
A Security Case Study for Blockchain Games
Tian Min

School of Science and Engineering
The Chinese University of Hong Kong, Shenzhen

Shenzhen, China
tianmin@link.cuhk.edu.cn

Wei Cai
School of Science and Engineering

The Chinese University of Hong Kong, Shenzhen
Shenzhen, China

caiwei@cuhk.edu.cn

Abstract—Blockchain gaming is an emerging entertainment
paradigm. However, blockchain games are still suffering from
security issues, due to the immature blockchain technologies and
its unsophisticated developers. In this work, we analyzed the
blockchain game architecture and reveal the possible penetration
methods of cracking. We scanned more than 600 commercial
blockchain games to summarize a security overview from the
perspective of the web server and smart contract, respectively.
We also conducted three case studies for blockchain games to
show detailed vulnerability detection.

Index Terms—Blockchain, Game, Architecture, Security

I. INTRODUCTION

With the popularity of cryptocurrencies, e.g. BitCoin [1],
the blockchain technology [2] is now recognized as the
foundation of next-generation digital economy. However, the
research community is looking forward to unleashing the full
potential of blockchain for other businesses. To respond to the
demand, Ethereum [3] brought smart contracts [4] to announce
the start of Blockchain 2.0 era. A smart contract, written
as immutable blockchain transactions, are transparent and
auditable programs that can be automatically executed without
any centralized control. With the support of the smart contract,
decentralized applications (DApps) [5] became possible.

Blockchain games become one of the most active DApp
in the ecosystem. According to the recent survey work [6],
over 50% of network traffic in Ethereum and EOS1 plat-
forms are from blockchain game players. The phenomenon
can be explained from different perspectives. First, the non-
fungible nature of blockchain data and the transparency of
the smart contracts enable game developers to better prove
the rule transparency, guarantee the ownership of the virtual
asset, enable assets reusability, and encourage user-generated
contents. Second, the blockchain game builds the whole
ecosystem in the virtual world, which avoids a lot of realistic
constraints commonly exist in other DApps, including the
Internet of Things and source tracking. According to the above
advantages, the blockchain game is considered an emerging
trend. The industry has started its exploration on this topic by
integrating traditional games with blockchain systems. Until
January 2019 on Ethereum2, games contributed 1,113,516
transactions, which is 56.8% of the total, and carried a
transaction volume of 198,457 ETH, which is equal to 22

1https://eos.io/
2https://www.stateoftheDApps.com/stats

million dollars. In the same month, games have 42,210 active
users, which is 24.3% of all. From these statistic data, we can
tell that blockchain games have already become an important
component of DApps and have held a considerable market
capitalization.

However, DApps are facing severe security issues. Accord-
ing to PeckShield 2018 annual report3, the economic losses
caused by blockchain security in 2018 amounted to 2.238
billion dollars, which is 253% of the 2017’s. The blockchain
security issues are mainly concentrated on the application layer
and the contract layer, with 64 and 58 incidents respectively.
The economic losses caused by these layers accounted for
98.87% of all. To be more specific, on Ethereum, there were
54 security incidents. Most of them happened because of
the issues from the exchange trading system, wallet website
security, smart contracts vulnerabilities, and blockchain design
defects. On EOS, There were 49 security incidents. Most of
the attacks directly targeted on EOS smart contracts. In EOS
smart contracts, the vulnerabilities can be easily reproduced
in others.

In this work, we use the blockchain game, the most popular
public blockchain application, to conduct the security study in
DApps. The remainder of this paper is organized as follows:
we briefly introduce the previous works on blockchain technol-
ogy and security in Section II. Then, we illustrate the system
architecture for the blockchain games and provide possible
attack methods in Section III. Next, an statistic of blockchain
game security will be presented in Section IV. Afterward,
we conduct security case studies in Section V to do practical
demonstrations. Section VI concludes the article and envision
the future of blockchain games.

II. RELATED WORK

A. Blockchain and Games

Blockchain is a decentralized database system with the
characteristic of transparency, immutability and traceability.
Different from the traditional database, public blockchain is a
system maintained by the public, which can be accessed and
verified by anyone around the world. To be more specific, it is
a series of continuously growing blocks. Each block contains a
cryptographic hash of the previous block, a timestamp, and its
conveyed data [2]. Due to the existence of the cryptographic

3https://www.huoxing24.com/newsdetail/20190128132648252411.html



hash, blockchains are immutable. If a block on chain is mod-
ified, all the descendants of this block should be regenerated
with new hash value. The blockchain data structure, together
with the peer-to-peer (P2P) system and the proof-of-work
(PoW) [7] consensus model, forms the solid foundation for
DApps.

According to this definition, we only discuss blockchain
games with decentralized nature in this paper. Therefore, those
blockchain games which follow the centralized and close
source principle will not be investigated. For example, the
CryptoRabits4 developed by Xiaomi Inc. will be out of the
scope of our work, since it was published without any public
open source code or white paper. In addition, according to
CryptoRabits’ user agreement5: 1. Users are not allowed to
trade the currency in the game. 2. The operator has the
right of making or adjusting the rules for the game. 3. If
the user violates the agreement, the operator has the right
to stop providing services to him immediately without his
consent. These terms are completely contrary to the spirit of
the blockchain. Players’ ownership of virtual properties cannot
be guaranteed.

B. Smart Contract Vulnerability

Initially proposed by Nick Szabo [8] in 1997, a smart con-
tract is a protocol that can automatically verify and process the
content of the contract. Thanks to the features of blockchain
systems, the smart contract can ensure the code execution
without the third-parties. Different blockchain platform may
have different regulations on smart contracts programming.
Nevertheless, all smart contracts have structures like object-
oriented programs. On Ethereum, smart contracts are programs
wrote in a JavaScript-like language called Solidity6. Each
contract is like a class, which contains variables and methods.
Contracts can also invoke each other to implement complicated
tasks. Following is a simple example of a Solidity smart
contract.

pragma solidity >=0.4.0 <0.7.0;

contract SimpleStorage {

uint storedData;

function set(uint x) public {
storedData = x;

}

function get() public view returns (uint) {
return storedData;

}
}

However, a smart contract based program is susceptible.
A study [9] pointed out that there are 34,200 contracts
marked as vulnerable in a million samples. Some of the
most essential reasons for the vulnerabilities are platform
and the contract programming language’s design defects. Take

4https://jiamitu.mi.com/home
5https://jiamitu.mi.com/protocol
6https://solidity.readthedocs.io/en/develop/index.html

Ethereum and Solidity as an example. Most of the currently
known vulnerabilities about the smart contracts are related to
the fallback function, which is an unnamed function triggered
when an external caller is sent ETH, the Ethereum token,
to the contract, or calls a function that does not defined.
When fallback() includes an external function or has potential
vulnerabilities, the attackers could hijack the invoked contract,
and force it to execute.

C. Smart Contract Audition Tools

Code auditing is not a new concept. It is an integral
part of the defensive programming paradigm, which attempts
to reduce errors before the software is released. However,
Solidity is a high-level programming language with many
potentially vulnerable functions. Due to the unchangeability
of the blockchain, updating patches after deployment becomes
especially troublesome. Hence, the smart contract audition
becomes of paramount importance. As system developers and
operators are gradually aware of the importance of blockchain
security, more and more auditing tools have emerged. Different
tools may have different advantages including automation
degree, accuracy and efficiency. Audition tools detect the
vulnerabilities in three main ways: 1) Code Feature Matching:
Auditor collects and extracts malicious code’s feature, and do
semantic matching on other source code. 2) Formal Verifica-
tion: Formal Verification is mathematical access to prove a
system’s completeness. Auditor specifies every possible input
and exhaustive every situation that might happen. 3) Symbolic
Execution: Auditor generate a control flow graph by contract’s
logic units (like determining statements). From this logic
graph, The auditor can traverse all codes paths to reveal how
the variables passing through the program in order to detect
logical design flaws.

III. BLOCKCHAIN GAME ARCHITECTURE

Fig. 1: Architecture for Blockchain Games



Fig. 1 illustrates the architecture of conventional blockchain
game. Different from the traditional games, blockchain game
players need to register an address in the corresponding
blockchain platform before starting their gaming sessions. This
blockchain address, accessed by a wallet program, will serve
as a unique identity and a destination of the virtual assets
for its corresponding player. On the other hand, the game
server should offload some core functions, e.g. the ones which
manipulate the players’ virtual assets or critical game rules,
to the blockchain as smart contracts in order to keep them
transparent and immutable.

The server plays an important role in this architecture. In
addition to providing game service, it acts as a cache and
indexing engine for smart contracts. Although the ultimate
source of information is from the blockchain, clients rely on
the server’s searching and verifying capabilities of the data
returned from the blockchain. Moreover, writing data to PoW
blockchains, e.g. Ethereum, is expensive. The server still needs
to store most of the data and only store a hash on the chain
for verification. The server of a blockchain game interact with
the Ethereum blockchain via web3.js, which is a collection
of libraries which allow developers to interact with a local or
remote Ethereum node, using an HTTP, WebSocket or IPC
connection7. According to the architecture, there are mainly
two methodologies of attacking a blockchain game:

A. Web

The focal point of penetrating a blockchain application is
accessing the digital assets. Hence, the wallet becomes of
great importance. The private key to the wallet shall be the
optimal target of the attackers. Once the attacker obtains the
private key, he could easily transfer assets away if there is no a
two-Step verification. The secondary target shall be the game
server since it is where the susceptible information may be
stored. These information could help the attacker with further
penetration. The ideology of penetrating a blockchain wallet or
a DApp server may not has a great difference from traditional
cyber attack.

B. Smart Contract

Since all contracts are open source, the attackers can identify
the vulnerable spots directly by analyzing the source code.
Although most smart contracts were compiled into bytecodes
before deployment, there are various tools that help reverse
engineering. Smart contract vulnerabilities may exist in many
different layers, including Solidity language, execution logic,
and Ethereum Virtual Machine (EVM) design. in TABLE: I,
Nicola Atzei [10] summarized a taxonomy of smart contract
vulnerability. It shows that the vulnerable spots can be found
through the entire work-flow of smart contract execution.

IV. STATISTICS OF SECURITY RISKS

We selected 610 games listed on the State-of-the-DApps8

and collected URLs and smart contract codes for analysis.

7https://github.com/ethereum/wiki/wiki/JavaScript-API
8https://www.stateoftheDApps.com/

Level Cause of vulnerability

Solidity

Call to the unknown
Gasless send
Exception disorders
Type casts
Re-entrancy
Keeping secrets

EVM
Immutable bugs
Ether lost in transfer
Stack size limit

Blockchain
Unpredictable state
Generating randomness
Time constraints

TABLE I: Smart Contract Vulnerability

Nikto29, a web scanner, was employed to detect the vulnera-
bilities on the server and the web application, and Mythril10

was used to detect vulnerabilities in their smart contracts.

A. Web Overview

Fig. 2: Web App Issue Count and Severity

Nikto2 is not an aggressive scanning tool. It mainly detects
the misconfiguration on the web servers and the protocols. In
610 sites, more than 1,700 URLs, mainly 8 kinds of issues
were detected. The result in Fig. 2 shows that 62.91% of the
samples are using secure HTTP headers like ”Strict-Transport-
Security” or ”X-XSS-Protection” to prevent being attacked.
16.96% of them are under low-level risk, having multiple index
files or using a wildcard certificate, which means if one server
or sub-domain is compromised, others may also be exposed
to the danger. 19.41% of the samples are at medium level
risk, they allow some risky HTTP methods, create cookies
without a secure flag, or leaving sitemaps may have potential

9https://cirt.net/Nikto2
10https://github.com/ConsenSys/mythril-classic



vulnerabilities. Rest 0.72% of them have already been hijacked
or haven’t opened anti-clickjacking X-Frame-Options.

From the statistics, we can draw a conclusion that there has
been systematic security development frameworks or toolkit
for the developers when they started to build their own web
server, thanks to the long-term development of web security.
Followings we briefly introduce some common potential at-
tacks which could be caused by these vulnerabilities:

Cookie Replay - caused by Cookie created without secure
flag: The secure flag is an option that can be set by the
application server when sending a new cookie to the user
within an HTTP Response. This flag can prevent cookies from
being observed by unauthorized parties due to the transmission
of a the cookie in clear text. This vulnerability could allow the
attacker impersonate the user as long as the cookie remains
valid.

Injection - caused by Allow Dangerous HTTP Methods:
Almost any data source can be an injection carrier, including
environment variables, parameters, and external or internal
web services. Blockchain games usually have frequent interac-
tion with players, including lots of input box and complicated
URL routes.

XSS - caused by X-Frame-Options not present: Cross-site
scripting(XSS) is a kind of common vulnerabilities that happen
on the web applications. Although most sites know to protect
themselves with special filters, XSS attacks can be considered
dangerous because they usually act as a springboard towards
users’ private keys. Secure headers like “X-Frame-Options”
must be included to eliminate html script “¡iframe¿”, which
could lead to a clickjacking and fool players to input their
passwords.

Broken Authentication: Apart from the scanning results
above, directly cracking the authentication key is an important
kinds of attacks. Attackers can do social engineering and use
brute force to crack a wallet. Apart from weak passwords,
poor session management also causes broken authentications.
Especially for those sites exposing session ID in the URL, or
creating token without encryption.

B. Smart Contract Overview

In 1,311 smart contracts, 12 kinds of vulnerabilities are de-
tected as the result are shown in Fig. 3. Only 11.63% contracts
are bug-free. 14.04% contracts have high-risk vulnerabilities
like overflow and underflow, unprotected Ether withdrawal or
unprotected self-destruct. 12.08% of them are medium risks
like usage of tx.origin or applying multiple calls in a single
transaction. Rest 62.25% of the contracts are in low-level risk,
having flaws like exception state or allowing external calls.

Among all the results, ”Exception State” possesses the
highest proportion of 35.43%, which means that a large
proportion of smart contract developers didn’t handle the
exceptions. The most common high severity vulnerability is
”Integer Overflow”, which take a proportion of 12.87%.

We list some most common attacks that could be caused
by the scanning results blow. You can check more up-to-date

Fig. 3: Smart Contract Issue Count and Severity

known attack on the Smart Contract Weakness Classification
Registry11:

Overflow/Underflow - caused by Integer Overflow/Under-
flow: Integer overflow and underflow are one of the most
common vulnerabilities in the smart contract. If a UNIT256
reaches the maximum unit value(2256), it will circle back to
zero when it’s added with another 1. Attackers can exploit this
vulnerability by repeatedly invoking the function that increases
value. Game data like character’s attack, defense or health
point could be modified frequently, blockchain game developer
may put special attention on value control.

Tx Origin Attack - caused by Use of tx.origin: tx.origin is a
global variable that return the address which initially invoked
the smart contract. Some developer use this variable to do
the authentication. For example, the attacker wants to pass an
authentication in a target contract. First, he might find a way
to trick the victim into transferring to the malicious middle
contract. Then, the middle contract will call the target contract
in its fallback(). So, the tx.origin address in the target contract
should be the victim’s address and authenticated.

Predictable Variable - caused by Dependence on pre-
dictable environment variable: Some smart contracts write
functions that depend on variables like timestamp or block’s
height(distance from the genesis block), which are predictable.
For example, when a blockchain casino generate dice points
using the timestamp. The attacker can easily crack these
functions and win the game.

Denial of Service (DoS): DoS is a kind of common
vulnerability which closely related to the fallback function
and revert mechanism. The attacker can create a dead loop by
logic vulnerabilities in the contracts. Take a bidding system
as an example, if the system can only set a new bid leader
after refunding to the previous one, the attacker can write a

11https://smartcontractsecurity.github.io/SWC-registry



function that reverts any transaction in fallback(), in order to
keep being the bid leader.

Re-entrancy: Re-entrancy is a serious issue related to
calling malicious external contracts, which may take over the
control flow. This kind of vulnerabilities varies in different
forms: every external call can be potentially dangerous. Nowa-
days, blockchain games are getting more and more complex,
calling external smart contracts is unavoidable. If a developer
must do an external call, he should cautiously verify the
contract author, and try to arrange the call after the execution
of the internal code.

Apart from making malicious calls to those vulnerable
contracts, attackers can also take advantages of Ethereum’s
logical design flaws. Most of these flaws are dilemmas. For
example, Gas is of great necessity to the PoW consensus
model. However, attackers can manipulate the transaction
by offering an expensive Gas fee. For example, Fomo3D
is a gambling game with a 24-hour countdown. 30 seconds
will be added every time when a token is sold. When the
countdown touches 0, the last token buyer wins the jackpot.
Due to the Ethereum’s Gas mechanism, the attacker can do
several transactions with expensive gas to jam the mining
system, so thqt he/she could keep getting the top priority
of the blockchain packing queue. As a result, other buyers’
transaction cannot be successfully verified and written into
blocks.

V. CASE STUDIES

In this section, we conducted case studies to demonstrate the
security issues in current commercial blockchain games. The
first three cases are historical accomplished attacks, including
EOSFomo 3D12, Pandemica13 and EOSlots14. We analyze
their vulnerabilities and methods the attackers used. The rest
of three cases are scanning result analysis, including Cryp-
tokitties15, 0xUniverse16 and Mythereum17. We will showcase
their high and medium level vulnerabilities in terms of web
application aspect and smart contracts aspect.

A. EOSFomo 3D

EOSFomo 3D is a Fomo3D18-like game based on EOS
platform. The players purchase keys on different teams and the
last one receive rewards from jackpot. In July 2018, EOSFomo
was attacked through an overflow vulnerability. As shown in
Fig. 4, the bonus displayed on the website became negative
after the attack. In this incident, 60,686 EOS were stolen from
ordinary users.

Vulnerability - Overflow/Underflow: Because the game has
already been shut down. We are unable to analyze its source
code. However, we can infer that the developers did not verify

12https://eosfo.io
13https://pandemica.online/
14https://www.eoslots.com/
15https://www.cryptokitties.co/
16https://0xuniverse.com/
17https://www.mythereum.io/
18https://exitscam.me

Fig. 4: EOSFomo 3D’s Hompage After the Attack

the results or use a secure library. As shown in Fig. 4, the
overflow is triggered by a player, which means the rights
management system has design flaws. The player can exploit
an overflows by repeatedly calling a public function in the
contract.

B. Pandemica

Pandemica is a Ethereum-based game following a simple
Ponzi Scheme: players transfer ETH to the contract, and
the owner randomly return 3% of the collected fund to the
players at 6:00 p.m. everyday. In August 2018, ETH worth
120 thousand USD was frozen in this contract19 shown in
Fig. 5.

Fig. 5: Pandemica Contract on Etherscan

Vulnerability - Gas Overflow: The contract developer used
a loop to implement the paying method to the users:

function Count() onlyowner {
while (counter>0) {

Tx[counter].txuser.send((Tx[counter].
txvalue/100)*3);

counter-=1;
}

}

The number of loops is determined by the number of par-
ticipants. However, the amount of Gas that can be consumed
in each block has a upper limit of 8,000,000 Gas.The counter
variable will grow as the increase of players. When the value

19https://etherscan.io/address/0xd8a1db7aa1e0ec45e77b0108006dc311cd9d00e7



of counter reaches a certain threshold, Gas fee executing the
Count() function will exceed 8,000,000. This fund can only
unfreeze when the Ethereum raise the upper bound of the Gas
fee in the future.

C. EOSlots

EOSlots is a slot machine game on EOS platform as
illustrated in Fig. 6. The developers claim it to be a fee-less
and trust-less game where players can place bets in EOS at
zero cost and have absolute certainty the game is fair, since
the player’s funds go directly into a smart contract without the
need for a middleman.

Fig. 6: Screenshot of EOSlots

As shown in Fig. 7, on April 3rd 2019, the attacker cracked
the pseudo random number of EOSlots20 and kept winning the
game illegally. The attacker got ten times of the value he bet.

Fig. 7: Attacker aaaabbbbccdd Kept Winning the Game

Vulnerability - Predictable Variable: Currently, Ethereum
and EOS officials didn’t provide a standardized random num-
ber interface, which causes a negative impact on blockchain
games, especially the lottery games. In order to implement

20https://eoslots.com/

a random number generator, developers have to write their
own functions, which often use the current block information
as generator parameters. However, the attackers can generate
the exact same value from the same parameter. Attackers can
deploy a testing contract to keep generating random numbers
and join the game after they got the numbers to look like the
correct results.

D. Cryptokitties
CryptoKitties is a blockchain game developed by Axiom

Zen that allows players to purchase, collect, breed and sell
various types of virtual cats. It is one of the earliest and most
successful blockchain games on Ethereum.

Fig. 8: Screenshot of Cryptikitties

1) Web Scan: The web assessment of CryptoKitties is
shown in TABLE II. The result shows that there are 6 pages
on CryptoKitties site have not set a X-Frame-Options header.
This header is not included in the HTTP response to protect
against “clickjacking” attacks, which meaning attackers have
chances to use a transparent “iframe” to overlay the page and
entice users to unwittingly click on the malicious options.

Medium X-Frame-Options Header Not Set(6)
Method GET
Parameter X-Frame-Options

TABLE II: Web Risks In CryptoKitties

2) Smart Contract Audition: Part of the assessment of
CryptoKitties contracts was shown in TABLE III.

Low Exception State(5)
Function isPregnant(unit256)
Function canBreedWith(unit256, unit256)
Function giveBirth(unit256)
Function cooldowns(unit256)

TABLE III: Smart Contract Vulnerabilities In CryptoKitties

We detected five reachable exceptions in four categories:
division by zero, out-of-bounds array access, or assert viola-
tions. Solidity uses a require() function to check the validity



of determining statement. We extract the require() statements,
which may trigger exceptions, from four functions that alerted
by the Mythril.

pragma solidity ˆ0.4.11;

function isPregnant(uint256 _kittyId)
{

require(_kittyId > 0);
// A kitty is pregnant if and only if this

field is set
}

function canBreedWith(uint256 _matronId, uint256
_sireId)
{

require(_matronId > 0);
require(_sireId > 0);

}
function giveBirth(uint256 _matronId)

{
// Check that the matron is a valid cat.
require(matron.birthTime != 0);
// Check that the matron is pregnant, and

that its time has come!
require(_isReadyToGiveBirth(matron));

}
function setSecondsPerBlock(uint256 secs)

{
require(secs < cooldowns[0]);

}

After we examine the source code above, we found that
in Cryptokittes, there is actually a little risk of triggering an
exception, because Variables like “ kittyId”, “ matronId” or
“ matron.birthTime” were designed to fit the requirements.
For example, there are no minus options on these variables
that may give them any chance smaller than zero. Thus, these
”Exception State” can be defined as secure.

E. 0xUniverse

0xUniverse is a blockchain game where players can build
spaceships, explore the galaxy, and colonize planets. It is
among the most popular blockchain game in 2019, ranked the
top 3 games on Ethereum in terms of popularity.

Fig. 9: Screenshot of 0xUniverse

1) Web Scan: The web assessment of it is shown in TABLE
IV. There are two high-risk vulnerabilities of remote OS in-
jection, which have a potential risk of executing unauthorized
operating system commands. When the web application takes
in unauthorized input to OS command lines or doing improper

call of external codes, there can be an OS injection. The
second vulnerability, application error disclosure, which means
the page contains an error message that discloses sensitive
information. This sensitive information may help hackers in
further attacks. However, in this case, it is a misjudgment of
recognizing a included JavaScript class, tron-web21, as GET
method’s error message.

High Remote OS Command Injection(2)
URL https://play.0xuniverse.com/js?query=query

%22%26sleep+15%26%22
Method GET
Parameter query
Attack query”&sleep 15&”
URL https://play.0xuniverse.com/js/blockchain/Tr

onWeb.js?query=query%26sleep+15%26
Method GET
Parameter query
Attack query&sleep 15&
Medium Application Error Disclosure(1)
URL https://play.0xuniverse.com/js/blockchain/Tr

onWeb.js
Method GET
Evidence Invalid parameter type
Medium X-Frame-Options Header Not Set(1)
Method GET
Parameter X-Frame-Options

TABLE IV: Web Risks In 0xUniverse

2) Smart Contract Audition: As introduced in the Sec-
tion III, integer overflow/underflow is a common vulnerability
in programming. To prevent overflow/underflow, on one hand,
developers can do verification before and after the calculation,
or use the SafeMath22 library provided by OpenZeppelin. On
the other hand, for functions that can trigger overflows, devel-
opers should pay more attention to authentic management.

High Integer Overflow(1)
Function name()
call data 0x06fdde03
call value 0x0

TABLE V: Smart Contract Vulnerabilities In 0xUniverse

F. Mythereum

Mythereum is a multiplayer digital trading card game built
on the Ethereum blockchain where players build unique decks
of collectible cards and challenge others to engage in battle.
The players can launch attacks while attempting to protect
their own Health and outlive every other player, earning
Mythereum XP along the way.

21https://github.com/tronprotocol/tron-web
22https://github.com/OpenZeppelin/openzeppelin-solidity

https://play.0xuniverse.com/js?query=query%22%26sleep+15%26%22
https://play.0xuniverse.com/js?query=query%22%26sleep+15%26%22
https://play.0xuniverse.com/js/blockchain/TronWeb.js?query=query%26sleep+15%26
https://play.0xuniverse.com/js/blockchain/TronWeb.js?query=query%26sleep+15%26
https://play.0xuniverse.com/js/blockchain/TronWeb.js
https://play.0xuniverse.com/js/blockchain/TronWeb.js


Fig. 10: Screenshot of Mythereum

1) Web Scan: The web security assessment of Mythereum
is shown in TABLE VI. We found that Mythereum is including
raven.min.js from CryptoKitties. Unless the target domain
name is 100% trusted, do not use external resources on
other domain names as much as possible. In our detection,
Japanwar23, another decentralized game used parlous resources
is now being hijacked.

Medium Application Error Disclosure(1)
URL https://www.mythereum.io/main.bundle.2b3

61e86f68ad022f065.js
Method GET
Parameter X-Frame-Options
Medium Cross-Domain JavaScript Source File Inclu-

sion(1)
URL https://cryptokitties.co
Method GET
Parameter https://cdn.ravenjs.com/3.20.1/raven.min.js

TABLE VI: Web Risks Mythereum

2) Smart Contract Audition: The smart contract vulnera-
bility assessment of Mythereum is shown in TABLE VII.

High Integer Underflow(2)
Function tokenURI(uint256), function 0xf319428d
call data 0xf319428d, 0xc87b56dd, 0xa22cb4650000

000000000000000000000101010201010102
02010101010101010101010101

call value 0x0
Medium Multiple Calls in a Single Transaction(6)
Function claim()

TABLE VII: Smart Contract Vulnerabilities In Mythereum

In the result, there was a medium vulnerability called
”Multiple calls in a single transaction”. When developers
want to implement a payment function, they may first think

23janponwar.xyz

of send(). However, external calls may fail unexpectedly or
intentionally. It is usually the best isolating each external
call into their own transaction that can be called by the
recipient. It is safer letting users withdraw funds rather than
sending funds to them. Apart from that, we also found a
possible underflow vulnerability shown below. Although the
developer used assert() to guarantee that minuend must be
greater than the subtrahend, they didn’t compare the result
with the minuend. A filter should be added to ensure the
result is smaller than the minuend, or simply use the SafeMath
library24.
function minus(
uint256 minuend,
uint256 subtrahend

) public pure returns (uint256 difference) {
assert(minuend >= subtrahend);
difference = minuend - subtrahend;

}

VI. CONCLUSION

Blockchain games benefit from the features of DApps. Com-
pare to the infinite number of items that sold by the operators
in traditional games, the items in the blockchain game are
real properties, just like in the reality. Therefore, developers of
blockchain games need to pay special attention to the security
issue. However, according to the 2018 security report, the
security situation of the DApps is still not optimistic. In this
article, we introduced the background and related works on
blockchain and smart contracts. Then, we discussed possible
attack methods based on blockchain game architecture. After
that, we illustrated overviews of the blockchain game security
in terms of web application and the smart contracts. Finally,
in the case studies, we demonstrated the result of security
analysis on three games and described how to avoid these
vulnerabilities in development.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” White
Paper: https://bitcoin.org/bitcoin.pdf, 2008.

[2] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business
& Information Systems Engineering, vol. 59, pp. 183–187, Jun 2017.

[3] V. Buterin, “Ethereum white paper: a next generation
smart contract & decentralized application platform,”
https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[4] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract
and use cases in blockchain technology,” in 2019, pp. 1–4, July 2018.

[5] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Le-
ung, “Decentralized applications: The blockchain-empowered software
system,” IEEE Access, vol. 6, pp. 53019–53033, 2018.

[6] T. Min, H. Wang, Y. Guo, and W. Cai, “Blockchain games: A survey,”
in 2019 IEEE Conference on Games (COG), August 2019.

[7] A. Back, “Hashcash - a denial of service counter-measure,” 09 2002.
[8] N. Szabo, “Formalizing and securing relationships on public networks,”

First Monday, 1997.
[9] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The

Greedy, Prodigal, and Suicidal Contracts at Scale,” 2018.
[10] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum

smart contracts SoK,” in Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204, (New York, NY,
USA), pp. 164–186, Springer-Verlag New York, Inc., 2017.

24https://github.com/OpenZeppelin/openzeppelin-
solidity/blob/master/contracts/math/SafeMath.sol

https://www.mythereum.io/main.bundle.2b361e86f68ad022f065.js
https://www.mythereum.io/main.bundle.2b361e86f68ad022f065.js
https://cryptokitties.co
https://cdn.ravenjs.com/3.20.1/raven.min.js
0xa22cb465000000000000000000000000010101020101010202010101010101010101010101
0xa22cb465000000000000000000000000010101020101010202010101010101010101010101
0xa22cb465000000000000000000000000010101020101010202010101010101010101010101

