll fees and
the later one is how the end user’s device identify the edge.

Fig. 2. Sequential Diagram for EdgeToll

After proxy receives edge’s address, the proxy will evaluate
edge’s condition and invoke a smart contract to open a pay-
ment channel for the registered edge. The proxy deposits to-
kens into that contract and set the recipient to be the registered
edge so that only the edge can withdraw the token. On the
other hand, the end users are usually mobile terminals whose
locations are changed over time. Once a user has a demand
for edge resources, he/she needs to open the payment channel
for the proxy through smart contracts. At the same time, the
user also needs to discover nearby edges and notify the list of
available candidates to the proxy. After the service requirement
is sent from the user to the proxy, service matching process
will be conducted to find the suitable pairs. After that, the
user needs to sign a signature on an agreement to split the
tokens and send it to the proxy. The proxy, the recipient of
the signature, can validate the agreement with blockchain data,
which is a no-cost operation, since it is a simple blockchain
data reading function. After the validation, the proxy notifies
the corresponding edge to deliver its service to the user. Once
the user acknowledges the completion of service, the proxy
will sign its token splitting agreement with the edge to deliver
the edge’s profit. Note that, this is another signed agreement
from the proxy to the edge, which is different from the one
the proxy received from the user, though the two agreements
may have the same amount of tokens. In practice, the proxy
may charge a small amount of transaction fee to cover its
operational cost in providing service matching and payment
channel intermediate service. However, the transaction fee
should be written in an open source program that is agreed
by both parties.

After a series of payment, the users, the proxy or the edges
may choose to withdraw the tokens by closing the payment
channel, which will introduce a gas fee overhead, since it is
an on-chain operation. However, all payment channel based
off-chain transactions, as depicted in the loop of Fig. 2, are
fast data exchange without any cost.

A debatable issue for our design is that we introduced
a centralized proxy which handles payments among users
and edges, which violates the decentralization spirit of the
blockchain. In fact, a simple trick on software engineering
can minimize the impact of this concern: the proxy is a
completely open source and the proxy code will be hashed
and recorded in the blockchain. Any third party can audit the
proxy by comparing the hash value of the running system to
the blockchain recorded data, thus, maintain the transparency
of the system.

V. TEST-BED IMPLEMENTATION

A. Software Architecture

Fig. 3 illustrates the software architecture for EdgeToll.

Fig. 3. Software Architecture for EdgeToll System

The Smart Contract hosted by Ethereum blockchain pro-
vides four major functions to facilitate the payment channel: 1)
Payment Channel Establishment: the component for creating
a new payment channel. To call this function, the establisher
should provide the Ethereum address of channel receiver and
sign a transaction to transfer deposit tokens to the smart
contract account. The deposit will be locked through the
lifetime of the payment channel. 2) Signature Verification:
The sender address, receiver address, the value transferred
and other signed signature properties should be provided.
Keccak256 hash function will hash sender address, receiver
address, transferred value together and resulted value will be
used to recover the signer of agreement for verification. The
return result indicates verification legality in boolean type. 3)



Payment Channel Closure: This module is used to withdraw
tokens from the contract account. To verify the qualification
of the signature holder, the provided parameters should be the
same as Signature Verification. When the invocation happens,
the contract will balance the tokens among channel launchers
and receivers. Because of the existence of service charge
(gas fee), the actual amount receiver obtains is not exactly
the same as signature classified. 4) Collateral Query: This
module is used to query the balance of existing channels. This
qualification-free operation is designed to relieve the distrust of
channel receiver. With provided parameters channel launcher
address and receiver address, unique channel collateral can
be return. If the query result is 0, it implies that the channel
between two address has been closed or never exist.

The Proxy consists of 3 components: 1) Edge Registration:
This component is used for edge devices to register in the
database and Ethereum address should be provided. In the real
world, the Proxy instance will evaluate edges for pricing. But
to simplify our model, we fix the deposit amount as 1 ether.
The database in Proxy will keep a record of the configuration
parameters of edges and update dynamical information like
location, working status, and memory usage, etc. 2) Edge
Scheduling: This component can solve the decision-making
problems. Users should provide available edges list attached
with task description, which is the result of Edge Discovery
component in user end. In a future design, the call to this
function can match user and edge based on the analysis
of data stream from Terminal and the dynamical status of
available edges, which will provide the user a better resource
scheduling. More advanced in further, a task can be decom-
posed into multiple steps and distributed to heterogeneous
edges to improve working efficiency. Our edge selection is
determined by the simulated price. 3) Signature Delivery:
Users should build payment channel first before the delivery
of signed agreement. A verification process will be conducted
after the calling from the user. After Signature Verification
in Smart Contract is done, the Proxy will call this function
again and sign a equal-value signature to edges, which works
as a signature delivery intermediate station. If the user set the
withdraw pole in request parameters as True, the proxy will
close the payment channel immediately.

The Edge is the service provider, which may be a con-
tainer of various functions, such as video surveillance and
face recognition. On the other hand, the Terminal should
contain 3 components: 1) Edge Discovery: the component for
discovering nearby edge services. The crucial parameters of
edges and description of tasks will be sent to the interface
of Edge Scheduling. The description of task detail is omitted
and all searchable edges have been registered in the proposed
simplified model. 2) Task Broadcasting: This component is
used to conduct task offloading and type conversion. After
the uploading, raw data will be transformed into proper type
and then sent to edges for processing. In our work, the input
data is an image contains a person. 3) Signature Delivery: The
hash value of sender address, a receiver address and amount
of tokens will be signed by the private key of the sender. The

result of sender address, receiver address, transferred value
and three attribute value of signed transaction form a legal
signature. The agreement will be delivered to receiver server
off-chain.

B. Enabling Software Packages

To facilitate the development process, we adopt a series
of cutting-edge software to implement constructing compo-
nents for the system. We select Ethereum2 as our blockchain
platform, due to its popularity and maturity in technical and
commercial community. In our implementation, we utilize
Truffle Suite3 to simulate a private blockchain environment
for software development and the Rinkeby Testnet4 to conduct
empirical experiments. Ethereum offers Solidity5, a Turing-
complete programming language for smart contract develop-
ment. With solidity, we implement an uni-directional payment
channel to support the transactions among users, edges and,
proxy. The smart contract will be invoked by web3.py6 library,
which is a python7 interface for interacting with the Ethereum
blockchain and ecosystem. The reason for choosing web3.py
rather than the web3.js framework is that our user client
program and proxy server are implemented with Python. To
integrate our EdgeToll system to an edge-terminal environ-
ment, we leverage the edge platform from Jiangxing Intelli-
gence Inc.8, an edge computing start-up located in Shenzhen,
China. Each Jiangxing edge node provides a Wi-Fi signal as
the portal to access its AI applications, including real-time
face recognition and positioning. To facilitate dynamical edge
service discovery, we adopt pywifi9, a python library to search
available edge services. The list of available edge access points
will be updated to the proxy in real-time. After connecting to
the edge, the client will initialize a TCP/IP request through the
Application Programming Interface (API) offered by Jiangxing
edges to submit the user’s image in base64 format, and the
edge will return the location of the face in the image in a
JSON file10.

VI. EXPERIMENTS AND ANALYSIS

In this section, we validate the design and implementation of
the proposed EdgeToll system with preliminary experiments.

A. Test-bed Specifications

Jiangxing edges used in our test-bed are Acorn RISC
Machine architecture (ARM) computers with 8 GB RAM and
Intel i5-7300 CPU. The edge is also equipped with a TP-
LINK WDR5620 wireless access point, which adopts IEEE
802.11g/b standard with 1200 Mbps data rate and 2.4/5 GHz
radio frequency.

2https://www.ethereum.org/
3https://truffleframework.com/
4https://www.rinkeby.io/
5https://github.com/ethereum/solidity
6https://github.com/ethereum/web3.py
7https://www.python.org/
8http://www.jiangxingai.com/
9https://github.com/awkman/pywifi
10https://www.json.org/



Fig. 4. Demonstration of the Implemented EdgeToll Test-bed

Fig. 4 illustrates a running demonstration of our proposed
system, which consists of three edge nodes and one terminal
for the end user. All experiments described in following
sections are conducted over the test-bed.

B. Experiment Design

Because there are transaction latency and gas fee in
Ethereum blockchain, overall service time and the monetary
cost should be measured in our experiments. In addition, due
to the resource competition among multiple users or multiple
edges, the impact of the service requests frequency should be
an important factor to be considered as well. Therefore, we
design the following tw0 experiments from different perspec-
tives.

• Benefit of Payment Channel: the experiment compares
the time and cost efficiency with and without the utiliza-
tion of payment channel technology. Our hypothesis is
that with more transactions posted, payment channel will
save more time and monetary cost, due to its off chain
nature.

• Cost Minimization: this experiment is designed to dis-
cuss the monetary considerations from the perspective of
users. The end users can minimize their costs if there
are competitions among multiple edge service providers,
given the price for a service unit is dynamic, similar to
the spot instance pricing11 available in cloud computing.

C. Experimental Settings

Here we present the default parameter settings for our
following experiments. The default block rate in Rinkeby,
approximately one block per 15 seconds, is adopted if no
specific settings are imposed. The mobile terminal is a single
board computer with Ubuntu 16.04 Linux operating system.
By default, we iterate the numbers of users’ tasks from 1 to 50
with a step of 5. With proposed system, we assume the users
will not close the channel until they complete all of their tasks.
Each set of experiments has been repeated for 100 times and
their average values were derived as our final results.

11https://aws.amazon.com/ec2/spot/pricing/

D. Result Analysis

Fig. 5 and Fig. 6 illustrate the performance comparisons
between the system with and without the support of the
payment channel. We set up different parameters as depicted in
the legends, where PC represents using the payment channel,
while WPC represents the system without using a payment
channel. The value of 5s, 10s, and 15s represent the different
block intervals used in Fig. 5, while 1 Gwei, 4 Gwei, and 7
Gwei in Fig. 6 represent different gas fee required for posting
one transaction to the blockchain.

Fig. 5. Total Complete Time Fig. 6. Transaction Gas Fee

In Fig. 5, we study the impact of users’ task numbers on
the total completion time, which consists of edge service time
and the blockchain transaction delay for the toll payment when
applicable. From the results, it is obvious that the total time
cost increases linearly as the growth of numbers of users’
task. When the total number of users’ tasks is small, e.g. 1
task, the total time cost of EdgeToll may be no different to
that of systems without payment channel. However, the total
waiting time values for conventional approaches, who directly
pay tokens through blockchain transactions, are increased at
a much higher speed, especially when the block interval is
relatively high. For example, the difference of total service
time cost between two schemes is 1185 seconds when the
block time is set 15 seconds, a common Rinkeby scenario,
which means the payment channel can reduce the time cost
by more than 110% from PC. In fact, the largest overall latency
reduction in different block time can be up to 31.8%, 39.6%,
110% in the ratio of PC, respectively. Note that, the reduction
in Rinkeby is considerably more significant than other shcemes
because of the existence of congestion in real world test
P2P network, which may indicates the more distinguished
performance in authentic production environment.

A similar phenomenon can be observed in Fig. 6, which
shows the difference of gas fee the system needs to consume
between the two paradigms. One significant feature is that, the
gas fee for payment channel based experiments is a constant,
no matter how many tasks are posted by the users. This is
because all payments for their tasks are sent through the
channel, which is a no-cost off-chain process. In fact, the
only gas fees they need to pay are the opening and closing
transactions in the beginning and the end of their service usage.
Things are completely different without the help of payment
channel: the total gas fee may increase as the total number of
tasks increase. And if the price for the gas increase, the slope
will become larger as well. When the number of user’ s task is
relatively small, e.g. less than 10, the operational cost of WPC



is cheaper than PC. But the condition become different as the
increasement of task number.For instance, when a user has a
heavy workload e.g. 50 tasks and high gas price (gas price
= 7 Gwei), the total gas fee without payment channel will
be 0.0057 ether nearly 345% larger than that of the proposed
EdgeToll system. In fact, even in the low gas price, e.g., gas
price = 1 Gwei, the gas fee without payment channel can also
be 4.4 times the value of proposed system.

Fig. 7. The impact of task number and number of edges on the saved cost

Fig. 7 shows the result of user cost minimization. In the
figure, CM represents the cases using user cost minimization
algorithms in the proxy, while WCM represents the scenarios
that the end users randomly select one nearby edge to post their
requests. Regarding the dynamic pricing data proposed by the
edges in our experiment, we are not able to find corresponding
data set for a trace-drive simulation. However, we believe the
spot instance price from Amazon Web Service (AWS) can
be a reference for us, since they are intrinsically the same
mechanism: unit prices are subject to the available resources
can be provided. Therefore, we choose a number of random
functions to generate dynamic prices for edge nodes, while
the mean values of the normal random distribution function
can be attained from observing the mean of price history in
amazon web service, Linux/Unix d2.xlarge products. In Fig.
7, different schemes are corresponding to different random
function. The numeric value 1 indicates a normal distribution
with mean = 0.207 and standard deviation = 0.01, the value
of 2 means another normal distribution with mean = 0.207
and standard deviation = 0.005, and the value 3 implies a
uniform distribution with interval = [0.17, 0.23]. As shown
in the figure, the system can bring remarkable benefits to the
user. When the price is relatively stable, for example, when the
standard deviation is 0.005, the improvement of the system is
relatively insignificant. However, when the price vacillates in a
uniform random function, the overall saved cost for scenarios
with number or tasks = 20 and number of edges = 20 is
around 1.14 ether, nearly 93.7% reduction in comparison to a
traditional system with 0.59 ether.

VII. CONCLUSION

An trustworthy and efficient toll collection system is the
key to motivate the heterogeneous edge platforms to share
their vacant resource from a commercial point of view. In
this work, we design and implement EdgeToll, a blockchain-
based system, to fill the blank in this area. By leveraging
the payment channel technique, we provide a low-latency
and cost-efficient solution for a decentralized, transparent and
auditable toll collection. We believe that the deployment of
EdgeToll will contribute to the public popularization of edges,
which can reduce the computational pressure in cloud service
and accelerate the future of the Internet of Things (IoT).

ACKNOWLEDGMENT

This work was supported by Nature Key Research and
Development Program of China (2017YFB1400700),
Shenzhen Fundamental Research Fund under
grants No. KQTD2015033114415450 and No.
ZDSYS201707251409055, grant No. 2017ZT07X152,
the Natural Sciences and Engineering Research Council
of Canada (NSERC), and the National Natural Science
Foundation of China (61602537, U1509214).

REFERENCES

[1] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley,
C. Patel, P. Ranganathan, and A. Veitch, “Everything as a service:
Powering the new information economy,” Computer, vol. 44, pp. 36–
43, March 2011.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646,
Oct 2016.

[3] Y. Yu, “Mobile edge computing towards 5g: Vision, recent progress, and
open challenges,” China Communications, vol. 13, pp. 89–99, N 2016.

[4] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business
& Information Systems Engineering, vol. 59, pp. 183–187, Jun 2017.

[5] N. Álvarez Dı́az, J. Herrera-Joancomartı́, and P. Caballero-Gil, “Smart
contracts based on blockchain for logistics management,” in Proceedings
of the 1st International Conference on Internet of Things and Machine
Learning, IML ’17, (New York, NY, USA), pp. 73:1–73:8, ACM, 2017.

[6] A. Back, “Hashcash - a denial of service counter-measure,” 09 2002.
[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for

vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, pp. 14–23, Oct 2009.

[8] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11, (New York,
NY, USA), pp. 301–314, ACM, 2011.

[9] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading,” in 2012 Proceedings IEEE INFOCOM, pp. 945–953,
March 2012.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” White
Paper: https://bitcoin.org/bitcoin.pdf, 2008.

[11] V. Buterin, “Ethereum white paper: a next generation
smart contract & decentralized application platform,”
https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[12] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Le-
ung, “Decentralized applications: The blockchain-empowered software
system,” IEEE Access, vol. 6, pp. 53019–53033, 2018.

[13] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable offchain
instant payments,” in Whitepaper, 2016.

[14] C. Decker and R. Wattenhofer, “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels,” in 17th International
Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS), Edmonton, Canada, August 2015.


