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Abstract—Decomposed cloud gaming is a novel paradigm to
deliver gaming as a service to mobile terminals. In such a system,
video games are decomposed into software components that are
cognitive to players’ behavior and execution environments in
both cloud and mobile devices. However, in order to balance the
workload distribution between cloud and mobile terminals in a
real system, there are still a number of questions to be answered,
which requires empirical studies with detailed measurement and
analysis. In this work, we identify these questions and answer
them by measuring the execution and networking performance
data from a tank game prototype in our test-bed. Based on our
observations on the affecting factors on the system performance,
we design and implement the cognitive capacity for the system to
dynamically adapt its service to different terminals and networks.

I. INTRODUCTION

Cloud gaming [1] refers to novel gaming service that utilizes
cloud computing to facilitate better system performance. In
conventional cloud gaming system, video games are hosted
in cloud servers and their gaming videos are delivered via
the Internet to all kind of terminals, such as desktop PCs,
smartphones, etc. In reverse, the players’ inputs are delivered
to a cloud server and accepted by the game content server
directly [2]. Hosting games in the cloud introduce benefits to
system maintenance and service provisioning, due to its cross-
platform feature. Realizing its bright future, the industry has
been leading the way. Even though G-cluster1, one of the ear-
liest cloud gaming providers, has filed for bankruptcy on May
2016, Sony PlayStation Now2 is still in operation. It serves as
a cloud gaming service from Sony Interactive Entertainment,
after absorbing two cloud gaming forerunners, OnLive and
Gaikai. As an interactive real-time video streaming system, the
bottleneck of cloud gaming goes to unpredictable latency and
insufficient bandwidth of Internet connectivity, especially in
the scenario of mobile networks. Under this circumstance, con-
ventional real-time video compression techniques and adaptive
transmission [3] [4] [5] are introduced to further optimize
gamers’ quality of experience (QoE). The foundation of these
studies is based on a common assumption: gamer players
would prefer to scarify video quality to gain smoother playing
experience in insufficient network QoS supplement.

However, the state-of-art implementations are still far away
from complete satisfactory: it is evident that cloud gaming is

1http://www.gcluster.com/
2https://www.playstation.com/en-ca/explore/playstationnow/

still not accepted by the mass market. To this end, another
direction of research [6] brings software decomposition into
cloud gaming area. Their work decomposes the rendering
module of a game into two sub-modules: one executing
in the cloud to render the scenes and create the rendering
instructions for game scene updates, while the other interprets
the rendering instructions and transmits them to the mobile
devices for local execution. By decoupling the creation of
rendering instructions from its execution and transmitting
only small-sized rendering instructions over the Internet, the
communication burden caused by video transmissions is eased,
hence meeting the challenges caused by the limitations of the
mobile networks. Motivated by this decomposition idea, we
proposed the decomposed cloud gaming paradigm [7], where
a game program is decomposed into inter-dependent compo-
nents that can be flexibly distributed to either the cloud or
terminal for execution. Thus, player’s QoE can be cognitively
optimized by dynamically allocating components according to
various system parameters, including different terminal capac-
ities (mobile or stationary devices), heterogeneous networks,
and distinct players’ behaviors. We demonstrated the design
and implementation of our proposal with a decomposed cloud
gaming test-bed and three prototype games [8]. However, to
cognitively balance the workload between cloud and mobile
terminals, we still a number of critical engineering issues to
be addressed. These unanswered questions include:

1) Will the concurrency of multiple components affect the
computing performance of cloud and terminals?

2) Will the intensive computational workload affect the
computing performance of cloud and terminals?

3) Will hardware specification affect the computing perfor-
mance of cloud and terminals?

4) Will the message exchange between components within
cloud affect the system performance?

5) Will the message exchange between components within
terminal affect the system performance?

6) Will the message networking between cloud and ter-
minal affect the system performance? What can the
performance alter our partitioning strategy?

7) Will decomposed cloud gaming enhance players’ gam-
ing experience, or it’s just a gaudy concept?

In this paper, we answer above questions by conducting
an empirical study on component execution performance of a



tank game prototype. Based on our observations, we design
and implement the cognitive engine to optimize the workload
balancing between cloud and terminals and validate its effec-
tiveness by experiments.

The remainder of the paper is as follows. We review
related work in Section II and briefly present the system
implementation for decomposed cloud gaming in Section III,
respectively. Afterwards, we perform measurements in Section
IV to study the execution performance of components in
different environments. Based on the observation, we propose
the cognitive engine implementation in Section V and evaluate
our algorithm in VI. Section VII concludes the paper.

II. RELATED WORK

A. Cloud Gaming

Cloud gaming platforms can be categorized into two classes:
transparent platforms and non-transparent platforms. Tra-
ditional cloud gaming services, such as PlayStation Now,
belong to the transparent platforms [9], which run unmodified
games at the expense of potentially suboptimal performance.
In contrast, the non-transparent platforms [10][11] require
augmenting and recompiling existing games to leverage unique
features for better gaming experience, which may potentially
be time-consuming, expensive, and error-prone. In this work,
our proposed decomposed cloud gaming system falls into the
later category.

B. Quality of Experience in Cloud Gaming

Maintaining an acceptable quality of experience (QoE) for
the game players is an imperative design concern for cloud
gaming systems. To provide cloud gaming service, the rela-
tionships between cloud gaming QoE and QoS are different for
different implementation architectures. For traditional cloud
gaming, many subjective user studies have been conducted to
demonstrate the relationships between cloud gaming QoE and
QoS, including game genres, video encoding factors, central
processing unit (CPU) load, memory usage, link bandwidth
utilization, response latency and the game’s real-time strictness
[12], category of gaming scenes, and network characteristics
(bit rates, packet sizes, and inter-packet times) [13]. Neverthe-
less, with the proposed cognitive cloud gaming platform, the
QoE to QoS mapping needs to be redefined due to the adaptive
nature of the platform. There is relatively little research done
in this respect. In current work, we consider the fluency of
game execution the most important factor that affects the
players’ QoE. Therefore, we focus on optimization of game
rendering, which specifically represented by the value of frame
per second (FPS).

C. Partitioning Solution

To facilitate intelligent resource allocation, the cloud games
should support dynamic partitioning between cloud and mobile
terminal. There has been some work on the partitioning of
mobile applications. [14] first introduces a K-step algorithm
as a dynamic solution where the partition is calculated on-the-
fly, once a mobile connects and communicates its resources.

Furthermore, according to [15], there is no single partitioning
that fits all due to environment heterogeneity (device, network,
and cloud) and workload. Consequently, they proposed a
system that can seamlessly adapt to different environments and
workloads by dynamically instantiating what partitioning to
use between weak devices and clouds. An implementation [16]
called CloneCloud is a flexible application partitioner and ex-
ecution run-time that enables unmodified mobile applications
running in an application-level virtual machine to seamlessly
off-load part of their execution from mobile devices onto
device clones operating in a computational cloud. However,
these works require the application to be completely installed
in both the mobile terminal and the virtual machine residing
in the cloud.

III. SYSTEM IMPLEMENTATION

A. Platform Overview

The decomposed cloud gaming platform considers game
software as inter-connected components, which function as
cooperative modules via inter-component message exchange.
In other words, a game application is decomposed into a
number of pieces, which either executed in the cloud or
the players’ terminal, according to the status of devices and
network quality. Games designed for the cognitive platform
consist of a number of inter-dependent game components.
These components are able to migrate from the cloud to the
mobile terminal via the network under the instruction of the
Onloading Manager. Serving as a message gateway between
components, the Partitioning Coordinator selects destination
components, locally or remotely, to achieve dynamic resource
allocation. This intelligent selection is performed by Cognitive
Decision Engine. It requests information from the Performance
Prober, which periodically reports its results in collecting data
from Execution Monitors in both cloud and terminal side. For
further details about test-bed implementations, please refer to
our previous publication [8].

B. Prototype Development and selection

To verify the feasibility and efficiency of the implemented
platform, we developed a number of decomposed game pro-
totypes, including 3D Skeleton Prototype, Gobang Game and
Robocode Tank, as described in our previous work [17]. In
this paper, our target is to design quantitative measurements
and experiments to demonstrate the proposed features. Critical
issues in designing such experiments include 1) how to select
representative game prototypes; 2) how to measure the impact
of computational capacities in the cloud and terminals; 3)
how to measure the impact of network parameters. To this
end, we select the Robocode Tank game prototype to study
the execution and network status for components. We put a
different quantity of tanks with distinct computational costs
(represents the intensive computing for tanks’ artificial intel-
ligence) into the battlefield, in order to simulate a variety of
gaming scenarios.



IV. MEASUREMENTS

In this section, we perform measurements for computational
capacity and the communication capacity. Our purpose is to
design figure out how different systematic factors affect these
two capacities. The factors we considered include the CPU and
the memory of the cloud and the terminal, and the network
between the cloud and the terminal.

A. Experimental Settings

To simulate the cloud, network and terminal environment,
we set up an experimental test-bed in The University of British
Columbia, Vancouver. We employed two personal computers
(PCs) to simulate the environment of cloud and terminal. Both
of these two PCs are equipped with 8 core CPU, 8 Gigabytes
(GB) memory. During the experiment, we use BIOS settings
to adjust the CPU cores and memory size, in order to simulate
different hardware scenarios. Nodejs v4.4.7 is installed as the
cloud server software, while Firefox 45.0.2 is adopted as the
default client in the terminal. To connect cloud and terminal,
we wired them to a Linksys Wireless Router WRT120N router
so that they are inter-connected within one local area network
(LAN). The Robocode tank game is deployed on port 8080 of
cloud PC and the terminal accesses the game through cloud’s
local Internet protocol (IP) address. In order to control the
network parameters between cloud and terminal, we installed
NetLimiter 4.

Our prototype will record the frame per second (FPS) for
the game scenes as the indicator of system performance, since
it represents the overall latency introduced by the component
execution and communications. Better performance will yield
higher FPS. In particular, we record the real-time FPS values
in the gaming session and send them back to the cloud side.
In this way, we are able to quantify the performance of the
whole tank application with its FPS value. The average FPS
has calculated afterward which represents the performance of
the application under this situation. By comparing the different
FPS under different circumstances, we can reveal how the
capacity is on either the cloud side or the terminal side, and
which factors can affect the capacity most. These findings
enable us to develop better dynamic partition solution based
on them.

B. Computational Capacity

Our hypothesis is that the parameters affecting compu-
tational capacity include computing intensity and process
concurrency. The former value indicates the computational
complexity of a particular component, while the latter value
indicates the ability of parallel execution for multiple com-
ponents. In this work, we use the iterative executions of
a segment of code to demonstrate the computing intensity,
and the quantity of simultaneous components to simulate the
process concurrency.

Before quantitatively study the influences of different fac-
tors, we conducted two case studies to discover the relation-
ships between FPS and these two parameters. The specification

of the cloud servers and the terminal in the case studies are
listed in Table I.

TABLE I: Specification for Case Studies

Cloud Terminal
CPU 8 cores with 3.40GHz 4 cores with 3.40GHz
Memory 8GB 8GB
System Windows 7 Professional Ubuntu 16.04LTS
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Fig. 1: The different computational capacities of the cloud and the terminal

The first case study sets 5 components running at a time with
the same iteration and gradually increases the total iteration
from 1000 times to 100000 times, maintaining all other factors
unchanged. As illustrated in Fig. 1(a)), the cloud originally has
a higher FPS when the total iteration is 1000 times, then slowly
goes down, and get lower after the iteration increased to 4000
times. Comparatively, the FPS when all components run on the
terminal is much more stable and keeps at a high level. The
second case study restricts all components’ total iteration to
be 5000 times and gradually adds the number of components
from 5 components to 30 components, maintaining all other
factors unchanged. As shown in Fig. 1(b), the FPS when all
components run on the terminal is higher originally, while it
declines dramatically with the increment of the component
quantity. The average FPS even gets lower than 10 when the
component quantity comes to 30. In contrast, the curve of the
cloud only declines about 10% when the component quantity
gets larger than 20. Fig. 1 illustrates that the terminal can main-
tain a higher computation capacity with large iterations, while
the cloud servers obviously can handle concurrency better. So
when partitioning the components, these two parameters need
to be taken into account to place the components to more
suitable sides.

Inspired by these case studies, we designed a number
of experiments to further validate the relationship between
hardware specification and execution performance. Our results
reveal that, CPU core quantity and memory size are considered
the most important factors in computational performance.
Therefore, we selected different combination of CPU core
quantity and memory size, in order to derive the FPS values
of game execution, which indicates the performance.

1) Iterations: To find out how CPU and memory may
affect the cloud servers’ and the terminal’s behavior handling
increasing iterations, we design experiments for all compo-
nents executing in the cloud (Experiment C1 to C5) and
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Fig. 2: The FPS under different experiments for the cloud

all components executing in the terminal (Experiment T1
to T5), with specifications shown in the legend of Fig. 2.
We recorded the average FPS with each specification and
illustrated the characteristic of the cloud and the terminal
by Fig. 2. Apparently, the increment of either CPU cores
or memory size will enhance the performance. Relatively
speaking, memory size appears to be a more critical element
in capacity improvement, since the average FPS values in C3
is higher than that of Experiments C4 and C5. On the terminal
side, it turns out that the quantity of CPU core is the key point
of its capacity instead. The FPS performances in T2 and T3 are
significantly better than all of the others. In contrast, similar
FPS results in other experiments show that increasing memory
size does little to improve the computational capacity of the
terminal.
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Fig. 3: The FPS under different experiments for the terminal

2) Concurrency: As mentioned in Section IV-B, concur-
rency, which indicates the ability of parallel execution for
multiple components, is another important parameter affecting
the computational capacity. The same to the iteration studies,
we again set different combinations of specifications in cloud
and terminal and record their FPS results as shown in Fig.
3. As predicted, more components executing at the same
time will reduce the FPS value. However, unlike what we’ve
found about iterations, there is no significant FPS difference
among distinct hardware settings. This phenomenon implies
that neither increasing CPU cores nor enlarging memory size
will help improving the concurrency capacity in the terminal.
In other words, improvements on hardware helps little in
solving the concurrency issue. Comparing terminal and cloud,
the rapid performance degradation of multiple components on
terminal is an critical issue to be addressed.

C. Communication Capacity

Besides the computational capacity, the communication
capacity between components is also critical in determining
the system performance. We categorize the communications
into three kinds: intra-cloud communications, intra-terminal
communications and cloud-terminal communications. Also,
we also characterize the communication with two parameters:
the message length and the communication frequency. In our
measurement, the message length is evaluated by bpm (bytes
per message). In addition, we consider 20 movement steps of a
tank as a batch and the frequency is evaluated by tpb (the times
of communication per batch). Apparently, higher bmp value
represents larger message payload in one transmission, while
higher tpb value represents higher communication frequency.
Default experiment settings are listed in Table II.

TABLE II: The specification for the communication capacity

Side CPU Memory Operating System
Cloud 8 Cores 8 GB Windows 7 Pro
Terminal 8 Cores 8 GB Windows 7 Pro

We start our measurement from a simplified circular com-
munication model: each component sends a message with
the specified length to its next component at the specified
frequency, such as Component No.1 sends a message to
Component No.2 and the last component sends a message to
Component No.1. Besides, in order to simulate a real scenario,
we create following iterations for each component in a specific
component group as listed in Table III.

TABLE III: The components for the communication capacity

Component No. 1 2 3 4 5 6
Iterations 9200 4000 8900 2200 3600 200
Component No. 7 8 9 10 11 12
Iterations 7100 9200 900 3700 100 4500

1) Intra-Cloud Communications: indicates the capacity of
transmitting data from one component to another within the
cloud. We reveal how message length and frequency may af-
fect the communication capacity by the different combinations.
The FPS results under different communication settings are



shown in Table IV. The first row is considered as a baseline
of the FPS. In other situations, the FPS results decline when
messages get larger or more frequently sent. On the other hand,
except the extreme situations where messages are as long as
262144 bytes, the performance is generally acceptable.

TABLE IV: The FPS of Intra-Cloud Communications

Msg length

FPS Frequency
200 tpb 100 tpb 60 tpb 20 tpb 2 tpb

0 bpm 42.06 42.06 42.06 42.06 42.06
128 bpm 40.33 40.44 40.59 41.76 41.76

16384 bpm 37.70 38.00 38.72 40.33 40.58
65536 bpm 26.31 32.27 33.17 36.21 40.18

262144 bpm 3.42 9.43 12.95 14.76 38.42

2) Intra-Terminal Communications: indicates the capacity
of transmitting data from one component to another within
the terminal. Owing to the fact that the performance is too
bad if we still keep the experiments with 12 components, we
removed the last six components in the experiments conducted
in this section. The combinations of message length and
frequency are altered accordingly due to the same reason.
The FPS results in Table V is surprisingly low even the com-
munication is reduced by our experiment settings. Relatively
speaking, the communication frequency seems to be a more
important factor. It is explained by the fact that the FPS is
still above 30 when the 128-byte message is sent for 60 times
per batch while the FPS is lower than 5 when the frequency
comes to be 80 tpb and the message length is unchanged. The
result in this table shows us that the communication on the
terminal side is a huge burden that should be avoided.

TABLE V: The FPS of Intra-Terminal Communications

Msg length

FPS Frequency
80 tpb 60 tpb 40 tpb 20 tpb 5 tpb

0 bpm 57.57 57.57 57.57 57.57 57.57
128 bpm 3.41 36.87 48.87 56.99 57.57

16384 bpm 1.92 15.51 41.98 57.00 57.34
65536 bpm 0.0 1.70 24.76 54.31 56.59

262144 bpm 0.0 0.75 2.59 18.41 46.25

3) Cloud-Terminal Communications: indicates the capacity
of transmitting data from one component to another between
the cloud and the terminal. As mentioned before, every com-
ponent sends a message to the component next to it in a
circular model, such as Component#1 sends all messages to
Component#2, and etc. We placed the components according
to its component number so that all communications can
be guaranteed to be cloud-terminal ones. The specific side
information of components is shown in Table VI.

TABLE VI: The partition of the Components

Cloud side Terminal side
Component No. 1, 3, 5, 7, 9, 11 2, 4, 6, 8, 10, 12

The result in Table VII turns out that the capacity of cloud-
terminal communication is a moderate one. When the packets
are small and not so frequently sent, the FPS is high and

stable, while when it comes to those large messages with small
interval the FPS drops significantly like what the intra-terminal
communication does. Hence, during the partitioning, we can
still deliver the components with high iterations, considering
both computational and communication capacity.

TABLE VII: The FPS of Cloud-Terminal Communications

Msg length

FPS Frequency
200 tpb 100 tpb 60 tpb 20 tpb 2 tpb

0 bpm 46.71 46.71 46.71 46.71 46.71
128 bpm 35.68 40.88 42.47 45.87 46.38

16384 bpm 3.06 16.63 25.88 32.68 44.16
65536 bpm 0.33 1.08 2.05 6.94 41.22

262144 bpm 0.02 0.02 0.02 0.54 32.41

However, above experiments were conducted with high-
speed LAN, which implies that we have not considered the
effect of network bandwidth. In order to better demonstrate
the performance in real scenarios, we adopt 60 bpm and 128
tpb to conduct experiments under different restricted network
bandwidths, which simulate the cases of Wi-Fi, 4G and 3G.
Since the communications are designed to be synchronous
operations in our tank game prototype, the bandwidth is a
decisive factor in the communication performance. It can be
explained by the dramatic declination of FPS in Table VIII.

TABLE VIII: The FPS of different network conditions

3G 4G Wi-Fi
Down limitation 93.75KB/s 0.5MB/s 3.75MB/s
Up limitation 31.25KB/s 0.375MB/s 1.875MB/s
FPS 0.006 5.98 41.82

D. Observation Summary

These measurements result in several conclusions regarding
computational capacity and the communication capacity: 1)
The cloud outperforms terminal in terms of component con-
currency, while the terminal outperforms the cloud in terms
of iterations, which implies higher computational capacity; 2)
Increasing the memory capacity can be helpful for the cloud to
improve its computational capacity, while adding more CPU
cores is even more effective for the terminal; 3) The cost
of intra-cloud communications is negligible, since it won’t
cause many declinations of the performance in most cases;
4) The intra-terminal communication drops the performance
dramatically. Relatively, the frequency of the communication
is a more important factor than the message length; 5) The
impact of cloud-terminal communication on performance is
between that of intra-cloud communication and that of intra-
terminal communication. Communication frequency is an im-
portant factor, since it determines the number of round-trip
times.

V. COGNITIVE ENGINE

With above observations, the optimal partitioning problem
can be intrinsically transformed into the problem of seeking
an optimal balance for the trade-off between cloud and ter-
minals. Our target is to improve the performance on-the-fly



TABLE IX: Table of components in different experiments

No. Comp.
Quant.

Purpose Iterations for each components

1 12 simple games with fewer components 9200, 4000, 8900, 2200, 3600, 200, 7100, 9200, 900, 3700, 100, 4500
2 14 games with mostly high-iteration components 5000, 100, 3100, 1400, 4500, 6000, 4600, 2100, 700, 5800, 3900, 1500, 5400, 6000
3 20 games with a larger number of components 1200, 2600, 7500, 4100, 100, 5400, 2200, 5300, 7000, 3700, 200, 5200, 5200, 6600,

8000, 2700, 5100, 6500, 2900, 6000
4 14 games with only a few high-iteration 8800, 6000, 200, 800, 900, 1000, 6500, 9200, 3000, 1300, 400, 2700, 400, 100

and eventually obtain the best partition for the application in
dynamic context. The partitioning algorithm we implemented
in this work is a greedy algorithm. It moves the component
with most iteration from the cloud to the terminal step by
step until the FPS arrives its peak. We use a greedy algorithm
because it is simple and fast, which guarantees the real-time
players’ QoE optimization. In our implementation of the cog-
nitive engine, we divided the whole optimizing procedure into
two operations: performance probe operation and partitioning
operation.

The performance probe operation collects two kinds data
needed for optimization. One is the real-time FPS of the
Robocode tank game. The FPS values are derived from the
terminal, so the terminal needs to send these data to the cloud.
Another one is the execution time of each component. In a real
scenario, to derive the number of iterations requires code and
parameter analysis, which is described in CloneCloud [16]. In
order to overcome this issue, we used a component’s execution
time as a rough estimation of its iteration. These data are
collected by mobile agent [18].

The partitioning operation aims to find the optimal partition-
ing schemes under dynamic circumstances. It takes an attempt-
confirm strategy or an attempt-reject strategy by comparing
current FPS to previous values. During cognitive partitioning,
the engine makes attempts of partitions and decides whether
confirm or reject it according to the performance probe
operation. After this procedure, the overall performance of
the application will be optimized to satisfy players’ QoE
requirements. The pseudo-code of this algorithm is listed in
Algorithm 1.

Algorithm 1 Greedy Partitioning Algorithm

1: if score[partitioncurrent] > threshold then
2: Keep current partition
3: else if fpscurrent < fpsprevious then
4: Undo last action in history
5: score[partitionprevious] + +
6: else
7: find the component with longest execution time
8: Move componentmax from cloud to terminal
9: Record this action in history

10: end if

According to the algorithm, the cognitive engine initializes
a score for each partitioning scheme. The score is designed to
decide whether the optimizing operation should be terminated.
Once the score of one partition goes above one certain
threshold (set to 3 in our experiments), the optimization will

stop to provide a stable experience for the players. Once the
gaming session starts, the system identifies the component that
consumes the longest time and attempts to move it to the
terminal. If the last attempt improves the performance, the
cognitive engine confirms this attempt as a better partitioning.
Otherwise, the system will reject the attempt. There are
many reasons for FPS reduction, from the high component
quantity on the terminal to the appearance of intra-terminal
communication. No matter what the reason it is, the previous
partition is apparently a better one. As a result, the cognitive
engine adds the score of the previous partition and rolls the
attempt back to the previous state.

VI. EXPERIMENTS

In this section, we validate the effectiveness of the proposed
cognitive engine. We designed experiments to simulate the
practical cloud gaming scenarios. By applying the cognitive
engine to these four experiments, the result shows whether
the cognitive can do the optimization work and how much the
performance is enhanced.

A. Experimental Settings

We realize that there are generally four kinds of situations
that are common in game development: the simple games
with fewer components, the complex games with a larger
number of components, the games with only several high-
iteration components leaving others low-iteration ones and the
games mainly composed by high-iteration components. As
a result, the experiments are in correspondence with these
four situations by an elaborately designed combination of
iterations and component quantity to make our simulation of
the cloud gaming system to be more practical. The settings and
purposes of the four experiments are listed in Table IX. With
these settings, we conducted two experiments, one with no
communication between components and one with networking
with its next component, so that we can analyze the two factors
separately.

B. Experimental Results

We start Robocode tank gaming sessions with no com-
munications between components and record the FPS values
along the time. We compare our proposed dynamic partitioning
with two static approaches: all cloud solution and all terminal
solutions, where the former scheme allocates all components
in the cloud and the latter one assigns all components to the
terminals. As illustrated in Fig. 4, the cognitive partitioning
outperforms other solutions in terms of FPS in all four exper-
iments. Especially in Experiment 3, we are able to enhance the



performance by 300%. This implies the efficiency of dynamic
workload balancing.

50 100 150 200 250 300 350 400

Time (steps of tank movement)

0

10

20

30

40

50

60

F
P

S

Cognitive partitioning

All server solution

All client solution

The trend line

(a) Experiment 1

100 200 300 400 500 600

Time (step of tank movement)

0

10

20

30

40

50

60

F
P

S

Cognitive partitioning

All server solution

All clent solution

The trend line

(b) Experiment 2

100 200 300 400 500

Time (step of tank movement)

0

10

20

30

40

50

60

F
P

S

Cognitive partitioning

All server solution

All client solution

The trend line

(c) Experiment 3

100 200 300 400

Time (step of tank movement)

0

10

20

30

40

50

60

F
P

S

Cognitive partitioning

All server solution

All client solution

The trend line

(d) Experiment 4

Fig. 4: Simulations of the partition algorithm

The optimized partition of the components in different
experiments is listed in Table X .

TABLE X: Partition Result without Communications

No. Terminal Cloud
1 1, 2, 3, 5, 7, 8, 10, 12 4, 6, ,9, 11
2 1, 6, 7, 10, 14 2, 3, 4, 5, 8, 9, 11, 12, 13
3 3, 4, 6, 8, 9, 12, 14, 15, 18, 20 1, 2, 5, 7, 10, 11, 13, 16, 17, 19
4 1, 2, 7, 8, 9, 12 3, 4, 5, 6, 10, 11, 13, 14

These experiments results prove two of our hypotheses:
i) A component’s execution time can be used to evaluate
its quantity iteration. In all of these four experiments, the
components being moved to the terminal are those components
with most iterations, which meets our expectation. ii) In
contrast to the cloud, terminals have better computational
capacity when handling high-iteration components and worse
computational capacity when handling concurrency is proved
by the partitions. Experiment 4 contains more high-iteration
components than Experiment 2, which leads to more terminal
components as well.

Communication between components is also important in
some game genres. For examples, some tanks might share
their information with their teammates in order to perform
cooperative battle. In this, work, we simulate these commu-
nications by transferring some redundant data between tanks.
Parameters for communications are as listed in Table XI.

TABLE XI: Communication Information

No. Frequency (tpb) Message Length (bpm)
1 4 128
2 20 65536
3 100 256
4 80 4096

The FPS values during optimizing procedure are illustrated
in Fig. 5 and the optimized partition is listed in Table XII.
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Fig. 5: Simulations of the partition algorithm

TABLE XII: Partition Result with Communications

No. Terminal Cloud
1 1, 3, 7, 8 2, 4, 5, 6, 9, 10, 11, 12
2 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
3 3, 9, 15 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17,

18, 19, 20
4 2, 8 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13

According to Fig. 5, the FPS improvement is not as signifi-
cant as the ones in Fig. 4, because of the networking overhead
in the remote component invocation. Also, the optimal solution
discovery consumes more time, as there are more rejected
attempts in the cognitive algorithm. However, the optimized
partition still has higher FPS ahead of the situation when
running all components on the cloud. Furthermore, in all of the
experiments, the tank games cannot run when all components
are placed on the terminal, which means the cloud gaming
system is essential to run these kinds of games.

In addition, comparing the results in Table XII and Table
X, we can find that even two communicating components with
very high iterations are placed on the terminal side in the
previous experiment without communication, such as the first
two components in Experiment No.4, they are forced to be
partitioned to different side due to the poor performance of
intra-terminal communication. There seems to be an exception
in Experiment No.1 where the 7th and 8th components are
on the terminal though they have communication between
them. However, that’s because the messages are short and are
sent infrequently. This phenomenon shows that the compu-
tational capacity and the communication capacity should be
comprehensively considered and our cognitive engine is able
to discern those different situations.



VII. CONCLUSION

As a novel paradigm, decomposed cloud gaming for mobile
terminals is still under development. Engineering issues in
decomposing game programs are still most critical challenges
in this topic. In this paper, we seek solutions to these issues
from an empirical approach. We prototyped a tank game
application on our test-bed for us to measure the execution
performance in detail. These measurements result in several
conclusions to answer six questions from Section I regarding
computational capacity and the communication capacity.

1) The cloud has a higher computational capacity about
concurrency, which means the application can perform
better when there is a great number of components
running on the cloud than those running on the terminal.

2) The terminal has a higher computational capacity about
iteration, which means the application can perform better
when the components with high iterations running on the
terminal than those running on the cloud.

3) Increasing the memory capacity helps the cloud to
improve its computational capacity, while adding more
CPU cores is even more effective for the terminal.

4) The cost of intra-cloud communications is negligible,
since it won’t cause many declinations of the perfor-
mance in most cases.

5) The intra-terminal communication is a huge burden for
the performance, which drops the performance dramati-
cally. Relatively, the frequency of the communication is
a more important factor than the message length. As a
result, the cognitive engine should try to avoid the ap-
pearance of such frequently conducted communication.

6) The capacity of cloud-terminal communication is be-
tween that of intra-cloud communication and that
of intra-terminal communication. It’s more acceptable
when the frequency is not big. So, moving some com-
ponents without intra-terminal communication to run on
the terminal is essential when its iteration is too high
for the cloud to handle efficiently.

Based on our observation from measurement results, we
designed and implemented a greedy cognitive engine for the
test-bed. The purpose of the greedy algorithm is to push more
components with the highest iterations to the terminal, in order
to better utilize the terminals’ high performance computing
power on iterations. However, the cognitive nature will also
avoid the cases that too many components running on the
terminal, which may bring the concurrency issue and the intra-
terminal communication issue. Our system will eventually
reach the balance for this pair of trade-off. Experiments are
conducted to evaluate and validate the engine. According to the
results, the conclusions made by the measurement are proved
to be valid and the cognitive engine we developed in this
paper to be effective, which can guarantee a high QoE for
the players. These experimental results are solid evidence to
answered question 7 asked in Section I.

7) Cloud is not only an enhancement supplement but also
an essential requirement for some gaming systems, as

Fig. 5 demonstrated that some games won’t be able to
run without the support of cloud.
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