
DP-Hybrid: A Two-Layer Consensus Protocol
for High Scalability in Permissioned Blockchain

Fulin Wen1, Lei Yang2B, Wei Cai3, and Pan Zhou4

1 School of Software Engineering, South China University of Technology, Guangzhou
510006, China, 201921043987@mail.scut.edu.cn

2 School of Software Engineering, South China University of Technology, Guangzhou
510006, China, sely@scut.edu.cn

3 School of Science and Engineering, The Chinese University of Hong Kong,
Shenzhen 518172, China, and

Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen
518172, China, caiwei@cuhk.edu.cn

4 School of Cyber Science and Engineering, Huazhong University of Science and
Technology, Wuhan 430074, China, panzhou@hust.edu.cn

Abstract. The permissioned blockchain has attracted the attention of
multiple industries like the supply chain due to its decentralization and
data tamper resistance. In these industries applications, the permissioned
blockchain maintained by multiple participants often has a large number
of nodes. The PBFT consensus is commonly used in the permissioned
blockchain, but it requires a large amount of message transmission to
reach consensus, resulting in poor scalability. In this paper, we propose
DP-Hybrid, a novel two-layer consensus protocol, to reduce the commu-
nication costs and improve scalability. Specifically, nodes use PBFT to es-
tablish K autonomous systems at the bottom layer, and then participate
at the top layer with Constrained PoW consensus protocol. DP-Hybrid
reduces the communication costs from PBFT’s O(N2) to O(N2/K2).
The experiment results show that DP-Hybrid’s throughput is always
about 10 times that of PBFT when the number of nodes increases.

Keywords: Blockchain; Permissioned Blockchain; Consensus Protocol;
Scalability; Throughput

1 Introduction

Blockchain utilizes special consensus protocols in a decentralized network to
maintain data consistency between nodes and provide tamper-proof capability.
The permissioned blockchain is a blockchain that provides node authentication.
The Practical Byzantine Fault Tolerance (PBFT) [1] is widely used in permis-
sioned blockchain. It achieves high throughput and low latency when the number
of nodes N is small. However, when N rises, its performance drops rapidly be-
cause of the O(N2) communication costs required to reach consensus.

Optimizations of PBFT were proposed in [2–4]. Researchers also proposed
new consensus to achieve higher performance. In [5,6], fault tolerance is sacrificed



for faster consensus speed. Hierarchical consensus protocols were proposed in
[7–13], which reduce the number of nodes participating in consensus and sacrifice
fault tolerance to improve scalability. [7–13] use a voting-based consensus at the
high layer, and there are leader nodes which vote on behalf of ordinary nodes to
reduce the communication costs, which inevitably reduces security. We believe
that non-voting-based consensus, such as Proof of Work (PoW), is more suitable
as a high-layer consensus protocol in hierarchical consensus protocols.

In this paper, we propose DP-Hybrid to achieve high throughput and scal-
ability in permissioned blockchain. DP-Hybrid uses PBFT as the bottom-layer
consensus protocol and Constrained PoW (CPoW) as the top-layer consensus
protocol. In DP-Hybrid, nodes are divided into groups at the bottom layer. The
nodes within the same group communicate with each other based on PBFT. All
the nodes represent their own group to communicate with other participants’
nodes based on CPoW at the top layer. The hierarchical structure reduces the
communication costs and improves scalability. Meanwhile, DP-Hybrid’s securi-
ty is not sacrificed and it can be configured to meet requirements. In contrast
to [7–13], there are no leader nodes to represent the ordinary nodes in DP-Hybrid
and thus the Byzantine failure of leader nodes does not exist.

We conduct extensive experiments to evaluate DP-Hybrid’s throughput. Re-
sults show that DP-Hybrid’s throughput is about 10 times of PBFT in the ex-
perimental environment. As the number of nodes increases, throughput of both
consensus protocols decreases, but DP-Hybrid’s throughput is always about 10
times of PBFT. We summarize our contributions as follows:

– To the best of our knowledge, DP-Hybrid is the first consensus protocol
that combines CPoW and PBFT to improve scalability of permissioned
blockchain without sacrificing security.

– We evaluate DP-Hybrid’s throughput using extensive experiments. The re-
sults show that DP-Hybrid’s throughput is always higher than PBFT when
the number of nodes increases.

The remainder of this paper is organized as follows. Section 2 introduces the
preliminary knowledge of blockchain and consensus protocols. Section 3 describes
our design of DP-Hybrid. Section 4 analyzes communication costs, security, live-
ness and latency of DP-Hybrid and comparative consensus protocols. Section 5
presents the experiment we conducted to evaluate DP-Hybrid. Section 6 discuss-
es the related works. Section 7 concludes this paper.

2 Preliminary

2.1 Consensus Protocol

In a distributed system, consensus protocols are required to maintain consistent
data across nodes. Blockchain is a special distributed system, whose data can
only be added but not deleted or modified. Therefore, consensus protocols in the
blockchain mainly describe the rules or processes of adding new data.



Table 1. Comparison of Different Consensus Protocols

Type Scalability Throughput Latency Node authorization Fault tolerance

PoW PCP good low high no -
PoS PCP good low high no -

PBFT DCP bad high low yes ⌊N−1
3
⌋

There are two types of consensus protocols in the blockchain, i.e., Determinis-
tic Consensus Protocol (DCP) and Probabilistic Consensus Protocol (PCP). The
outcome of DCP is irreversible if consensus is reached between the nodes. Con-
versely, the outcome of PCP consensus is reversible, but will gradually strengthen
over time, making the outcome a definitive result. We compare common consen-
sus protocols in terms of type, latency, etc. The details are listed in Table 1.

PCP has better scalability, where nodes can freely enter or exit the blockchain.
In contrast, node changes in DCP require modifications of the remaining nodes.
DCP has higher throughput and lower latency than PCP but performance drop
rapidly as the number of nodes increases. PCP can be used in public blockchain
without node authorization and it’s fault tolerance is independent of the num-
ber of nodes, but related to node’s read-world assets. Conversely, DCP can only
be used in permissioned blockchain with node authorization to resist the Sybil
Attack. DCP can tolerate a fixed proportion of faulty nodes.

2.2 PBFT Consensus Protocol

In the PBFT, N nodes are numbered from 0 to N -1. The PBFT can tolerate
F = ⌊N−1

3 ⌋ faulty nodes. Nodes move through a succession of configurations
called views. Views are numbered consecutively starting from 0. In each view v,
the node i with i = v%N acts as the primary node and the others act as backup
nodes. The primary node accepts clients’ requests and initiates PBFT to reach
consensus. Each node sends the result to the client after reaching consensus. The
client waits for F+1 replies with the same result from different nodes.

If the client does not receive enough replies before timeout, it broadcasts the
request to backup nodes. If the request has been processed, backup nodes resend
the result. Otherwise, backup nodes initiate a PBFT view change to generate
a new primary node. Each backup node broadcasts a view change message to
the others. if a node receives 2×F same view change messages, it updates its
v=v+1. After that, nodes reprocess the client’s request.

The protocol steps in the normal case of no primary node faults are as follows:
Step 1 : Request. Client sends a request r to the primary node.
Step 2 : Pre-Prepare (PP). The primary node broadcasts a pre-prepare mes-

sage containing r to backup nodes.
Step 3 : Prepare (P). Each backup node broadcasts a prepare message to the

other nodes to confirm r’s contents.
Step 4 : Commit (C). Each node broadcasts a commit message to the other

nodes to confirm the execution of r.
Step 5 : Reply. All the nodes execute r and reply to the client.



	

Bottom	Layer

Top	Layer CPoW

PBFT
PBFT

PBFT

PBFT

	

Fig. 1. Network model

According to the above process, the communication costs required to reach
consensus in PBFT are O(N2). As N increases, the number of messages increases
rapidly, which results in decreased throughput and increased latency. For above
reasons, we believe that PBFT is not suitable for industries scenarios where there
are a large number of nodes. We propose DP-Hybrid, which combines CPoW and
PBFT to reduce communication costs and imporves scalability.

3 Design of DP-Hybrid

3.1 DP-Hybrid Structure

As shown in Fig. 1, DP-Hybrid is divided into two layers, i.e., the bottom layer
and the top layer. We assume that K participants jointly maintain a DP-Hybrid
blockchain. The participants could be companies which join the blockchain for
data sharing. There exists total N nodes in the blockchain and each participant
has N/K nodes. The nodes within the same participant are called internal nodes
and the other participants’ nodes are called external nodes. The internal nodes
of a participant forms a group at the bottom layer and communicate with each
other based on PBFT. Meanwhile, all the nodes can represent their own groups
to communicate with external nodes based on the CPoW at the top layer. The
details of the consensus process will be discussed in section 3.2.

We define notations as follows. Pi is the ith participant. Ni is the number
of nodes in Pi. Fi = ⌊Ni−1

3 ⌋ is the tolerable number of faulty nodes in Pi. n
j
i is

the jth node in Pi. Every node knows all Pi, Ni and Fi (i = 1 . . .K). They also
know which participant each node belongs to. We list the notations in Table 2.

In the initialization, the internal nodes within Pi establish connections with
each other and keep external nodes’ communication addresses. After that, a
PBFT view change occurs in Pi to generate a primary node and then each in-
ternal node in Pi broadcasts a message to the external nodes. The message is
named by External View Changed (ext-VC) message, which includes the in-
formation of the new primary node. If a external node receives 2×Fi+1 same
ext-VC messages from Pi, it updates Pi’s primary node information. With the
ext-VC message, external nodes can identify Pi’s primary node.

After finishing initialization, if a new node joins Pi or an existing node exits
Pi, Pi’s PBFT network system needs to be reconfigured. After that, except for



Table 2. Notations in This Paper

Notation Meaning Notation Meaning

N The total number of nodes ⟨m⟩ji Message m signed by nj
i

K The total number of participants ⟨m⟩ Unsigned message m

Pi The ith participant vi The PBFT view number of Pi

Ni The number of nodes in Pi Tx The transaction from client

Fi The tolerable number of faulty n-
odes in Pi

Ba The ath block in the CPoW
blockchain

nj
i The jth node in Pi li The latest ID of Tx in Pi

the new node or the exited node, each internal node in Pi broadcasts a message
to the external nodes. The message is named by External Node Changed (ext-
NC) message, which includes the information of the new node or the exited node.
If a external node receives 2×Fi+1 same ext-NC messages from Pi, it updates
Ni, Fi and Pi’s nodes information. With the ext-NC message, the external node
can verify the new node’s messages or ignore the exited node’s messages.

In the operation of the DP-Hybrid blockchain, the client sends a transaction
Tx to the primary node of a random Pi. The nodes in Pi reach local consensus
on Tx via PBFT, and the local consensus is broadcast to other participants.
Each participant collects local consensus from other participants. Meanwhile, all
the participants compete to package both internal and external local consensus
into CPoW blocks. To make a CPoW block valid, they need to find a nonce that
makes the block’s hash value less than a threshold. The valid CPoW blocks and
transactions within the blocks are considered as global consensus.

3.2 Consensus Process

The following descriptions focus on the nodes of one participant Pi with Ni

and Fi, while the nodes of the remaining participants are collectively referred
to as external nodes. For simplicity, we use n0

i as the primary node and nj
i

(j=1,2. . .Ni-1) as backup nodes in Pi to describe the consensus process.
At the bottom layer, each internal node acts as a PBFT state machine with

an initial bottom state (b state) of Pre-Prepare and performs state transitions
as shown in Fig. 2. When a client sends a transaction to the primary node, the
primary node triggers bottom state transitions. In each state, each internal node
broadcasts confirmation message and waits for 2 × Fi identical messages from
other internal nodes. In the Commit state, the transaction is transformed into
local consensus, and waiting to be packed into CPoW blocks.

The details of the bottom state transitions of the primary node and backup
nodes are given in Algorithm 1 and Algorithm 2. We denote the message m
signed by nj

i as ⟨m⟩ji , the unsigned one as ⟨m⟩, the view number of Pi as vi, the
transaction as Tx, the assigned ID of Tx as li and the digest of Tx as d.

After reaching local consensus, n0
i broadcasts ⟨Pi, Tx, li⟩0i to external nodes.

This allows Tx to be packed into CPoW block by other participants. Only the
local consensus containing valid Tx, unused li and signature of Pi’s primary node
is valid and accepted. The primary node may send transactions that have not



Pre-Prepare
(PP)

Prepare
(P)

Commit
(C)

Fig. 2. State transitions of nodes at the
bottom layer

Listener Agent Miner

Fig. 3. State transitions of nodes at the
top layer

Algorithm 1 PBFT for primary node at the Bottom Layer

1: li ← 1, b state← PP
2: for li=1,2,3. . . do
3: if receive Tx from client & b state = PP then
4: broadcast ⟨⟨PP, vi, li, d⟩0i , Tx⟩ to backup nodes
5: b state← P
6: wait for 2×Fi prepare messages with same vi, li and d from different nodes
7: end if
8: if meet the above conditions & b state = P then
9: broadcast ⟨C, vi, li, d, 0⟩0i to backup nodes
10: b state← C
11: wait for 2×Fi commit messages with same vi, li and d from different nodes
12: end if
13: if meet the above conditions & b state = C then
14: save ⟨Pi, li, Tx⟩ as local consensus
15: reply to the client that Tx has been transformed into local consensus
16: broadcast ⟨Pi, li, Tx⟩0i to external nodes
17: li ← li+1, b state← PP
18: end if
19: end for

Algorithm 2 PBFT for backup node at the Bottom Layer

1: li ← 1, b state← PP
2: for li=1,2,3. . . do
3: if receive ⟨⟨PP, vi, li, d⟩0i , Tx⟩ from primary node & b state = PP then

4: broadcast ⟨P, vi, li, d, j⟩ji to the primary node and other backup nodes
5: b state← P
6: wait for 2×Fi prepare messages with same vi, li and d from different nodes
7: end if
8: if meet the above conditions & b state = P then
9: broadcast ⟨C, vi, li, d, j⟩ji to the primary node and other backup nodes
10: b state← C
11: wait for 2×Fi commit messages with same vi, li and d from different nodes
12: end if
13: if meet the above conditions & b state = C then
14: save ⟨Pi, li, Tx⟩ as local consensus
15: reply to the client that Tx has been transformed into local consensus
16: li ← li+1, b state← PP
17: end if
18: end for



reached local consensus to external nodes, but this does not have benefit. Because
invalid transactions will not be accepted anyway while valid transactions have
more opportunities to be packed into CPoW block after reaching local consensus.

While running PBFT to deal with transactions from client, each node com-
municates with external nodes according to the top-layer CPoW consensus pro-
tocol. We define the two constraints of CPoW:

– Confirmation Number (CN): If there are not less than CN blocks following
the ath block Ba, the transactions in Ba become global consensus.

– Maximum number of Blocks in CN (MBC): A maximum of MBC blocks
from the same participant are allowed in CN consecutive blocks.

These constraints reduce the competition of computing resources and make
security not entirely dependent on the distribution of computing resources. Due
to the MBC constraint, not all the nodes in a participant perform the Write
Operation, which wastes computing resources. Therefore, we define three top
states (t state) of the nodes when participating at the top layer as follows:

– Listener: Only performs the Read Operation.
– Miner: Performs both Read and Write Operations.
– Agent: Determines whether to perform the Write Operation and broadcasts

signed message containing the set S of miners’ ID if needed.

The top state transitions are shown in Fig. 3. Algorithm 3 and Algorithm 4
describe the Write Operation and the Read Operation. The initial t state of the
nodes is Listener. We use the timestamp of the latest CPoW block, denoted as
T , to generate the agent node and thus the agent node changes after receiving
or generating new blocks. The nj

i with j = T%Ni acts as the agent node and
determines whether to perform the Write Operation according to the MBC con-
straint. If the MBC constraint is violated, the agent node broadcasts an empty
set. Otherwise, the agent node generates a miner set S based on the incentive
policy and broadcasts it to other internal nodes. The agent node soon changes
its t state based on S it generated. Internal nodes judge S based on the same
incentive policy to change their t state. If they find that S provides far smaller
than the needed computing resources, they broadcast agent change message to

Algorithm 3 Write Operation at the Top Layer

1: function WriteOperation()
2: Generate a block B containing the hash of the previous block, local consensus

from each participant, etc.
3: find a nonce that makes B’s hash start with D zeros
4: add B to the CPoW blockchain
5: broadcast B to both internal and external nodes
6: t state← Listener
7: execute OnReceiveBlock(B)
8: end function



Algorithm 4 Read Operation at the Top Layer

1: function OnReceiveBlock(B)
2: if B is valid then
3: add B to the CPoW blockchain
4: if t state = Miner then
5: stop WriteOperation()
6: end if
7: if ID j ̸= B.time%Ni then
8: t state← Listener
9: else
10: t state← Agent
11: if the MBC constraint is violated then
12: generate miner set S
13: broadcast S to other internal nodes
14: execute OnReceiveMinerSet(S)
15: else
16: broadcast empty set to other internal nodes
17: t state← Listener
18: end if
19: end if
20: end if
21: end function
22: function OnReceiveMinerSet(S)
23: if ID j ∈ S then
24: t state←Miner
25: execute WriteOperation() ◃ on new thread
26: else
27: t state← Listener
28: end if
29: end function

replace the agent node. if a node receives 2× Fi same messages, it consider the
nq
i with q = (T + 1)%Ni as the new agent node.

In the Algorithm 3, miner nodes find a nonce that makes B’s hash start
with D zeros. D is the difficulty factor of CPoW and it changes periodically.
All the nodes in the network calculate the Average Block Interval (ABI) in a
cycle and then adjust D based on the difference between the current ABI and
the expected value. The expected value of ABI is a hyperparameter set before
building the blockchain. ABI is negatively correlated with D, and the change
in D always makes next cycle’s ABI closer to the expected value. If the ABI is
too high, the nodes reduce D in the next cycle, and the rest cases are similar.

Honest nodes only accept valid blocks from participants who do not violate
the MBC constraint. A valid block should contain the hash of the previous block
and a nonce that satisfies D and not contain any invalid transactions. When a
valid block satisfies the CN constraint, the transactions in the block become
global consensus and take effect.



3.3 Incentive Policy

There is no cryptocurrency in permissioned blockchain to motivate nodes to per-
form the Write Operation. To solve this problem, we limit the default amoun-
t of transactions from each participant contained in a CPoW block, denoted
by Default Size (DS), and provide an additional amount of transactions to
participant who generated blocks as a reward, denoted by Reward Size (RS).
If Pi generated Bi, an additional RS transactions in each block from Bi to
Bi+CN−1 are allowed from Pi. Therefore, the Block Size (BS) can be expressed
as BS = DS ×K +RS × CN .

By setting the appropriate parameters, participants with large data volumes
actively perform the Write Operation to obtain RS to meet the demand for
writing data. Participants with less data volumes can meet the demand relying
on DS without investing too much computing resources.

4 Theoretical Analysis and Comparison

4.1 Communication Costs

Communication costs are related to blockchain’s performance and scalability.
Lower communication costs can lead to better scalability and performance. We
assume a total of K participants and N nodes, and each participant has N/K
nodes in our proposed system. For a transaction from the client, the communi-
cation costs to reach consensus at the bottom-layer PBFT are O(N2/K2). After
that, the primary node broadcasts the local consensus to external nodes, lead-
ing to O(N) communication costs. Broadcasting a CPoW block causes O(N)
communication costs, but it usually contains multiple transactions, so it can be
ignored when considering only one transaction. According to the above analysis,
the communication costs of DP-Hybrid are O(N2/K2).

4.2 Security

Blockchains need to resist attacks that tamper with valid blocks or write in-
valid blocks to ensure security. 51% attacks [14] are commonly used attacks that
damage the security of PoW-based blockchains. To launch 51% attacks, attack-
ers have to generate a long enough blockchain to replace the original one. For
example, an attacker’s valid Txa was packed in Ba, and it takes effect after
the generation of Ba+CN , which is the latest block now. If the attacker wants
to destroy the record of Txa in Ba, he or she has to regenerate blocks Ba to
Ba+CN+1, i.e., longer than the original one. In the other case, if an attacker
wants to pack an invalid Txb in the latest CPoW Bb, he or she has to continu-
ously generate blocks Bb to Bb+CN+1, because honest nodes refuse to follow Bb

containing invalid Txb. However, due to the MBC constraint, it is impossible
for any participant to continuously generate CN blocks.

To reflect the difficulty of attacks, we define the Minimum number of Attack-
ers MinA = CN/MBC, which means that attackers need to control at least



MinA participants to generate CN consecutive blocks. We define the Attack
Tolerance Factor ATF = MinA/K. A larger ATF means that the blockchain
can tolerate more participants collusion.

4.3 Liveness

Liveness means that the blockchain can handle valid transactions. When the
number of normal nodes is not enough to continuously generate blocks and
extend the blockchain, the blockchain loses its liveness.

Similarly, we define the Minimum number of Crashed nodes MinC = K −
MinA + 1, meaning that when the nodes of MinC participants are crashed,
the remaining participants cannot continue to extend the blockchain. We define
the Crash Tolerance Factor CTF = MinC/K. A larger CTF means that the
blockchain can tolerate more participants’ nodes simultaneously crashed.

4.4 Latency

Latency is the time elapsed between the client sending the transaction and the
transaction taking effect. In DP-Hybrid, transactions are transformed into local
consensus by PBFT, and then packed into CPoW block. When there are CN
CPoW blocks generated following Ba, the transactions in Ba become global
consensus and take effect. The time required to generate a block is not fixed,
but in the long-term operation of the CPoW-based blockchain, ABI is stabilized
within a range. We assume that a transaction was submitted at time period
(ABI, 2×ABI), transformed into global consensus at time point 3×ABI and
took effect at time point (CN + 3) × ABI. The latency is between (CN +
3) × ABI − ABI and (CN + 3) × ABI − 2 × ABI and the average latency is
(CN + 1.5)×ABI.

4.5 Comparison

We compared communication costs, security, liveness, latency of DP-Hybrid,
PBFT, PoW, committee-based (CB) and leadership-based (LB) consensus pro-
tocols. The details are listed in Table 3.

We give a comparative analysis according to the table. DP-Hybrid has lower
communication costs than PBFT but usually higher than CB and LB. The
typical communication costs of both CB and LB are O(NC) or O(C2), where
C is the number of committee or leader nodes and smaller than N . In terms of
security, DP-Hybrid is configurable and can achieve higher security than PBFT.
But for CB and LB, the security is sacrificed for lower communication costs.
The fault tolerance of CB is F = ⌊C−1

3 ⌋ and LB even has a smaller F , because
the leader node directly represents the subsidiary nodes below it. The consensus
protocols mentioned above have good liveness, but for some implementations
of CB and LB, view changes are often triggered to ensure liveness, which may
reduce the actual performance. The latency of DP-Hybrid is stable and higher



Table 3. Comparison of Different Consensus Protocols

DP-Hybrid PBFT CB LB

Communication costs O(N2/K2) O(N2) O(NC) O(C2)
Security configurable F < ⌊N−1

3
⌋ low low

Liveness configurable high high high
Latency high low low low

than the remaining consensus protocols. The latency of PBFT, CB and LB is
low, but increases rapidly as the number of nodes increases.

Latency is what DP-Hybrid sacrifices for other performance and scalability.
We believe that sacrificing latency is better than sacrificing security.

5 Experiments

We have conducted experiments on throughput in permissioned blockchain. The
experiments measure normal-case behavior without Byzantine failure to achieve
the best performance. The experiments ran on one six-core twelve-thread desktop
with a frequency of 3.2Ghz and 8GB RAM. We use Docker to simulate multiple
nodes, and the nodes are connected through a physical wireless network. The
client is deployed on another computer and sends transactions to the blockchain
system over the same wireless network. The client sends transactions to the
blockchain system at a sufficient rate, so it does not limit the throughput.

We developed a PBFT blockchain and developed the DP-Hybrid blockchain
based on it. Signing and verification are omitted for simplicity. We conducted
comparative experiments on the throughput of these two blockchains.

We define the throughput of the blockchain as the number of transactions
that can be handled per second (Tx/s). We tested the throughput under a vary-
ing number of nodes, including N=4, 7, 10, 16, 28, 40, 52. In DP-Hybrid, K is
4, CN is 6, MBC is 2 and BS is 10240. The experiments for DP-Hybrid were
conducted only at N=16, 28, 40, 52 and each participant has 4, 7, 10, 13 nodes.

The throughput of PoW-based blockchain is not a fixed value, because the
interval between blocks is different. For simplicity, we simulate that a new CPoW
block is generated every 15 second in DP-Hybrid, and thus the throughput is the
number of transactions contained in the block divided by 15. As shown in Fig. 4,
with an increase in N , the throughput of PBFT decreases rapidly because of the
O(N2) communication costs. DP-Hybrid’s throughput also decreases with the
increase of N , but always has about 10 times the throughput of PBFT in the
experimental environment.

TheBS is a factor that affects DP-Hybrid’s throughput. We test DP-Hybrid’s
throughput under a varying BS, including BS=10240, 7168, 5120, 4096, 3072.
The remaining parameters are the same as the above experiments. As shown
in Fig. 5, BS limits the maximum throughput of DP-Hybrid, which is reflected
when the number of nodes is small. Larger BS allows larger CPoW blocks, but
transferring these blocks consumes more network bandwidth. According to the



0

100

200

300

400

500

600

0 10 20 30 40 50 60

Th
ro

u
gh

p
u

t 
(T

x/
s)

N

PBFT

DP-Hybrid K=4

Fig. 4. Throughput of DP-Hybrid and
PBFT under a varying N

0

100

200

300

400

500

600

0 10 20 30 40 50 60

Th
ro
u
gh
p
u
t
(T
x/
s)

N

BS=10240

BS=7168

BS=5120

BS=4096

BS=3072

Fig. 5. Throughput of DP-Hybrid un-
der a varying BS

0

50

100

150

200

250

300

350

400

450

4 5 8 10

Th
ro
u
gh
p
u
t
(T
x/
s)

K

N=40

Fig. 6. Throughput of DP-Hybrid under a varying K

incentive policy discussed above, BS is determined by the DS and the RS, so
the BS should be configured properly in conjunction with the incentive policy.

The number of participants is also a factor that affects DP-Hybrid’s through-
put. We test the throughput of different K in the case of N=40, including K=4,
5, 8, 10, and each participant has 10, 8, 5, 4 nodes. We keep the BS at 10240 by
changing RS and DS, and the remaining parameters are the same as the above
experiments.

Fig. 6 shows that a larger K results in higher throughput when N is fixed.
This means that in industry applications, an increase in the number of par-
ticipants does not degrade performance. Besides, more participants make the
incentive policy and security configurations more flexible.

We conclude that DP-Hybrid has much higher throughput than PBFT when
the number of nodes is large. With low reconfiguration overhead and configurable
incentive policy and security, DP-Hybrid has better scalability for industry ap-
plications with many participants.

6 Related Work

As a core part of the blockchain, consensus protocols have been extensively
studied. Researchers have proposed optimization on leader election [2], PBFT
commit stage [3] and no view-change case [4] to speed up PBFT. The trade-off
between the consensus speed and fault tolerance was discussed in [5, 6], which
sacrifices fault tolerance for faster consensus speed. Researchers also proposed
new consensus protocols to speed up consensus by providing higher voting rights
for honest nodes [15,16], but honest nodes may not remain honest in the future.



Another way to improve performance and scalability is to reduce the amoun-
t of message transmission. This is usually achieved through committee-based
and leadership-based consensus protocols. Committee-based consensus proto-
cols were proposed in [7–9]. Committee nodes are selected randomly [7, 8] or
by a combination of the latest consensus results and the node’s authentication
information [9]. Committee nodes participate consensus on behalf of other n-
odes, and the ordinary nodes accept the consensus results obtained by majority
committee nodes.

Leadership-based consensus protocols were proposed in [10–13]. In [10], every
several nodes form a committee at the bottom layer and select a leader node to
participant in the upper layer and then recursively build a hierarchical struc-
ture. Consensus protocol is run on the committees and the local consensus are
uploaded to the upper level by the leader node and then recursively reached glob-
al consensus. In [11–13], consensus protocol only runs on the leader nodes and
the result are passed to the lower-layer nodes by the leader node. In contrast to
committee-based consensus protocols, lower-layer ordinary nodes directly accept
the consensus results obtained by their unique leader node.

However, both committee-based and leadership-based consensus are hard to
solve Byzantine faults of committee nodes or leader nodes. In contrast, DP-
Hybrid uses PoW-based consensus instead of voting-based consensus as a high-
layer consensus, which can imporve scalability without sacrificing security.

7 Conclusion

In this paper, we have studied the consensus protocols in permissioned blockchain.
We found that the PBFT consensus protocol which is commonly used in permis-
sioned blockchain leads to poor scalability and high reconfiguration overhead. To
solve this problem, we proposed a two-layer consensus protocol called DP-Hybrid
that combines PBFT and CPoW. DP-Hybrid reduces both communication costs
and reconfiguration overhead and thus improves the scalability, while providing
configurable incentive policy and security. We conducted experiments and re-
sults show that DP-Hybrid’s throughput is always about 10 times that of PBFT
when the number of nodes increases.

Acknowledgments. This work was supported in part by the National Natural
Science Foundation of China (No. 61972161 and No. 61902333), and in part
by the Fundamental Research Funds for the Central Universities, China (No.
2018MS53).

References

1. M. Castro, B. Liskov, ”Practical Byzantine Fault Tolerance”, Proceedings of the
3rd Symposium on Operating Systems Design and Implementation (OSDI), pp.
173-186, 1999.



2. J. Augustine, G. Pandurangan, P. Robinson, ”Fast Byzantine Leader Election in
Dynamic Networks,” Distributed Computing: 29th International Symposium (DIS-
C), pp. 276-291, 2015.

3. L. He, Z. Hou, ”An Improvement of Consensus Fault Tolerant Algorithm Applied
to Alliance Chain,” 2019 IEEE 9th International Conference on Electronics Infor-
mation and Emergency Communication (ICEIEC), pp. 1-4, 2019.

4. Y. Jiang, S. Ding, ”A High Performance Consensus Algorithm for Consortium
Blockchain,” 2018 IEEE 4th International Conference on Computer and Commu-
nications (ICCC), pp. 2379-2386, 2018.

5. N. Braud-Santoni, R. Guerraoui, F. Huc, ”Fast Byzantine Agreement,” In Pro-
ceedings of the Annual ACM Symposium on Principles of Distributed Computing,
pp. 57-64, 2013.

6. M. M. Jalalzai, C. Busch, ”Window Based BFT Blockchain Consensus,” 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 971-979, 2018.

7. A. Naif, B. Nirupama, ”Block-Supply Chain: A New Anti-Counterfeiting Supply
Chain Using NFC and Blockchain,” Proceedings of the first Workshop on Cryp-
tocurrencies and Blockchains for Distributed Systems, (CryBlock’18), pp. 30-35,
2018.

8. M. M. Jalalzai, C. Busch, G. G. Richard, ”Proteus: A Scalable BFT Consen-
sus Protocol for Blockchains,” 2019 IEEE International Conference on Blockchain
(Blockchain), pp. 308-313, 2019.

9. Y. Meng, Z. Cao, D. Qu, ”A Committee-Based Byzantine Consensus Protocol for
Blockchain,” 2018 IEEE 9th International Conference on Software Engineering and
Service Science (ICSESS), pp. 1-6, 2018.

10. G. Chander, P. Deshpande, S. Chakraborty, ”A Fault Resilient Consensus Protocol
for Large Permissioned Blockchain Networks,” 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pp. 33-37, 2019.

11. J. Zou, B. Ye, L. Qu, Y. Wang, M. A. Orgun, L. Li, ”A Proof-of-Trust Consensus
Protocol for Enhancing Accountability in Crowdsourcing Services,” IEEE Trans-
actions on Services Computing, vol. 12, no. 3, pp. 429-445, 2019.

12. C. Chen, J. Su, T. Kuo, K. Chen, ”MSig-BFT: A Witness-Based Consensus Al-
gorithm for Private Blockchains,” 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 992-997, 2018.

13. K. Li, H. Li, H. Hou, K. Li, Y. Chen, ”Proof of Vote: A High-Performance Con-
sensus Protocol Based on Vote Mechanism & Consortium Blockchain,” 2017 IEEE
19th International Conference on High Performance Computing and Communica-
tions; IEEE 15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems, (HPCC/SmartCity/DSS), pp. 466-473,
2017.

14. M. Conti, S. Kumar E, C. Lal, S. Ruj, ”A Survey on Security and Privacy Issues of
Bitcoin,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3416-3452,
Fourthquarter 2018.

15. K. Lei, Q. Zhang, L. Xu, Z. Qi, ”Reputation-Based Byzantine Fault-Tolerance for
Consortium Blockchain,” 2018 IEEE 24th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 604-611, 2018.

16. L. Bahri, S. Girdzijauskas, ”When trust saves energy: A reference framework for
proof of trust (PoT) blockchains,” Companion Proceedings of the The Web Con-
ference 2018 (WWW ’18), pp. 1165-1169, 2018.


