
A Blockchain-based Profiling System for Exploring
Human Factors in Cloud-Edge-End Orchestration

Minghao Li and Wei Cai∗
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

email: minghaoli1@link.cuhk.edu.cn, caiwei@cuhk.edu.cn

Abstract—In mobile edge computing (MEC), application parti-
tioning is one of the most effective measures to leverage comput-
ing resources. Due to the user’s unpredictable behavior pattern,
which is an indispensable factor affecting the performance of an
offloading system, traditional partitioning algorithms, consider-
ing only purely technical QoS, are no longer enough to meet the
increasing concern for the user experience of mobile applications.
In this paper, in order to explore human factors in modeling
partitioning algorithms for cloud-edge-end orchestration under
a safe and trusted environment, we present a blockchain-based
profiling system to collect behavioral data from several invited
subjects. For discovering user-driven relations of method-level
components, we propose a clustering algorithm framework to
process each subject’s data. Based on the disparate results, we
illustrate a case study to prove the usefulness of the system and
the data for the orchestration by analyzing the variance of user
behavior and the feasibility of applying human factors to the
partitioning algorithm.

Index Terms—Mobile Edge Computing, Blockchain, Partition-
ing Algorithm, Orchestration, Reverse Engineering

I. INTRODUCTION

Nowadays, mobile multimedia applications, such as intel-

ligent editing of mobile videos, intelligent auditing of live

broadcasts on mobile, and mobile games, often require as-

sistance from cloud computing in terms of data and comput-

ing resources [1]. However, using Mobile Cloud Computing

(MCC) often implies unavoidable network latency limitations.

As an extension to MCC, mobile edge computing (MEC)

utilizes hardware facilities at the edge of the network and

minimizes the response latency perceived by mobile devices

(MDs) by avoiding backbone network communication as much

as possible [2]. However, migrating the entire computing task

to edge servers is not necessary and effective due to its far less

resourcefulness than cloud servers’. For some complex mobile

applications, a cloud-edge-end orchestration is required to

make partitioning strategies that determine which components

are going to be offloaded.

Current partition algorithms are mainly based on the call

graph of the program, which means that program execution

can naturally be described as a graph. Some orchestrations

utilize algorithms, like [3], that incorporate several external

factors into the modeling of the program. However, the current

orchestrations only focus on pure technical Quality of Service

(QoS) and lack consideration of the impact of different user

interaction habits on the use of components in the actual

∗corresponding author

operation of programs, and cannot work for the Quality

of Experience (QoE), which is undoubtedly insufficient for

current mobile applications that value user experience [4].

Therefore, for a high-performance offloading system, human

factors play indispensable roles in constructing cloud-edge-end

orchestration.

The acquisition and maintenance of user data are fundamen-

tal to the study of human factors in partitioning algorithms.

For instance, by collecting in-program data from MDs, like [5],

we can get the precise fingerprint of each user. However, the

collecting and storing of personal information by centralized

organizations may risk users’ privacy since there is little

transparency regarding what studies do with this data [6]. Even

if storing private data in centralized databases managed by

trusted individuals or research teams is not secure, since there

are a bunch of injection attacks for both SQL [7] and NoSQL

[8] databases. In order for subjects to be completely free from

the fear of having their behavioral data exposed, we need to

provide a secure and controlled database.

For purpose of transmitting private data, a reliable and

secure network is required for delivery. Though some popular

Internet services, like Google, Apple, and Microsoft, enable

subjects to share their files with the experimenter remotely,

subjects may be worried about the invasion of their privacy.

Centralized servers are one of the main tools used by these

Internet giants, which have been under the surveillance of

organizations and governments for a period of time [9]. In

other words, a decentralized and distributed public network

service is needed for subjects and experimenters trading pri-

vate behavioral data.

In order to address the above issues, we construct a

blockchain-based profiling system for exploring human factors

in the partitioning algorithm of cloud-edge-end orchestration,

which provides subjects with security and privacy. Blockchain-

based properties allow subjects to securely and selectively

trade their data to experimenters. Besides the blockchain, we

adopt IPFS [10] as our database for storage, which enables

subjects to take control of their own behavioral data without

manipulation and hacking. In this paper, we first introduce

the underlying techniques of the system, after beginning

with related work. Then, we describe the architecture of the

profiling system and its implementation. Moreover, to validate

the system and the data, we present the description of the

subjects’ data and an approach for clustering. Finally, by

analyzing the variance of user behavior and the feasibility of

13

2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)

2332-5666/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCSW56584.2022.00012

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s W

or
ks

ho
ps

 (I
CD

CS
W

) |
 9

78
-1

-6
65

4-
88

79
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DC

SW
56

58
4.

20
22

.0
00

12

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 15,2024 at 07:19:11 UTC from IEEE Xplore. Restrictions apply.

applying human factors to partition algorithms in cloud-edge-

end orchestration, we prove the usefulness of the profiling

system and the collected data.

II. RELATED WORK

A. Partition Algorithms of Cloud-Edge-End Orchestrations

Effective orchestrations working for collaborative regulation

are significant for the exponential growth in the pressure on

cloud and edge servers. Modeling applications and specifying

the partitioning algorithm is the cornerstone of this kind of

orchestration. There are many researchers engaging in the

field of application partitioning in MEC. A framework in

[11] was designed for runtime computation repartitioning in

dynamic mobile cloud environments to solve the performance

degradation issue arising from the dynamic network and device

status. Venus Haghighi et al. [12] modeled offloading strategy

via a mathematical graph where both Wi-Fi and 3G links

are topics of concern. A study [13] on how to dynamically

partition a given application effectively, considered a wide

range of factors, including response time, energy consumption,

and other types of consumption. However, current studies in

application partitioning and related industrial orchestration do

not take into account the human impact on the offloading

system. There is no suitable cloud-edge-end orchestration that

aims at applying partitioning algorithms with human factors,

which can actually improve the QoE of users.

B. Application Analyzers

In the research of application partitioning, it is necessary

to decompose the program into numerous components and

analyze their relations. There are two mainstream and widely

varying program analysis schemes, one for static analysis

of the code itself, and the other for dynamic analysis of

application performance running on devices. For static code

analysis, the mainstream solution is to retrieve the call graph.

Soot1 is a Java bytecode analysis tool, which provides a variety

of bytecode analysis and transformation functions. FlowDroid

is a context-sensitive, flow-sensitive, domain-sensitive static

stain analysis tool developed by Soot and Heros2. Those

tools are is mainly based on static bytecode call relationships,

without considering the impacts of user behavior. For dynamic

performance analysis, the Android Profiler is one of the

most powerful analyzers, which provides real-time data to

visualize how an application uses CPU, memory, network,

and other resources. Besides, Appetizer3 is able to collect

comprehensive data during the app runtime, including crashes,

uncaught exceptions, lengthy operations, etc., by instrumenting

Android package (APK) binary. Though the Android Profiler

is professional and Appetizer is capable of remote profiling,

there is no analyzer that can reflect user behavior patterns

based on the sequence of component states, let alone being

able to guarantee the security, autonomy, and ownership of

the gathered user data.

1https://github.com/soot-oss/soot
2http://sable.github.io/heros/
3https://www.appetizer.io/

III. ARCHITECTURE AND IMPLEMENTATION

A. System Overview and Techniques

Since the system needs to both protect the subjects’ private

data from disclosure and satisfy the experimenter’s need

to incorporate human factors into the partitioning algorithm

and construct an orchestration for QoE improvement. The

architecture design of the system is divided into two parts, one

is the blockchain module, which is designed to provide secure

and private communication. The other part is the profiling

module, which is deployed to retrieve behavioral data from

running APKs. The architecture design of the blockchain-

based profiling system is shown in Fig. 1.

Fig. 1. System Architecture

1) Profiling module: In order to add user behavior impact

factors to the software modeling in the future partitioning

algorithm, it is necessary to collect massive state data of the

computation components when users use the app. Thus, the

system has the following features that meet the requirements:

1. applicable to method-level computing components; 2. able

to instrument a variety of real mobile apps; 3. capable of

remotely connecting multiple devices at the same time; 4. easy

for users to upload their own apps for profiling.

In order to get the activity of the method-level computing

components in the java layer of APKs, the profiling system

utilizes Javassist4 and Apktool5 for Java bytecode manip-

ulation and APK reverse engineering. The instrumentation

module includes two sub-modules, which are the Decompiler

and the Profiler. For the Decompiler, it can be divided into

the Unpacking unit, Uploading unit, and Repacking unit. The

Unpacking unit utilizes the aforementioned tools to extract

the Java Archive (JAR) file. Then the Uploading unit sends

the JAR file to the Profiler for instrumentation. The processed

JAR file will be received and repacked as an executable APK

by the Repacking unit. Finally, the Repacking unit stores the

address of the processed APK in Local MongoDB for Subjects

to reinstall. For the Profiler, after receiving the pending JAR

file, through Javassist, three units of the Profiler will be

inserted into the JAR, which will execute in the manipulated

APK. Those three units are the Parameters Fetcher, the First-

tracking Spot, and the Second-tracking Spot. The Parameters

4https://www.javassist.org/
5https://ibotpeaches.github.io/Apktool/

14

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 15,2024 at 07:19:11 UTC from IEEE Xplore. Restrictions apply.

Fetcher is used for obtaining device information, such as

brand, system version, memory, CPU frequency, etc. When the

user starts to call one of the instrumented methods, the First-

tracking Spot will firstly be activated and record the current

timestamp. At the end of the life cycle of the instrumented

component, the Second-tracking Spot will be executed to get

method parameters and calculate the execution time. Through

the Profiler, the user device will automatically send the above

data to the Listener module, when the manipulated application

is running. The Listener module contains an uploading unit,

which automatically uploads the received pieces of component

call data at the end of the subject’s operation and then gets

a returned hash value. The hash value will be stored in local

MongoDB for swapping to experimenters.

2) Blockchain module: In order that subjects can be pro-

tected from data leakage, it is necessary to build a secure and

private web service. Also for faster and easier data transition,

the blockchain module needs to provide the following features

to the system: 1. Capable of delivering a large volume of data

files; 2. Not permitted for subjects to modify the uploaded

data; 3. All transaction records are publicly available; 4. Only

the participants of the transaction can decrypt the content of

the data.

For the first two requirements, the InterPlanetary File Sys-

tem (IPFS) is an ideal option to provide a related high-

bandwidth and permanent database. IPFS is a peer-to-peer

distributed file system, where a large volume of subjects’

behavioral data can be stored efficiently. With the distributed

feature, IPFS protects subjects’ private behavioral data from

being attacked by hackers. Moreover, the uploaded behavioral

data in IPFS cannot be falsified, since it is content-addressed.

With the hash value returned after uploading, subjects can

retrieve the original data file at any time. The other two

requirements can be met by blockchain technology. The

blockchain here provides a decentralized network for use

as a publicly distributed ledger, where nodes (subjects and

experimenters) collectively adhere to a protocol for sharing

private behavioral data. Without going through a trading

system with intermediaries and transmission software with

centralized servers, the access of nodes in the blockchain

to broadcast messages can be easily controlled by different

encryption schemes.

Supported by the secure, stable, and distributed IPFS and

blockchain technology, the blockchain module includes two

parts, the Swapper and Data Exchange protocol. The profiling

system utilizes blockchain’s broadcasting mechanism to build

the Swapper, where the experimenter needs to clarify their

public key generated by RSA, target devices’ UID, and a

regular expression for data filtering, including time, name and

arguments of methods, and a minimum amount of its volume.

Both the applications of experimenters and the acceptance of

subjects are broadcast to each other in unencrypted JSON

string via the Swapper. Under this circumstance, all nodes

can know how many times experimenters have asked which

subjects for data and each subject’s willingness. Therefore, the

transparency for subjects and convenience for experimenters

of the system is guaranteed. The Data Exchange Protocol is

a mechanism for the transmission of large data from subjects

to experimenters. The basic idea is therefore to encrypt the

address hash of the data file returned by IPFS with the public

key and then broadcast it in the blockchain via this protocol.

Since the experimenter holds the private key, the experimenter

can get the address of the subjects’ data files. Through the list

of addresses, the experimenter is able to download data files

from IPFS. In this way, blockchain, which is supposed to be

inefficient in transmission, can still handle huge amounts of

behavioral data to experimenters safely and quickly.

Through the blockchain module, subjects deliver untam-

pered behavioral data to experimenters, which will be used

for incorporating human factors in the establishment of cloud-

edge-end orchestration.

B. Logic Flow

The logic flow of subjects and experimenters, as shown

in Fig. 2, describes how the system works at each step

when the experimenter obtains data from the subject. Through

this process, the subjects safely collect and share their own

behavioral data, and the experimenters can also receive the

experimental data remotely for the modeling of the partitioning

algorithm and the construction of the orchestration for cloud-

edge-end.

Fig. 2. Flow chart of the blockchain-based profiling system

The flowchart will be interpreted in two parts, which are

related to the experimenter and the subject, respectively. The

green flow representing the subject is described firstly as

follows: 1. Subjects use the Instrumentation module to add the

Profiler in Fig. 1 to the target APK and install the processed

version of APK in the personal MD; 2. The Listener module

continuously forces MD to send component data information

to the local server in the personal computer; 3. The local server

uploads the collected data to IPFS and stores the returned file

addresses in the local MongoDB.

Then the interpretations of the experimenter’s orange flow

are presented following: 1. When the experimenter wants to

obtain the subject’s behavioral data, the experimenter needs

to create a new data application, which includes the subjects’

UID, minimum data volume, and period range. Then, through

the Swapper in the blockchain module, this application broad-

casts to all participants of the blockchain. All the experimenter

can do is wait for responses from the target subjects; 2.

Subjects send a response to the application via the Swapper to

15

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 15,2024 at 07:19:11 UTC from IEEE Xplore. Restrictions apply.

the experimenter; 3. If the subject accepts the application, then

all the subject’s eligible data file addresses will be sent to the

experimenter through the Data Exchange Protocol, otherwise

the application is closed; 4. The experimenter pulls the files

from IPFS with the obtained addresses.

After the experimenter has obtained the required data, the

construction of partitioning algorithms of the orchestration can

be launched soon.

IV. DATA COLLECTION AND ANALYSIS

A. Data Collection

We invited seven volunteers as our subjects and collected

their behavioral data from four of them. Specifically, the be-

havioral data is made up of the component data that was called.

We decomposed the APK into, components, which are the

methods of the java layer in the APK. Where the component

data contains, the name of the method, the data type of the

method, the arguments of the method, the state type, and the

timestamp of the method lifecycle. The component data can

be interpreted as when a method starts or ends.

We want to obtain the relationship between different com-

ponents through subjects’ sequential data and develop a parti-

tioning algorithm to build a high-performance cloud-edge-end

orchestration.

B. Clustering Algorithm

In this section, in order to classify components in the

mobile application, we proposed a clustering algorithm, with

its framework shown in Fig. 3 , which consists of the follow-

ing three steps: 1. Defining the similarity function between

the two components based on the transition probability and

dependencies; 2. Applying node2vec algorithm to generate

component vectors; 3. Using the DBSCAN algorithm to cluster

the generated component vectors.

By adjusting parameters to a suitable value, we obtain the

clustering result, as shown in Fig. 4.

1) Similarity Function Definition: Since we want to migrate

components of close execution to the same edge server to

improve QoE, we need to define the similarity between com-

ponents based on the transition probability between component

states. By calculating the similarity matrix, we can migrate the

components with high similarity together.

By aggregating all the component states in a program we

can get a collection of component states

S = {Si|i = 1, 2, . . . , 2n}

, where Sstart = {Si|i = 1, 2, . . . , n}represents the start state

of all components in the program, and Send = {Si|i =
n + 1, n + 2, . . . , 2n}represents the end state of all compo-

nents in the program. From sequence of random variables

X = X0, X1, . . . , Xt, . . ., t = 0, 1, 2, . . . ,the stochastic matrix

can be calculated as

Pu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 · · · p1n p1,n+1 · · · p1,2n
...

. . .
...

...
. . .

...

pn1 · · · pnn pn,n+1 · · · pn,2n
pn+1,1 · · · pn+1,n pn+1,n+1 · · · pn+1,2n

...
. . .

...
...

. . .
...

p2n,1 · · · p2n,n p2n,n+1 · · · p2n,2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, the similarity function is defined as

wij =

⎧⎪⎨
⎪⎩

1,
if i and j are

dependent or identical

pij+pi,j+n+pi+n,j+pi+n,j+n

2 , else

2) Graph Embedding: We use node2vec [14] for unsuper-

vised clustering of the components, an improved version of

DeepWalk [15], which defines a policy generation sequence

of bias random-walk and still uses skip-gram to train. After

the nodes of the weighted Graph are converted into high-

dimensional vectors through node2vec and it will be visualized

into 2-dimensional by t-SNE. Then, components can be clus-

tered by a density clustering algorithm in the next step. One

of the important parameters of node2vec is walk length.

3) Density-based Clustering: We decide to use one of the

most classic density clustering algorithms, DBSCAN [16], as

its parameter is easy for a domain expert to set. Those two

hyperparameters are ε that represents the neighborhood radius

of defined density, and minPts is defined as the neighborhood

density threshold of clustering.

C. Clustering Result

In order to explore the influence of user operating habits

on the clustering results, we selected two subjects’, Sub-

ject A (UID:448583767ECDF7052DA8A22DCB64101C) and

Subject B (UID:59423D91ED4D72F30CF7B376C9CB0B05),

component data of an same video editing commercial app,

Androvid, as examples. The components were clustered and

analyzed by the aforementioned algorithm process. The clus-

tering results are shown in Fig. 4(a) and Fig. 4(b), where node

color represents category.

V. CASE STUDY

In order to validate the profiling system for exploring human

factors in partition algorithm and cloud-edge-end orchestration

in offloading systems, we first analyze the variance of user be-

havior. Based on the quantification results, we further interpret

the feasibility of applying human factors.

A. Variance of User Behavior

In Fig. 4(a) and Fig. 4(b), clustering results of component

data vary greatly among different users when using the same

app with the same parameters (ε = 1.5, walk length = 4).

This difference is divided into two categories, one difference

is the component set and one difference is the component state

sequence feature.

We use Jaccard similarity to quantify the difference between

these two users. We get the result that the Jaccard similarity

16

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 15,2024 at 07:19:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Framework of the Clustering Algorithm

(a) General view of Subject A (b) General view of Subject B() j

(c) One cluster of Subject A

() j

(d) One cluster of Subject B

Fig. 4. Clustering Result

between the set of components invoked by Subject A and

Subject B components is only 0.43. This represents a very

large difference between the set of components of the two

users. In particular, the method clustering community of the

class VideoCropActivity is considerable in the clustering

result of Subject A, illustrated by the red circle in Fig. 4(a), but

this class does not appear in Subject B’s dataset. A large part

of the clustering results are different because subjects have

different preferences for features, so it is easy to infer that

Subject A likes to use Androvid for video crop while Subject

B never uses it for cropping propose.

In addition, the comparison between several similar groups

of the two users is shown in Fig. 4(c) and Fig. 4(d). The red

dot represents method(1468), which is not classified in the

purple cluster in Subject A’s result. With the same algorithmic

treatment of the same parameters, there are still distinctions

in the composition of the members of these similar groups

and the distance. Except for the subtle changes due to the

randomness of t-SNE, this kind of difference arises mainly

because the transition probability between component states

varies widely under different users’ operations, and since the

Fig. 5. Fig. 5(a) and Fig. 5(b) are the corresponding Markov Chains and
Call Graphs in Fig. 4(c) and Fig. 4(d). The dotted line represents Markov
Chain, and the solid line represents Call Graph generated by Flowdroid and
Graphviz.

component similarity is defined by this transition probability,

the clustering results will also be influenced.

Then, by checking the transition probabilities related to

the start and end states of method(458) in the datasets

of Subject A and Subject B, the main distinction is that

Subject B is more likely to call method(1468) after calling

method(458), which leads to different clustering results for

both. Fig. 5 illustrates that under Subject A’s operation, the

transition probability from the end state of method(458)
to the beginning state of method(1468) is 0.05, which is

much lower than 0.67 for Subject B. Thus, even though the call

graph of Androvid used by both Subject A and Subject B are

identical, the differences in Markov transition probability will

ultimately affect the relationship between the two components.

The above results demonstrate that the sequence of compo-

nent states caused by the user’s operation habit also has a great

influence on the component clustering. This variance between

the two subjects’ behaviors proves that the human factor is a

major influence in the partitioning algorithm, which has to be

considered while framing the orchestration in MEC scenarios.

B. Feasibility of Applying human factors to Partitioning Al-
gorithm

The above discussion of the variance of the component

set and the component state sequence feature, allows us to

model the vertices and edges of the program structure graph

for each user. From the above preferences of Subject A and

17

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 15,2024 at 07:19:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Fig. 6(a) and Fig. 6(b) are possible partitioning strategies provided
by the future orchestration for Subject A and Subject B, respectively.

Subject B for using different functions in the app, we can

know that the frequency of calling methods varies from user

to user. Therefore, when designing the partitioning algorithm,

in addition to incorporating the component complexity, the

content size of the component return value, and other factors

into the modeling of the vertices, we can also incorporate

the user’s preference level for the component into the process

of modeling the points. For example, if Subject B has never

called the methods of VideoCropActivity, then it can be

excluded as a migration target, even if it is determined to be

in need of migration by the algorithms described in [12], [13].

In the process of modeling the edges, in addition to data

dependencies, the order of execution of the components needs

to be considered. When the orchestration formulates the

partitioning algorithm, the distance of different components

can be calculated as one of the modeling weights of the

edges based on the results of the user’s components after

the embedding process. If two components are often executed

together in succession although there is no call relationship

between them, then migrating these two components to one

edge server in a unified manner will eliminate the transmis-

sion consumption and network latency. Thus, in the future

cloud-edge-end orchestration, possible offloading strategies for

Subject A and Subject B are distinct, as shown in Fig. 6,

where green components are decided to be executed locally

and orange components are going to be offloaded to edge

or cloud. In Fig. 6(b), the pink dotted line represents the

offloading solution of Subject B, which decides to offload

method(1468) with the other three orange components to

the same edge server. On the contrary, suggested as in the

blue dotted line Fig. 6(a), the orchestration determines to

execute method(1468) in the local environment of Subject

A’s MD and only offload the orange components to edge/cloud

servers. Thus, the orchestration can theoretically achieve QoE

enhancement by developing adaptive partitioning algorithms

for making variable offloading decisions for users.

VI. CONCLUSIONS

In this paper, we constructed a system and invited several

subjects to use it with us, thus participating in the data

collection effort. The data collected by the system allows us

to know the gaps in various habits of using the application,

which leads to different distances between components via

the aforementioned clustering process. The components are no

longer in a call relationship but have potential human-based

associations. Through the associations, we further explored the

feasibility of adding human factors’ weight to the partitioning

algorithm of a cloud-edge-end orchestration.

However, the user’s preference is not constant. The time-

sensitive feature, which we didn’t take into account in this pa-

per, is crucial for orchestration to provide a desirable QoE for

users. Therefore, in future studies, we plan to deploy forgetting

factors to our human-centered cloud-edge-end orchestration

for achieving higher QoE.

ACKNOWLEDGMENT

This paper is funded by Project 6190070637 from the

National Natural Science Foundation of China (NFSC) Young

Scholars Program.

REFERENCES

[1] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. Leung, and
C.-H. Hsu, “The future of cloud gaming [point of view],” Proceedings
of the IEEE, vol. 104, no. 4, pp. 687–691, 2016.

[2] K. Bilal and A. Erbad, “Edge computing for interactive media and video
streaming,” in 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC). IEEE, 2017, pp. 68–73.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, 2010, pp. 49–62.

[4] W. Cai, Z. Hong, X. Wang, H. C. Chan, and V. C. Leung, “Quality-
of-experience optimization for a cloud gaming system with ad hoc
cloudlet assistance,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 25, no. 12, pp. 2092–2104, 2015.

[5] Z. Tu, R. Li, Y. Li, G. Wang, D. Wu, P. Hui, L. Su, and D. Jin, “Your
apps give you away: distinguishing mobile users by their app usage
fingerprints,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 2, no. 3, pp. 1–23, 2018.

[6] A. Ghosh and A. Roth, “Selling privacy at auction,” in Proceedings of
the 12th ACM conference on Electronic commerce, 2011, pp. 199–208.

[7] R. Dorai and V. Kannan, “Sql injection-database attack revolution and
prevention,” J. Int’l Com. L. & Tech., vol. 6, p. 224, 2011.

[8] J. Kumar and V. Garg, “Security analysis of unstructured data in nosql
mongodb database,” in 2017 International Conference on Computing
and Communication Technologies for Smart Nation (IC3TSN). IEEE,
2017, pp. 300–305.

[9] G. Greenwald and E. MacAskill, “Nsa prism program taps into user data
of apple, google and others,” The Guardian, vol. 7, no. 6, pp. 1–43, 2013.

[10] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[11] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri, “Run time application
repartitioning in dynamic mobile cloud environments,” IEEE Transac-
tions on Cloud Computing, vol. 4, no. 3, pp. 336–348, 2014.

[12] V. Haghighi and N. S. Moayedian, “An offloading strategy in mobile
cloud computing considering energy and delay constraints,” IEEE Ac-
cess, vol. 6, pp. 11 849–11 861, 2018.

[13] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application
partitioning algorithm in mobile environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 7, pp. 1464–1480, 2019.

[14] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[15] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

18

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 15,2024 at 07:19:11 UTC from IEEE Xplore. Restrictions apply.

