
Blockchain: Research and Applications 1 (2020) 100001
Contents lists available at ScienceDirect

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications
Application and evaluation of payment channel in hybrid decentralized
ethereum token exchange

Xuan Luo a,1, Zehua Wang a,b,1,*, Wei Cai c,d, Xiuhua Li e, Victor C.M. Leung a,f

a Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
b Blockchain@UBC, The University of British Columbia, Vancouver, Canada
c The Chinese University of Hong Kong, Shenzhen, China
d Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
e Chongqing University, China
f Shenzhen University, China
A R T I C L E I N F O

Keywords:
Blockchain
Payment channel
Ethereum
Smart contract
Token exchange
Optimal gas price
*Corresponding author. Department of Electrical
E-mail addresses: xuanluo2@ece.ubc.ca (X. Luo

(V.C.M. Leung).

Production and Hosting by Else

1 The first two authors contributed equally to thi
2 https://coinmarketcap.com/, accessed on Septe

https://doi.org/10.1016/j.bcra.2020.100001
Received 6 July 2020; Received in revised form 27
2096-7209/© 2020 The Authors. Published by Else
creativecommons.org/licenses/by/4.0/).
A B S T R A C T

Traditional centralized token exchange (CEX) has been suffering from hacking due to the centralized management
of users’ tokens. In contrast, decentralized token exchange (DEX) maintains users’ assets by smart contracts in a
decentralized manner, but introduces additional overhead in terms of gas fee and transaction confirmation latency.
Hybrid decentralized token exchange (HEX) has been proposed to combine the benefits of CEX and DEX. How-
ever, existing HEX is criticized for two issues. First, trading transactions are time-consuming and expensive for
frequent token traders. Second, excessive simultaneous transactions might cause the pending transaction
congestion in the Ethereum network. In this paper, we propose a payment channel based HEX, which extends
existing solutions by adding a new payment channel layer to benefit frequent traders and alleviate the pending
transaction congestion. Besides, we propose the very first gas-price vs. transaction-confirmation-latency function
to guide Ethereum transaction issuers to choose an optimal gas price that minimizes the overall cost. Extensive
simulations are conducted to compare the cost in the proposed HEX with that in the conventional HEX. The results
demonstrate the effectiveness of our proposed mechanism in terms of reducing gas fee and transaction confir-
mation latency for frequent traders as well as the pending transaction congestion in Ethereum.
1. Introduction

A blockchain Nakamoto [1] is a decentralized public ledger that is
used to record transactions across a peer-to-peer network so that any
involved record cannot be altered retroactively. The possible applications
are immense Khan and Salah [2], from cryptocurrency to automated
payment without third party’s intervention Hong et al. [3], to digital
content source tracking Hasan and Salah [4], and to access control and
security protection of the Internet of things (IoT) devices Al Breiki et al.
and Computer Engineering, The U
), zwang@ece.ubc.ca (Z. Wang),

vier on behalf of KeAi

s research.
mber 10, 2018.

November 2020; Accepted 30 N
vier B.V. on behalf of Zhejiang U
[5] andWu et al. [6], and to privacy preservation Cheng et al. [7] andWu
et al. [6]. As the killer decentralized application hosted by blockchain,
cryptocurrencies have been accepted as the digital cash by many in-
vestors and consumers nowadays. According to CoinMarket,2 more than
90% of the top 100 cryptocurrencies are Ethereum Buterin [8] based
tokens. Thus, many token exchange platforms are for Ethereum tokens
nowadays. Generally, we classify current token exchange into three
categories, i.e., centralized token exchange (CEX), decentralized token
exchange (DEX), and hybrid decentralized token exchange (HEX). CEX
niversity of British Columbia, Vancouver, Canada.
caiwei@cuhk.edu.cn (W. Cai), lixiuhua@cqu.edu.cn (X. Li), vleung@ieee.org

ovember 2020
niversity Press. This is an open access article under the CC BY license (http://

mailto:xuanluo2@ece.ubc.ca
mailto:zwang@ece.ubc.ca
mailto:caiwei@cuhk.edu.cn
mailto:lixiuhua@cqu.edu.cn
mailto:vleung@ieee.org
https://coinmarketcap.com/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2020.100001&domain=pdf
www.sciencedirect.com/science/journal/20967209
www.journals.elsevier.com/blockchain-research-and-applications
https://doi.org/10.1016/j.bcra.2020.100001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bcra.2020.100001

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
has been the most popular token exchange ever since its prevalence. The
core idea of CEX is centralization, which is achieved in the way that users
are required to deposit tokens to a CEX-provided address and thus all
users’ assets are taken care of by the CEX instead of by users themselves.
The centralization nature of the CEX brings two benefits to users. First,
CEX provides a rapid trading speed since any trading transaction leads to
a direct update on the CEX database instead of an update on the block-
chain Cai et al. [9]. Second, CEX gives users the option to trade in private,
since trading records of a particular user will not be shown publicly in
blockchain. However, the centralization nature of CEX is contradictory
with the decentralization spirit of the blockchain and distributed ledger.
It also makes CEX intrinsically vulnerable to hacking and denial of ser-
vice attacks.

Different from centralized management of users’ tokens in the CEX,
DEX lets users manage their own digital currencies and acts as a trans-
parent middle-man for token traders. In the DEX, trading procedures are
implemented in smart contracts �Alvarez Díaz et al. [10], which are the
bytecode programs recorded on the blockchain and executed automati-
cally without third party’s intervention. Users conduct their trades by
addressing a blockchain transaction to trigger a procedure defined in the
smart contract. DEX minimizes the potential security issue in the CEX by
leveraging automatically executed smart contracts, but it also introduces
two critical issues. First, the lack of order matching service makes it
difficult for token traders to find appropriate counterparties. Second, all
trading requests will be submitted to blockchain as blockchain trans-
actions, which are constrained by the low transaction throughput in
Ethereum due to factors such as the Proof of Work consensus algorithm
Back [11] and scalability issues of EVM Chen et al. [12].

HEX is a hybrid approach that combines the benefits of CEX and DEX.
HEX addresses the order matching issue by maintaining a centralized
order management database, while all trades are still conducted by
calling procedures in the smart contract. However, this approach does
not fix the issue that all trading requests will be submitted to blockchain
as blockchain transactions, which are constrained by the low transaction
throughput in Ethereum. This is particularly important for frequent token
traders, as more blockchain transactions imply more gas fee and longer
transaction confirmation latency. On the other hand, excessive simulta-
neous transactions might cause the pending transaction congestion in
Ethereum.
1.1. State-of-the-art token exchange

Mt.Gox3 is the first well-known CEX for Bitcoin tradings. Unfortu-
nately, there are not just theoretical risks but disasters that have occurred
for thousands of cryptocurrency investors in the past. In 2014, Mt.Gox
claimed that 850,000 BTCs belonging to customers but the company
were missing, which led to the loss of thousands of customers. However,
CEX is still the mainstream of token exchange nowadays. Popular token
exchange, including Coinbase,4 Gemini,5 Poloniex,6 Kraken,7 and
Houbi,8 still adopts the CEX architecture.

Relying on smart contracts, DEX provides more secure trading ser-
vices to the cryptocurrency users. DEX like KyberNetwork9 and Air-
Swap10 decentralizes the settlement and all related functions by defining
them as the on-chain procedures. However, DEX is still unpopular among
investors, due to the lack of centralized order management. Since DEX
3 https://www.mtgox.com/.
4 https://www.coinbase.com/.
5 https://gemini.com/.
6 https://poloniex.com/.
7 https://www.kraken.com/.
8 https://www.huobi.com.
9 https://developer.kyber.network/docs/ArchitectureOverview.

10 https://blog.airswap.io/introducing-swap-a-protocol-for-decentralized-pee
r-to-peer-trading-on-the-ethereum-blockchain-d4058f3179cf.

2

uses on-chain orderbook to manage orders, DEX users have to monitor
the on-chain orderbook from time to time in order to find potential
matching orders.

Combining the benefits of CEX and DEX, HEX represents the latest
version of token exchange. EtherDelta11 and 0x Project12 are described as
decentralized exchange but they are more like a hybrid design. They
decentralize the settlement and use a centralized server to handle the
orderbook. However, as one successful trade requires three blockchain
transactions, users of EtherDelta and 0x Project will pay for extra
blockchain gas fee and have to wait for three blockchain confirmations.
Besides, there is no order matching engine provided, so the buyers have
to monitor the market all the time. Also, many buyers may compete for
one selling order, and the unsuccessful buyers waste their gas fees.
IDEX13 and JOYSO14 improve the above issues with an automatic order
matching engine. Especially, JOYSO claims that traders can continue
trading on JOYSO without the successful confirmation of the previous
trading transaction on the blockchain. Yet, this causes a potential security
issue, where a failure of the broadcast of a matching order to blockchain
will invalidate all dependent orders. Moreover, hacking of the token
exchange may cause the loss of all users’ assets.
1.2. Comparisons of state-of-the-art token exchange

There are some key features which are equally important reasons for a
token exchange structure. As shown in Fig. 1, we look at the following
key features when comparing state-of-the-art token exchange in this
section:

� Security: The centralization nature of CEX makes it vulnerable to
hacking and denial of service attacks. While, DEX, the conventional
HEX and the proposed payment channel based HEX let users manage
their own digital currencies by utilizing smart contracts. Thus, the
security of user assets in CEX is relatively low compared to that in
both DEX and the conventional or payment-channel-based HEX.

� Order Matching Support: Order Matching Support refers to the
ability that a token exchange is able to match a selling order with an
appropriate buying order without interfere of token traders. Order
matching is not supported in DEX since it utilizes a decentralized
orderbook and token traders have to manually identify suitable
trades. While, order matching is supported in CEX, the conventional
HEX, as well as the proposed payment-channel-based HEX since they
use centralized orderbooks.

� Gas Fee: In CEX and the proposed payment-channel-based HEX,
frequent traders conduct their trades off-chain in the HEX platform.
While, in DEX and the conventional HEX, every successful trade leads
to a blockchain transaction. Therefore, frequent traders in DEX and
the conventional HEX pay for a higher gas fee compared to users in
CEX and the proposed payment-channel-based HEX.

� Transaction Confirmation Latency: Frequent traders need to wait
for blockchain confirmations to complete their trades when conduct
trades in DEX and the conventional HEX, which is not necessary when
they trade in CEX and the proposed HEX. Thus, transaction confir-
mation latency in DEX and the conventional HEX is relatively higher
than that in CEX and the proposed HEX.

� Transaction Congestion: All trading requests are blockchain trans-
actions in DEX and the conventional HEX. While, trades are per-
formed by sending Internet data packets off-chain in CEX and the
proposed HEX. Therefore, DEX and the conventional HEX are more
likely to cause the pending transaction congestion than CEX and the
proposed payment-channel-based HEX.
11 https://github.com/etherdelta.
12 https://0xproject.com/pdfs/0x_white_paper.pdf.
13 https://idex.market/static/IDEX-Whitepaper-V0.7.5.pdf.
14 https://joyso.io/whitepaper.pdf.

https://www.mtgox.com/
https://www.coinbase.com/
https://gemini.com/
https://poloniex.com/
https://www.kraken.com/
https://www.huobi.com
https://developer.kyber.network/docs/ArchitectureOverview
https://blog.airswap.io/introducing-swap-a-protocol-for-decentralized-peer-to-peer-trading-on-the-ethereum-blockchain-d4058f3179cf
https://blog.airswap.io/introducing-swap-a-protocol-for-decentralized-peer-to-peer-trading-on-the-ethereum-blockchain-d4058f3179cf
https://github.com/etherdelta
https://0xproject.com/pdfs/0x_white_paper.pdf
https://idex.market/static/IDEX-Whitepaper-V0.7.5.pdf
https://joyso.io/whitepaper.pdf

Fig. 1. Comparison of key features.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
As shown in Fig. 1, it is obvious that none of the state-of-art token
exchange could provide friendly user experience for frequent token
traders. To tackle this issue, we propose to extend the conventional HEX
by adding a new payment channel layer to decrease gas fee and trans-
action confirmation latency for frequency token trader as well as to
alleviate transaction congestion in blockchain.
16 https://medium.com/cardstack/scalable-payment-pools-in-solidity-d97e
1.3. Payment channel

A payment channel is the technique designed to allow users to make a
series of off-chain payments. So, it can facilitate multiple cryptocurrency
trades without committing each of them to blockchain one by one. With a
typical payment channel, only two on-chain transactions will be recorded
on the blockchain, while (nearly) unlimited number of off-chain pay-
ments between the participants can happen in the middle of the two on-
chain transactions. For instance, Alice creates a channel to Bob by initi-
ating an on-chain deposit transaction to deposit tokens into the deployed
smart contract that serves as an escrow account. Alice can then make an
arbitrary number of rapid payments to Bob, by signing the digital sig-
natures of the deposit division agreement (i.e., an agreement that allocates
Alice’s deposit in the escrow account between Alice and Bob) and
sending the signatures to Bob over the Internet. The signatures sent from
Alice and received by Bob are not tokens, but Bob can eventually receive
the tokens by closing the payment channel. When Bob closes the payment
channel, the latest deposit division signature created by Alice is required
to invoke the procedure in the smart contract to distribute the deposit to
counterparties’ accounts. This is the reason that we call the deposit di-
vision signatures sent from Alice to Bob the off-chain payments. Note that
the smart contract has nothing to do with the off-chain payments, as the
off-chain payments are purely done by sending the Internet packets from
Alice to Bob with Alice’s signatures. Hence, these intermediate off-chain
payments will not be processed by the blockchain miners.

Payment channels can be classified into two types, namely, the uni-
directional and bi-directional payment channels. An uni-directional
payment channel only allows single directional off-chain payment. In
CLTV-style uni-directional payment channel,15 the security of the pay-
ment channel is based on the fact that the payment receiver does not have
the incentive of using an old signature issued by the spender to close the
payment channel. On the other hand, a bi-directional payment channel
allows both counterparties to send off-chain payments. Therefore, one
may have the incentive of using an old signature issued by the counter-
party to close the payment channel and receive more asset than he/she
deserves. Thus, new security models are required to resolve this problem.
15 https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki.

3

The duplex payment channel Decker and Wattenhofer [13] uses
time-locking transactions to resolve the above problem to an extent. The
newest signature is always created with a shortest time-lock, meaning
that it is the first one that triggers the channel closing procedure. While,
due to the intrinsic mechanism, duplex payment channels have limited
lifetime. Poon-Dryja payment channel in the Lightning Network16 solves
the lifetime issue in the duplex payment channel by taking advantage of
multi-signature and hashed time-lock contract17 technologies. The se-
curity of Poon-Dryja payment channel is based on the punishment of a
malevolent counterparty rather than on time. A challenging-period will
be specified by both counterparties when creating the payment channel.
When a dishonest counterparty tries to close the payment channel by
submitting its opponent’s payment signature to blockchain, if the
opponent could submit a newer payment signature received from the
dishonest counterparty within the challenging-period, the dishonest side
would be punished and all deposits in the escrow account could be
transferred to the honest side.

Payment channels have been widely used in off-chain peer to peer
micro-payments, like in the Lightning Network. While, such application
of payment channel in the Lightning Network is not suitable in HEX due
to the following two reasons: First, most of the time a token trader will
not trade with the same opponent continuously. If a trader needs to
establish a new payment channel when there is no existing payment
channel to the target trader, the overhead of creating and closing the
payment channel could be not economical. Second, Lightning Network
only supports exchanging two types of tokens within the entire network,
while in practical token exchange, it is common for users to exchange
more than two types of tokens within a certain period. Therefore, in order
to decrease the overhead of our proposed scheme, users will establish a
payment channel with the token exchange instead of with other users
directly. Such application of payment channel in HEX also allows the
multi-token exchange, as we will present in the rest of the paper.

In this paper, we extend the existing HEX solution by adding a new
payment channel18 layer to decrease gas fee and transaction confirma-
tion latency for frequent token traders. The payment channel is a tech-
nique allowing for off-chain transactions with a final on-chain settlement
Xiao et al. [14]. We extend the draft design of payment channel appli-
cation in HEX in Luo et al. [15] by systematically designing and imple-
menting a minimal viable program (MVP) of the proposed solution. We
also validate the effectiveness of the payment-channel-based HEX by the
45fc7c5c.
17 http://www.lightning.network/lightning-network-paper-DRAFT-0.5.pdf.
18 https://en.bitcoin.it/wiki/Payment_channels.

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://medium.com/cardstack/scalable-payment-pools-in-solidity-d97e45fc7c5c
https://medium.com/cardstack/scalable-payment-pools-in-solidity-d97e45fc7c5c
http://www.lightning.network/lightning-network-paper-DRAFT-0.5.pdf
https://en.bitcoin.it/wiki/Payment_channels

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
experimental comparisons with conventional HEX in this paper. The
major contributions of the work are as follows:

� We systematically design the very first payment channel based HEX to
benefit frequent token traders. Compared with our previous work in
Luo et al. [15], our updated solution presented in this paper allows a
payment channel to be topped up, designs how the payment channel
between HEX users and the HEX could be closed to minimize users’
loss when potential attacks targeting to users occur, and introduces
security assumptions and potential attacks in the payment channel
based HEX. The proposed scheme supports multi-token off-chain ex-
change, and decreases the total gas fee and transaction confirmation
latency for frequent traders.

� We propose the very first gas-price vs. transaction-confirmation-
latency function to help blockchain transaction issuers to decide an
optimal gas price that minimizes the overall (i.e., monetary and
waiting time) cost.

� Based on the proposed gas-price vs. transaction-confirmation-latency
function, we quantitatively evaluate the performance of the payment-
channel-based HEX. The gas-price vs. transaction-confirmation-
latency function can also be used to quantitatively evaluate the per-
formance of payment channel in general applications using the pay-
ment channel technique.

In the rest of this paper, the system overview and security analysis of
the proposed HEX are presented in Sections 2 and 3, respectively.
Mathematical modelling and experiments are in Sections 4 and 5,
respectively. Section 6 concludes the paper.

2. System overview

In this section, we will present the design of the proposed payment-
channel-based HEX system.

2.1. System architecture

Fig. 2 illustrates the proposed system framework, which consists of
three layers, namely, the on-chain, payment channel, and the off-chain
layers. The payment channel layer works as a bridge to connect the on-
chain layer with the off-chain layer.
Fig. 2. Architecture of the payment channel based HEX.

4

2.1.1. On-chain layer
The on-chain layer is the key to securing users’ assets as well as

creating and closing the payment channels. The deployed smart contract
in the on-chain layer acts as a verifiable, open source, and trustworthy
escrow account.

Before a HEX user is able to exchange tokens in the HEX platform,
both the user and the HEX need to first deposit tokens into the smart
contract escrow account. Then, a payment channel creating transaction
with both counterparties’ signatures has to be submitted to the block-
chain in order to create a payment channel. Afterward, the user and the
HEX could exchange tokens off-chain by exchanging signatures to update
the deposit division agreement in an off-chain manner. When a user
wants to withdraw his/her deposit, the user could submit a signed pay-
ment channel closing transaction to trigger the payment channel closing
procedure. Settlement can thus be done on-chain by calling the corre-
sponding procedure defined in the smart contract, which cannot be
altered or interfered with.

To introduce the on-chain layer in details, the main functions of the
smart contract are defined as follows:

� Deposit: Both the user and the HEX send their deposits to the smart
contract. Since smart contract cannot be altered or interfered with, it
acts like a trustworthy escrow account.

� Withdraw: A user is only allowed to withdraw his/her deposit that is
not locked in the payment channel. If a user wants to withdraw the
deposit that is locked in the payment channel, the user needs to close
the payment channel in order to do so.

� Create a payment channel: To create a payment channel with the
HEX, a user shall firstly sign a time-locked message to create a pay-
ment channel with a maximum lifetime and a challenging-period.
After the time specified by the time lock, the message becomes
invalid and could not be used to create a payment channel any more.
The maximum lifetime of the payment channel determines the
duration that the user could exchange tokens in the HEX platform
after a payment channel has been created. The challenging-period
specifies a time duration after a counterparty requests to close the
payment channel, and within this duration, the opponent can dispute.
The user sends the payment channel creating signature to the HEX,
and if the HEX agrees to create the payment channel with the user, the
HEX and the user exchange their initial deposit division agreement
signatures. This is because that the HEX and the user should be
allowed to close the payment channel even if the user has not traded
any token yet (i.e., get their initial deposits back to individual’s ac-
counts). The user then needs to send both counterparties’ signatures
to the blockchain to trigger the creation of a new payment channel in
the smart contract before the time specified by time lock.

� Top up a payment channel: When a user wants to add some more
deposit for exchange while holding a payment channel with the HEX,
the user could deposit into the smart contract and lock the new de-
posit into the existing payment channel. Also, the HEX can top up an
existing payment channel by locking some more deposit into the
payment channel.

� Close a payment channel: There are three scenarios where a pay-
ment channel can be closed:

� Both the user and the HEX agree to close a payment channel. In this
scenario, no matter if the payment channel reaches its maximum
lifetime or not, both counterparties exchange their signatures of the
agreement on payment channel closure. Then, the user or the HEX can
send the two-party signed payment channel closing message to the
smart contract and the locked deposits in the payment channel are
divided and saved in both counterparties’ accounts on-chain at once.

� Only one counterparty wants to close the payment channel before the
maximum lifetime of the payment channel. In this case, the payment
channel can also be closed but not so straight forward as above.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
Without loss of generality, we assume Alice is a HEX user andwants to
close the payment channel with the HEX. Alice can use the off-chain
payment signature received from the HEX to request to close the
payment channel unilaterally by calling a procedure in the smart
contract. The smart contract first verifies the signature and then set
the status of the payment channel to “requested-to-close”. The pay-
ment channel enters the challenging-period. Within the challenging-
period, if the HEX could send the smart contract a signature created
by Alice chronically later than the signature used by Alice to request
to close the channel, Alice is proved cheating. The predefined penalty
subroutine could be triggered and the payment channel can be closed
with bias. Otherwise, if no dispute happens, the payment channel can
be closed after the challenging-period. The assets in the payment
channel are split according to what revealed by the signature that
Alice used when requesting to close the payment channel.

� Only one counterparty wants to close the payment channel after the
maximum lifetime of the payment channel. After the payment chan-
nel has reached its maximum lifetime, one counterparty could trigger
the close of the payment channel with its own signature. Then, the
deposits in the locked payment channel will be distributed according
to the initial deposit division. Such design is to minimize users’ loss
when potential attacks targeting to users occur. This will be intro-
duced later with more details when we analyze the security of the
proposed HEX.
Fig. 3. An illustration of payment cha

5

2.1.2. Payment channel layer
Payment channel layer is the bridge to connect the on-chain layer

with the off-chain layer. Since creating a payment channel requires de-
posits from both counterparties, the main usage of the payment channel
is to establish the trustworthiness between the counterparties, so that
they can conduct off-chain trades by exchanging the signatures of the
agreement on the deposit division.

Here, we choose the bi-directional payment channel instead of the
uni-directional payment channel because the users exchanging tokens
with each other needs the HEX to serve as a transparent hub, so the token
exchanges between the HEX and one user is also bi-directional. For
example, Alice wants to exchange tokens with any other token traders for
three times over the HEX, the detailed process of which is presented in
Fig. 3. Both Alice and the HEX need to deposit into the smart contract and
sign an initial deposit division agreement in order to create a payment
channel. The initial deposit division agreement is the Trade 0 in Fig. 3.
Then, Alice exchanges tokens three times. In Trade 1, Alice buys in 5
VERI with 0.5 ETH (i.e., the other token trader sells out 5 VERI for 0.5
ETH). In Trade 2, Alice buys in 50 OMG with 5 VERI (i.e., the other token
trader sells out 50 OMG for 5 VERI). In Trade 3, Alice buys in 100 REP
with 10 OMG (i.e., the other token trader sells out 10 OMG for 100 REP).
Then, Alice wants to stop trading. The payment channel is closed by
sending a two-party signed payment channel closing transaction based on
the latest deposit division agreement to the blockchain. Then, 0.5 ETH,
40 OMG, and 100 REP are transferred to Alice’s account.
nnel between Alice and the HEX.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
2.1.3. Off-chain layer
The off-chain layer is responsible for order execution, which includes

order placement, order canceling, and order matching.
After a payment channel is created between the user and the HEX, the

user is able to continuously trade with the HEX off-chain. To start a new
trade, the user could place an order by sending a signed buy/sell order to
the HEX. The signature of the buy/sell order here is only used to show the
user’s willingness to trade and not used to update the deposit division
agreement in the on-chain escrow account. The new order will then be
recorded in the orderbook. When the HEX finds a matching order via
order matching engine, the HEX would then notify the user immediately
and ask the user to reply within a specific time. Afterward, the user needs
to send a payment signature to the HEX before the time specified by the
HEX. The HEX then exchanges its payment signature to complete the
order. If the user does not reply within the time specified by the HEX, the
related order will be cancelled by the HEX. If a user wants to proactively
cancel the order, the user needs to sign and send another order-cancel
request to the HEX before the HEX finds a matching order for the
user’s order.
2.2. Comparisons with existing solutions

To help readers better understand the system architecture of our
proposed HEX system, we will compare our system with existing solu-
tions in two aspects, i.e., working mechanism of the system and order
execution model in token exchange.

2.2.1. Working mechanism
To compare the working mechanism, Fig. 4 and Fig. 5 illustrate the

key components and continuous trading workflows of the conventional
HEX and the proposed payment channel based HEX, respectively. Ac-
cording to Figs. 4 and 5, it is obvious that the proposed HEX adds a
payment channel layer to alter the workflow of trading procedures.

As shown in Fig. 4, a user in the conventional HEX deposits tokens
into the smart contract before starting a trade. Then, the user sends a
signed token buy/sell order to the HEX. If the HEX finds a matching
order, the HEX signs both the buy and sell orders issued by two token
traders to approve the trade. Afterward, the signed matching orders will
be submitted to the blockchain by the HEX for deposit settlement. For
continuous trades, a user needs to repeat Steps 2, 5, and 6 in Fig. 4.
Fig. 4. An example for how a trader exchanges tokens with the HEX without
payment channel. For continuous trades, a user needs to repeat Steps 2, 5, and 6.

6

As shown in Fig. 5, a user in our proposed system also deposits tokens
into the deployed smart contract first. While, before the user can conduct
the off-chain token exchange, he/she needs to sign and exchange a
payment channel creating message with the HEX in order to create a
payment channel. After a payment channel is created, the user could
place signed buy/sell orders to show his/her willingness to exchange
tokens. If a matching order could be found by the HEX, both the seller and
the buyer then exchange with the HEX their digital signatures that reveal
their agreements on new deposit divisions for their deposits in the on-
chain escrow account. For continuous trades, a user needs to repeat
order placement and payment signature exchange in Steps 7, 8, 9, 10, and
11 in Fig. 5.

According to the workflows of continuous trades, Step 6 in Fig. 4 is
on-chain transaction, while Steps 7, 8, 9, 10, and 11 in Fig. 5 are
completely off-chain. Thus, the proposed payment-channel-based HEX
eliminates the number of on-chain transactions for frequent token trad-
ings, and achieves better performance over conventional HEX in terms of
total gas fee and transaction confirmation latency.

2.2.2. Order execution model
To compare the execution model, we look at the following aspects:

whether order placement is on-chain and whether order cancellation and
matching are supported.

� Order placement: Orders in token exchange could be classified into
two types in terms of the impact on cryptocurrency liquidity, i.e., the
make order and the take order. In the context of token exchange,
cryptocurrency liquidity refers to the ability of a token to be con-
verted into other tokens easily. The make order is a buy/sell order
that will not be fulfilled immediately, and thus, adds liquidity to an
exchange. While, the take order is a buy/sell order that will be
immediately fulfilled, and thus, decreases liquidity to an exchange.
Table 1 shows whether make and take orders are placed on-chain in
different token exchange.

� Order cancellation: As shown in Table 2, we compare how order
cancellation takes place in different token exchange. In CEX, the
conventional HEX, and the proposed HEX, order cancellation is free
since orders are placed off-chain and could be cancelled off-chain.
While, users in DEX have to send an order canceling transaction to
the DEX smart contract to cancel an order, and thus, it costs extra
Ethereum gas fee. To successfully cancel an order, users in CEX and
the conventional HEX need to rely on the token exchange, while users
in DEX and the proposed HEX could cancel the order at their will
before the order is fulfilled.

� Ordermatching: Table 3 shows whether order matching is supported
in different token exchange. DEX does not support order matching as
it utilizes a decentralized orderbook on the blockchain to record or-
ders. While, order matching is supported in CEX, the conventional
HEX, and the proposed payment channel based HEX, since all of them
record orders using centralized orderbooks.

3. Security analysis

In this section, we will introduce the security assumptions and po-
tential attacks in the proposed payment-channel-based HEX.
3.1. Security assumptions

We have the following assumptions for the proposed payment-
channel-based HEX system:

� The HEX is always online to provide service to the HEX users (i.e.,
token traders).

� The user needs to be notified when the HEX requests to close the
payment channel. Techniques like watchtower Osuntokun [16] could

Fig. 5. An example for how a trader exchanges tokens with the payment channel based HEX. For continuous trades, user needs to repeat Steps 7, 8, 9, 10, and 11.

Table 1
Comparison of order placement.

Exchange Type Make Order Take Order

CEX Off-chain Off-chain
DEX On-chain On-chain
Conventional HEX Off-chain Off-chain
Proposed HEX Off-chain Off-chain

Table 2
Comparison of order cancellation.

Exchange Type Cost Trust Model

CEX Free Trustful
DEX Gas fee Trustless
Conventional HEX Free Trustful
Proposed HEX Free Trustless

Table 3
Comparison of order matching.

Exchange Type Order Matching Support

CEX Yes
DEX No
Conventional HEX Yes
Proposed HEX Yes

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
help here to alert the user when the HEX tries to close the payment
channel unilaterally.

� The user or the HEX is able to close a payment channel before the
maximum lifetime of the payment channel.
7

3.2. Attack vectors

Here, we classify attacks into three types, i.e., attacks toward users,
attacks toward the HEX, and attacks toward the system.

3.2.1. Attacks toward users

� Signature Holding Attack: During the order process, the HEX could
hold the deposit division agreement signature sent from a user. When
the HEX sends the order matching notification to the user, the user
will send a deposit division agreement signature to the HEX. The HEX
could keep the deposit division agreement signature and become
unresponsive to the user. In such a situation, the user would imme-
diately know that the HEX might be malicious. Since the user is able
to cancel all other orders without the approval of the HEX, the user
could simply wait till the maximum lifetime of the payment channel.
This will lead to following two possible results:

� The HEX might use the most recently received deposit division
agreement signature to close the payment channel before the
maximum lifetime of the payment channel. In this situation, the user
could get his/her deposit back based on the latest deposit division
agreement.

� The HEX might not close the payment channel proactively. In this
situation, the user could trigger the close of the payment channel after
the payment channel reaches its maximum lifetime. All trades during
the lifetime of the payment channel become invalid since the pay-
ment channel settles with the initial deposit division agreement as the
payment channel is created.

In both situations, the user could either get his/her deposit based on
the last deposit division agreement or get his/her initial deposit back. But
for the HEX, it will lose the trust of the user, which in long term decreases
liquidity of the exchange. Thus, for the HEX side, they will not have

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
enough incentives to hold the payment signatures issued by the users to
cheat.

� Front-running Attack: Front-running is an investing strategy that
predicts the impact of upcoming trades using prior trading informa-
tion about their own or others. Front-running attack Eskandari et al.
[17] might be launched by the HEX against the users since the HEX
could get private knowledge of an upcoming order and strategically
place their own orders in such a way that is profitable for the HEX.
Even though the HEX could theoretically front-run users by itself,
users could detect that orders are not in sequence. The loss of the trust
from users would result in bad liquidity of the HEX in long term,
which makes it fair to say that the HEX is unlikely to front-run users
for a long-term benefit.

3.2.2. Attacks toward HEX

� Private Key Hacking Attack: The HEX might lose part of its deposit
held by the smart contract if its private keys were stolen. Deposit held
by the smart contract could be classified into two types, i.e., deposit
locked in the payment channel and deposit not locked in the payment
channel. Since the smart contract could not be altered, deposit in the
smart contract could only be withdrawn by using private keys. If an
attacker steals the private keys of the HEX, he/she could transfer the
deposit of the HEXwhich is not locked in any of the payment channels
into his/her private address at once. However, deposits locked in the
payment channels could only be withdrawn till the close of the pay-
ment channels. To close a payment channel, the attacker also needs to
hack the off-chain HEX platform to get the last payment signature
issued by the HEX user of the payment channel. Even assuming that
the attacker is able to hack both the private keys of the HEX and
payment signatures from HEX users, the close of the payment channel
is an on-chain operation, which requests confirmations from the
blockchain to take the effect and this will cost some time. During this
time, the token exchange could have some emergency solutions. For
example, when the HEX is hacked, the system administrator of the
HEX would be able to update the address of the HEX to a new address
for all existing payment channels, thus, all HEX’s deposits in these
payment channels will be sent to this new address when payment
channels are closed. It is worth noting that users’ deposits are safe no
matter the HEX is hacked or not. An attacker cannot steal users’ de-
posits in the smart contract as long as he/she does not hack the pri-
vate keys of users.

� Liquidity Attack: Malicious users may lock a large amount of tokens
from the HEX without placing any order or placing orders that are
hard to be fulfilled. As the locked tokens of the HEX could not be used
to serve other users who actively exchange tokens, the liquidity of the
HEX will decrease in long term. This could be solved by setting KYC
(Know-Your-Customer19) or an effective incentive-and-punishment
mechanism. KYC is the process of evaluating the risks of the poten-
tial illegal intentions toward the business relationship. Business with
the KYC policy requests a customer to submit their basic personally
identifiable information, so that business could create assessment of a
customer’s profile on the basis of his/her transnational behaviors.
This could prevent the potential liquidity attacks by designing a
proper incentive-and-punishment mechanism. An example could be
that HEX can utilize historical transaction data of a HEX user to decide
how to react to the user when creating the payment channel. For
instance, if a user continuously locking a large amount of token from
the HEX without placing any order, the HEX could refuse to create a
payment channel with the same user for a specific period or set a
maximum amount of tokens allocated to the user’s payment channel
next time.
19 https://en.wikipedia.org/wiki/Know_your_customer.

8

3.2.3. Attacks toward the system

� Smart Contract Attack: If there is any vulnerability in smart contract
code, the entire system might suffer from potential attacks such as the
decentralized autonomous organization (DAO) attack Dupont [18],
where a hacker spotted a flaw in the DAO’s smart contract and trans-
ferred3.6million Ether into a personal account. Toprotect the proposed
systemagainst known bugs and vulnerabilities, tools such asOyente Luu
et al. [19], SmartEmbed Gao et al. [20], DefectChecker Chen et al. [21]
andZEUSKalraet al. [22] couldbeused for smart contract code analysis.

� Man-in-the-Middle and Replay Attack: Attackers might secretly
replay and alter the off-chain communications between the user and
the HEX who believe they are directly communicating with each
other. To prevent this kind of attacks, we could encrypt off-chain
messages between the user and the HEX with a nonce value and
timestamps Almadhoun et al. [23]; Hasan and Salah [24]. By doing
so, even if an attacker could replace the user address with his/her own
address, he/she would not be able to correctly sign it.

4. Minimizing overall cost for frequent traders

To quantitatively evaluate the performance of payment channel in
HEX, we would like to compare the cost (i.e., gas fee and transaction
confirmation latency) for users in the conventional HEX and the proposed
HEXwhen the overall cost is minimized. In this section, we will introduce
the very first gas-price vs. transaction-confirmation-latency function.
Then, we will show how the overall cost could be minimized based on
gas-price vs. transaction-confirmation-latency function. In next section
we will show howwe compare the cost in terms of gas fee and transaction
confirmation latency in the conventional HEX and the proposed HEX
when the overall cost is minimized.

4.1. Overall cost modelling

There are two major cost for blockchain transaction issuers, i.e., gas
fee and transaction confirmation latency, which could be evaluated by
the following performance metrics, respectively:

� Gas fee: to describe the cost (unit: Ether) in a blockchain transaction.
� Transaction confirmation latency: to describe the interval (unit: sec)
between the submission time when a transaction is submitted to
blockchain network, and the confirmation time when the transaction
receives 12 block confirmations in blockchain.

For the gas fee, the gas to be used by a blockchain transaction could be
regarded as a constant since it could be estimated by calling Ethereum
API like web3.eth.estimateGas20. Therefore, for a transaction, the gas fee
could be expressed by

f1ðxÞ¼ c� x
�
109 (1)

where

� f1ðxÞ denotes gas fee;
� c denotes gas cost, which describes the amount of gas to be used by a
blockchain transaction;

� x denotes gas price, which describes the price per unit of gas with the
unit 1� 109 Wei (i.e., GWei).

For the transaction confirmation latency, it is well known that as with
the increase of gas price, the transaction confirmation latency will
decrease. Based on this, we propose the following gas-price vs.
transaction-confirmation-latency function for Ethereum Mainnet
20 https://web3js.readthedocs.io/en/1.0/web3-eth.html#estimategas.

https://en.wikipedia.org/wiki/Know_your_customer
https://web3js.readthedocs.io/en/1.0/web3-eth.html#estimategas

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
f2ðxÞ¼ a=xþ b (2)
where

� f2ðxÞ denotes the estimation of the transaction confirmation latency;
� a denotes the status of network congestion in Ethereum Mainnet:
When a is small, noting that the constant b is added on the ratio of a=
x, it means that the Ethereum network is not so congested such that
changing the gas price x (e.g., doubling or tripling x) will not cause a
significant difference of the resultant transaction confirmation la-
tency as b is the dominant item in (2). While, when a is very large and
the ratio of a=x becomes the dominant item in (2), it means that the
Ethereum network is congested. This is because changing the gas
price x (e.g., doubling or tripling x) will lead to a considerable vari-
ance of the transaction confirmation latency;

� b denotes the estimation of transaction confirmation latency in an
ideal situation where x is large enough so that a transaction will be
mined in no time (i.e., the average duration of mining 12 blocks in
Ethereum Mainnet);

� x denotes gas price, which describes the price per unit of gas with the
unit 1� 109 Wei (i.e., GWei).

We would like to highlight that we will estimate the parameters ða; bÞ
in the proposed function as well as validate the effectiveness of the
proposed function via big data analysis later.

For a blockchain transaction issuer, the objective is to simultaneously
minimize gas fee and transaction confirmation latency, which could be
regarded as a multi-objective optimization problem Hwang et al. [25].
The multi-objective optimization problem could be turned into a
single-objective mathematical optimization problem which is to mini-
mize the overall cost of gas fee and transaction confirmation latency via
weighted sum model Fishburn [26]. As gas fee and transaction confir-
mation latency have different magnitude, normalization is required for
gas fee and transaction confirmation latency when utilizing weighted
sum model. According to previous study Grodzevich and Romanko [27],
there are three major methods to normalize objective functions in
weighted sum model, i.e., normalize by the magnitude of the objective
function at the initial point, normalize by the minimum of the objective
function, and normalize by the differences of optimal function values in
the Utopia and Nadir points, where Utopia and Nadir points define the
lower and upper bounds of the optimal Pareto set for objective functions,
respectively. In our case, it is hard to determine a proper initial point of
both gas fee and transaction confirmation latency, and the minimum of
the gas fee could be 0, whichmakes normalization by the initial point and
by the minimum of the objective functions impractical and ineffective.
Therefore, normalization by Utopia and Nadir points is chosen in our
case.

Theoretically, the maximum gas fee and transaction confirmation
latency could be huge. While, in real world, users cannot use infinite gas
fee in a transaction or wait endlessly for the confirmation of a trans-
action. Thus, for a given user we could define the maximum gas fee as
f max
1 , and the maximum transaction confirmation latency as f max

2 .
Combining (1) and (2), we could derive the following equations:

f U1 ¼ a� c
109 � �f max2 � b

�;
f N1 ¼ f max1 ;

f U2 ¼ a� c
109 � f max1

þ b;

f N2 ¼ f max2

(3)

where

� f U1 denotes the lower bound of f1ðxÞ based on the Utopia point of f1ðxÞ;
9

� f N1 denotes the upper bound of f1ðxÞ based on the Nadir point of f1ðxÞ;
� f U2 denotes the lower bound of f2ðxÞ based on the Utopia point of f2ðxÞ;
� f N2 denotes the upper bound of f2ðxÞ based on the Nadir point of f2ðxÞ.

Thus, for a blockchain transaction issuer with the maximum gas fee as
f max
1 and the maximum transaction confirmation latency as f max

2 , the
minimization of the overall cost in terms of gas fee and transaction
confirmation latency could be reformulated as

min
x

�
α�c

109��f max1 �f U1
��xþ ð1�αÞ�a�

f max2 �f U2
��1

x
� α�f U1�

f max1 �f U1
��ð1�αÞ��f U2 �b

��
f max2 �f U2

� �
;

subject to :x>0

(4)

where

� We use the lower bounds based on Utopia points in (3) to simplify the
expression of the single objective function;

� α is a weighting coefficient, which stands for the blockchain issuer’s
preference of gas fee over transaction confirmation latency, and
0 < α < 1.

We denote the above single objective function as f ðxÞ. To minimize
f ðxÞ, let us have a look at the first and second derivatives of f ðxÞ as fol-
lows:

f
0 ðxÞ ¼ α� c

109 � �f max1 � f U1
�� ð1� αÞ � a�

f max2 � f U2
� � 1

x2
;

f 00ðxÞ ¼ 2� ð1� αÞ � a�
f max2 � f U2

� � 1
x3
:

(5)

It is obvious that f 00ðxÞ > 0 always holds, thus, we could know that
f ðxÞ is minimized when f 0 ðxÞ ¼ 0. By solving the equation f 0 ðxÞ ¼ 0, the
optimal gas price to minimize the overall cost could be expressed as

x* ¼
ffi
109 � ð1� αÞ � a� �f max1 � f U1

�
α� c� �f max2 � f U2

�s
: (6)

However, to make use of the overall cost function, we still need to
know the value of parameters ða; bÞ in gas-price vs. transaction-
confirmation-latency function. In next section, we will use big data
analysis technique to get qualitative estimates of parameters ða;bÞ.
4.2. Parameter estimation

To estimate the parameters ða; bÞ in the gas-price vs. transaction-
confirmation-latency function, we collect 540;296 transactions from
Ethereum Mainnet. Based on these transactions, we could get 540;296
ðx; yÞ pairs, where

� x denotes gas price, which describes the price per unit of gas with the
unit 1� 109 Wei (i.e., GWei);

� y denotes transaction confirmation latency.

To calculate the transaction confirmation latency for a transaction, we
need to know the submission time when a transaction is submitted to
blockchain, and the confirmation time when a transaction is confirmed
by 12 blockchain blocks. The confirmation time is the blocktime of the
12th block that confirms the transaction, which could be easily obtained
by calling Ethereum API.21 As for the submission time, the most accurate
way to get it is to use an Ethereum client to submit real transactions to
Ethereum Mainnet, which can help us to determine the submission time
21 https://web3js.readthedocs.io/en/1.0/web3-eth.html.

https://web3js.readthedocs.io/en/1.0/web3-eth.html

22 https://en.wikipedia.org/wiki/Amazon_Web_Services.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
of each transaction precisely. However, it cost real money to submit real
transactions in Ethereum Mainnet. A large number of transactions cost a
considerable amount of money until a sufficient large dataset can be
collected for the analysis. Moreover, the cost is especially high when
investigating the latency for the transactions with high gas prices.
Therefore, it is economically infeasible to accurately collect the sub-
mission time of transactions by submitting real transactions to Ethereum
by ourselves. In this paper, we propose to estimate a transaction’s sub-
mission time based on the observation time when the transaction is
received by an Ethereum full node while taking the transmission latency
of the gossip protocol into account. To be specific, we use the observation
time when a transaction firstly shows up in the pending transaction pool
of an Ethereum full node to predict the submission time of the trans-
action. Due to the unavoidable latency in gossip protocols, the observa-
tion time of a transaction would deviate from the submission time
depending on the network distance between the Ethereum full node who
observes the transaction and the Ethereum client who submits the
transaction. To minimize the deviation caused by the network latency,
we make the following assumptions:

4.2.1. Assumptions

� We assume the network latency between two network servers using
gossip protocols to exchange information is determined by hop count
Hedrick [28]. So, we classify the collected transactions into clusters
based on the hop counts between the Ethereum full node who ob-
serves transactions and the Ethereum clients who submit these
transactions. Let us denote the maximum hop count in the network as
K, and we could divide all transactions into K clusters, which is 1;2;…;

K, respectively. Cluster K means transactions in this cluster are sub-
mitted by Ethereum clients whose hop count to the Ethereum full
node (i.e., the deployed observer server) is K. It is economically un-
affordable to submit transactions directly from our observer server.
Thus, the minimal hop count is 1, which means that the cluster
number starts from 1 instead of 0. Since transactions from cluster 1
have the minimal network latency, we will use the data fitting result
for cluster 1 to approximate the wanted gas-price vs.
transaction-confirmation-latency model that we need for hop count
equal 0.

� For clusters 1; 2;3;…;K, we assume the following8>>>><>>>>:
y1 ¼ a1=x1 þ b1 þ ε1;
…

yk ¼ ak=xk þ bk þ εk ;
…

yK ¼ aK=xK þ bK þ εK

(7)

where

� xk denotes gas price for a transaction in cluster k, which describes the
price per unit of gas with the unit 1� 109 Wei (i.e., GWei); xk > 0,
k ¼ 1;2;…;K;

� yk denotes transaction confirmation latency for a transaction in
cluster k, k ¼ 1;2;…;K;

� ak > 0, k ¼ 1;2;…;K;
� εk is random error, under the assumption of normality, where εke
N ð0; σ2kÞ, where σk is the standard deviation of the Gaussion distri-
bution of εk, k ¼ 1;2;…;K.

Based on what we have explained before, we have

b1 > b2 > … > bK : (8)

This can be deducted as follows: for all clusters, when gas price goes
to infinity, a transaction will be mined in no time, thus, transaction
confirmation latency will depend on block time and network latency.
Since block time will not change for transactions from different clusters,
10
estimation of transaction confirmation latency will change according to
network latency only. As with the increase of hop count, network latency
between the Ethereum full node (i.e., our deployed observer server) who
observes transactions and the Ethereum clients who submit transactions
increases. Therefore, when gas price goes to infinity, as with the increase
of hop count, estimation of transaction confirmation latency will
decrease due to the increase of network latency. Thus, we have
b1 > b2 > … > bK :

4.2.2. Data collection and pre-processing
We will introduce how we collect and pre-process the raw data

received on the Ethereum full node (i.e., the deployed observer server).

� We set up five Ethereum full nodes through Amazon Web Services22

in the following locations: West America, East South America,
Europe, Northeast Asia Pacific, Southwest Asia Pacific. In each
Ethereum full node, we record the observation time of transactions
when these transactions firstly show up in the pending transaction
pool of the node.

� Data collection starts at 2019-04-12 00:00:00 UTC and ends at 2019-
04-14 23:59:59 UTC. To preserve as many transactions with long
transaction confirmation latency as possible, we only use transactions
which are mined successfully between 2019 and 04–14 00:00:00 UTC
and 2019-04-14 23:59:59 UTC in our model fitting process. In this
way, we are able to keep these transactions whose transaction
confirmation latency is longer than two days.

� Transactions collected by all five nodes are merged in one dataset.
The uniqueness of each transaction is preserved by its transaction
hash. Specifically, for transactions with the same transaction hash,
only the one with the earliest observation time is kept. There are two
reasons for this:

� By merging transactions collected from five different areas of the
world, the potential bias caused by different network structure in
different areas of the world could be minimized.

� By using the earliest observation time of transactions, the weights of
transactions from clusters with small hop counts are increasing,
which also potentially increases the weight of transactions from
cluster 1.

� After above processing, we get 540;296 ðx; yÞ pairs from transactions
mined successfully on 2019-04-14 UTC.

4.2.3. Data modelling
So far, we have a mixed the collected ðx; yÞ pairs from K clusters, and

we need to estimate the parameters ða1; b1Þ for cluster 1 and use them to
approximate the gas-price vs. transaction-confirmation-latency model in
the ideal case (i.e., cluster 0). As shown in (7), our models are finite
mixtures of regressions. By replacing xwith its inverse 1=x, we could turn
our models into linear regressions. Afterward, we could fit the data with
finite mixture of linear regressions Veaux [29], which could estimate the
distinct parameters of each regression model within finite mixture
models.

Given a set of independent observations y1;y2;…;yn, corresponding to
values x1; x2;…; xn of the predictor 1=x, then the problem in (7) could be
reformulated as

yi ¼

8>>>><>>>>:
a1 � xi þ b1 þ εi1; with probability π1;
…

ak � xi þ bk þ εik ; with probability πk ;
…

aK � xi þ bK þ εiK ; with probability πK

(9)

where

https://en.wikipedia.org/wiki/Amazon_Web_Services

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
� xi, yi is the ith observation of the collected ð1 =x; yÞ pairs;
� πk is the mixing probability where
� 0 < πk < 1, for all k ¼ 1; 2;…;K;
� PK

k¼1πk ¼ 1;

� εik is random error, under the assumption of normality, where εike
N ð0; σ2kÞ, where σk is the standard deviation of the Gaussion distri-
bution of εik, i ¼ 1;2;…;n, k ¼ 1;2;3;…;K.

The parameters in the mixture model θ ¼ ðπ1; π2;…; πK ; a1; a2;…; aK ;
b1; b2;…; bK ; σ1; σ2;…; σKÞ could be estimated by maximizing the log-
likelihood

L

θjx1;…; xn; y1;…; ynÞ¼

X232
i¼1

ln

 X232
k¼1

πkφðyijak ; bk ; σk; xi

!!
(10)

where

φðyijak ; bk ; σk; xiÞ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p � exp
�
� ðyi � ðakxi þ bkÞÞ2

2σ2k

	
: (11)

The standard tool for maximum likelihood estimation in finite
mixture models is the EM algorithm Dempster Laird and Rubin [30]. The
Fig. 6. Regression models for clusters using finite mixture of linear reg

11
EM algorithm is an iterative method to find maximum likelihood esti-
mates of parameters in a two-step process. First, the E-step computes the
conditional expectation of the log-likelihood evaluated using the current
estimates for the parameters. Second, the M-step maximizes the
log-likelihood of the parameter estimates learned in the E-step.

Once we have learned the model parameters based on EM algorithm,
we then need to decide an optimal cluster number. A consistent estimator
of the cluster number K could be achieved based on Bayesian Information
Criteria (BIC) Fraley and Raftery [31], where the value of K is chosen at
which the BIC value asymptotically converges.

After getting the optimal number of clusters and related model pa-
rameters, we could choose the model of cluster 1 from models for all
clusters based on (8).

4.2.4. Results
For the model fitting process using EM algorithm, we use the finite

mixture models fitting package mixtools Benaglia, Chauveau, Hunter and
Young [32]. For the cluster number, we try K from 2 to 10. According to
previous study about how to choose initial values for the EM algorithm
for finite mixtures Karlis and Xekalaki [33], the solution of the EM al-
gorithm depends on the initial value and the stopping criterion. There-
fore, for each given K, we start the EM iteration with 10 different initial
ressions. Models are listed in descending order of the values of bk.

Table 4
Model parameters and mixing probabilities.

Clusters Parameters ða;bÞ Mixing Probabilities

* 149.35, 20585.11 0.00203055885101554
** 284.30, 394.90 0.00660449752529227
1 165.65, 210.04 0.0353444561749399
2 66.04, 183.90 0.0836724202165458
3 111.35, 183.85 0.0486831288290784
4 34.85, 180.51 0.202374396346127
5 14.89, 150.84 0.374904339750736
6 5.12, 117.34 0.246386202306265

Fig. 7. Gas-price vs. transaction-confirmation-latency model.

Fig. 8. Overall cost versus gas price when users change the maximum gas fee
and transaction confirmation latency for a given transaction. Here we take gas
cost ¼ 21,000, α ¼ 0:5 as an example.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
values and choose the stopping criterion as when the difference between
two iterations is less than 1� 10�6. Afterward, we choose the one with
the largest log-likelihood as the solution for the given K within the 10
iterations. Then, we compare the BIC of each solution for K from 2 to 10,
the BIC value converges when K ¼ 8 in our experiment. Therefore, we
choose our optimal cluster number as 8, and the optimal model fitting
results of 8 clusters are shown in Fig. 6. In Fig. 6, latency refers to the
transaction confirmation latency. Besides, related model parameters and
mixing probabilities are shown in Table 4, where numbers in the column
Parameters ða; bÞ are rounded to two decimal points. It is worth noting
that in Table 4, the models are listed in descending order of the values of
bk.

In Fig. 6 and Table 4, we do not assign any cluster number for the first
two models but instead we use * and ** to refer to these two models, as
these two models could not be the model for cluster 1. There are two
reasons for this. First, by utilizing data from Etherscan,23 the expectation
of block time in Ethereum Mainnet is 15.46 s based on law of large
numbers Grimmett and Stirzaker [34], and the parameter b in the first
two models is much higher than that of 12� 15:46 as shown in Table 4.
Second, if we take a look at mixing probabilities of these twomodels, sum
of the mixing probabilities of these two models are less than 0.009 (i.e.,
0.9%), which is way lower than the mixing probability of any other
model. Therefore, we could safely say these two models could not be the
models for cluster 1. A potential cause for these two models might be that
transactions from these two models might have exceptional nonce value.
For a transaction from these twomodels, if any other transaction from the
same transaction issuer with a lower nonce value is not mined into
blockchain, the transaction from these two models have to wait for a long
time before mined into blockchain even when its gas price is high.

After excluding the first two models, there are 6 clusters left. Ac-
cording to (8), we take the third model in Table 4 which has the largest
parameter b as the one from the cluster 1. Also, the parameter a for the
cluster 1 is 165.65, which is reasonable since it is neither big nor small.
For example, for transactions with gas prices 0.1, 1, 10, and 100 GWei,
the corresponding transaction confirmation latency will be 1866.54,
375.69, 226.61, 211.7 s, which makes sense based on common knowl-
edge about transaction confirmation latency on Ethereum Mainnet. The
rationality of the estimates of parameters ða; bÞ proves the effectiveness
of the gas-price vs. transaction-confirmation-latency model.

Since we are using the model from the cluster 1 to approximate our
gas-price vs. transaction-confirmation-latency model, the eventual model
that we adopt is drawn in Fig. 7.
4.3. Simulation results

Now we have the value of parameters ða; bÞ in (4), we could see how
the overall cost changes for different users for a given transaction.

Fig. 8 shows how the overall cost changes with gas price for a given
transaction, when users’ maximum gas fee and maximum transaction
confirmation latency change. Here, we take Ethereum token transfer
transaction whose gas cost is 21,000 as an example. According to the
23 https://etherscan.io/chart/blocktime.

12
samples from cluster 1 in Fig. 6, the median gas fee is 0.0282 Ether and
the median transaction confirmation latency is 710 s. Therefore, in the
experiment, we choose the following settings: when maximum gas fee is
0.0282 Ether, the maximum transaction confirmation latency is set as
710, 1420, 2130 s, respectively; when maximum transaction confirma-
tion latency is set as 710 s, the maximum gas fee is set as 0.0282, 0.0564,
0.0846 Ether, respectively. As shown in Fig. 8, when maximum gas fee
and maximum transaction confirmation latency are fixed, the overall cost
will decrease with the increase of gas price before reaching the optimal
gas price, and then the overall cost will increase with the increase of gas
price after passing the optimal gas price. Particularly, when maximum
transaction confirmation latency is fixed, the optimal gas price increases
with the increase of maximum gas fee. While, when maximum gas fee is
fixed, the optimal gas price decreases with the increase of maximum
transaction confirmation latency.

Fig. 9 shows how the value of cost function changes with gas price for
a given transaction when users’ preferences between gas fee and

https://etherscan.io/chart/blocktime

Fig. 9. Overall cost versus gas price when users’ preference between gas fee and
transaction confirmation latency changes for a given transaction. Here we take
gas cost ¼ 21,000, maximum gas fee ¼ 0.0282 Ether, and maximum transaction
confirmation latency ¼ 710 s as an example.

Table 5
Summary of hardware settings.

Device OS Memory CPU

DELL Inspiron 15 Ubuntu 18.04 8G Intel i5-7300

Table 6
Gas cost in payment channel creation and closure.

Number of Token Gas Cost in Payment Channel Gas Cost in Payment Channel

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
transaction confirmation latency change. For a given α, the overall cost
will decrease with the increase of gas price before reaching the optimal
gas price, and then the overall cost will increase with the increase of gas
price after passing the optimal gas price. When α increases, the optimal
gas price to minimize the overall cost decreases. The corresponding
optimal gas price is 63.28056, 32.22088, 21.09352, 13.80895, 7.031173
GWei for α ¼ 0.1, 0.3, 0.5, 0.7, 0.9, respectively. The reason why the
increase of α leads to the decrease of the optimal gas price is that the
larger α is, the less users want to spend on gas fee, and thus, the less
optimal gas price is. Particularly, among all users, the minimal overall
cost is the maximum for users with α ¼ 0:5, and the same minimal
overall cost is shared for two users where the summation of the two users’
α equals to 1.

5. Experiment

In this section, for evaluating the proposed payment channel based
HEX framework, we carry out some experiments by simulating different
scenarios in practical token exchange. Firstly, to prove how our proposed
scheme decreases gas fee and transaction confirmation latency for
frequent token traders, we will show the percentage of gas fee and the
percentage of transaction confirmation latency could be saved, when the
overall cost in terms of gas fee and transaction confirmation latency for a
user is minimized when replacing the conventional scheme with the
proposed scheme. Secondly, to prove how our proposed scheme alleviate
transaction congestion in blockchain, we will show the percentage of the
number of blockchain transactions could be saved by replacing the
conventional payment channel with the proposed scheme.

5.1. Experimental setup

5.1.1. Experimental configuration
Hardware used in the experiment is listed in Table 5.
24 https://github.com/dexDev/DEx.top/blob/master/whitepaper/DEx-White
paper-Short-Version.pdf

13
5.1.2. Baseline schemes and performance metrics
For performance comparison, the used baseline scheme is a conven-

tional HEX similar to DEx.top,24 which does not consider the payment
channel. Besides, to evaluate the schemes, the following performance
metrics would be used:

� Gas fee saving ratio: to describe the percentage of gas fee could be
saved by replacing the conventional scheme with the proposed
scheme, when the overall cost for a user is minimized in both
schemes.

� Latency saving ratio: to describe the percentage of transaction confir-
mation latency could be saved by replacing the conventional scheme
with the proposed scheme, when the overall cost for a user is mini-
mized in both schemes.

� Blockchain transaction saving ratio: to describe the percentage of the
number of blockchain transactions could be saved by replacing the
conventional payment channel with the proposed scheme.

Particularly, to approximate the gas costs of blockchain transactions
in both schemes, we implement twoMVPs for both schemes. Based on the
MVPs, we have simulated the function calls to smart contracts via web3.js
to estimate the gas costs of blockchain transactions. Since the gas cost of a
blockchain transaction might fluctuate in a small range, we trigger 30
function calls to each target smart contract method and take the average
gas cost in 30 simulations as the estimate of the gas cost. Here are the
estimated gas costs of transactions to be used in our experiments:

1. In the conventional scheme, the gas cost in a trading transaction is
84,841.

2. In the proposed scheme, the gas costs in payment channel creation
and closure increase linearly with the increase of the number of types
of locked tokens in a payment channel. The related gas costs are
shown in Table 6.
5.2. Experimental cases

As proposed before, the proposed scheme could help save gas fee and
transaction confirmation latency for frequent traders, and at the same
time ease potential Ethereum network congestion caused by large
amounts of trading transactions. Therefore, we consider three types of
use cases:

1. How gas fee saving ratio changes with the number of trading trans-
actions per payment channel in terms of different preferences over gas
fee and transaction confirmation latency, different limitations for gas
fee and transaction confirmation latency, and different gas costs in
payment channel creation and closure for different users.

2. How latency saving ratio changes with the number of trading trans-
actions per payment channel in terms of different preferences over gas
Types Creation Closure

2 266,047 73,936
5 387,892 112,216
10 591,329 231,830
15 794,704 359,374
20 998,020 486,756

https://github.com/dexDev/DEx.top/blob/master/whitepaper/DEx-Whitepaper-Short-Version.pdf
https://github.com/dexDev/DEx.top/blob/master/whitepaper/DEx-Whitepaper-Short-Version.pdf

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
fee and transaction confirmation latency, different limitations for gas
fee and transaction confirmation latency, and different gas costs in
payment channel creation and closure for different users.

3. How blockchain transaction saving ratio changes when the average
number of trading transactions per payment channel changes for the
proposed payment channel based HEX.
5.2.1. How gas fee saving ratio changes
Fig. 10 (a) shows how gas fee saving ratio changes with the number of

trading transactions per payment channel, when users’ preferences over
gas fee and transaction confirmation latency, maximum gas fee, and
maximum transaction confirmation latency change. Here we take gas
costs in payment channel creation and closure as 266,047 and 73,936 as
an example. As shown in Fig. 10 (a), the gas fee saving ratio increases
when the number of tradings per payment channel increases. Particu-
larly, for users whose number of tradings per payment channel is small,
they will spend more gas fee in the proposed scheme than in the con-
ventional scheme (i.e., the saving ratio is negative). This is caused by the
overhead of gas fees in creating and closing a payment channel in the
proposed scheme. But when users do more tradings per payment channel,
the gas fee saving ratio will be larger than 0. Besides, for users with the
same amount of trading transactions per payment channel, the gas fee
saving ratio does not change when they have different preferences over
Fig. 10. Gas fee saving ratio versus number of

14
gas fee and transaction confirmation latency, different maximum gas fee,
or different maximum transaction confirmation latency. This proves the
fairness of our overall cost function with regards to gas fee saving ratio,
which helps different users to obtain the same gas fee saving ratio as long
as they have the same number of trading transactions per payment
channel.

Fig. 10 (b) shows how gas fee saving ratio changes with the number of
trading transactions per payment channel, when gas costs in payment
channel creation and closure increase. In the figure, G1 stands for gas cost
in payment channel creation and G2 stands for gas cost in payment
channel closure. Here we take α¼ 0.5, maximum gas fee¼ 0.0282 Ether,
and maximum transaction confirmation latency ¼ 710 s as an example.
As shown in Fig. 10 (b), the gas fee saving ratio will increase when the
number of tradings per payment channel increases. Particularly, for users
whose number of tradings per payment channel is small, they will spend
more gas fee in the proposed scheme than in the conventional scheme.
This is caused by the overhead of gas fees in creating and closing a
payment channel in the proposed scheme. But, when users do more
tradings per payment channel, the gas fee saving ratio will be greater
than 0. Besides, the higher the summation of the gas costs in payment
channel creation and closure is, the higher the number of trading trans-
actions per payment channel is to compensate for the overhead of gas
fees in payment channel creation and closure. Particularly, for users with
the same amount of trading transactions in the payment channel, the
trading transactions per payment channel.

Fig. 11. Latency saving ratio versus number of trading transactions per payment channel.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
higher the summation of the gas costs in payment channel creation and
closure is, the lower the gas fee saving ratio is.

5.2.2. How latency saving ratio changes
Fig. 11 (a) shows how latency saving ratio changes with the number

of trading transactions per payment channel, when users’ preferences
over gas fee and transaction confirmation latency, maximum gas fee, and
maximum transaction confirmation latency change. Here we take gas
costs in payment channel creation and closure as 266,047 and 73,936 for
an example. As shown in Fig. 11 (a), the latency saving ratio will increase
with the increase of number of tradings per payment channel. Particu-
larly, for users whose number of tradings per payment channel is less
than 2, they will expect longer transaction confirmation latency in the
proposed scheme than in the conventional scheme. This is because there
are at least two blockchain transactions in the proposed scheme due to
payment channel creation and closure. However, as long as users trade
more than twice in the payment channel, the latency saving ratio will be
larger than 0. Besides, for users with the same amount of tradings in the
payment channel, there is only a minor difference in the latency saving
ratio when they have different preferences over gas fee and transaction
confirmation latency, different maximum gas fee, or different maximum
transaction confirmation latency. This proves the fairness of our overall
cost function with regards to latency saving ratio, which helps different
15
users to obtain similar latency saving ratio as long as they have the same
number of trading transactions per payment channel.

Fig. 11 (b) shows how latency saving ratio changes with the number of
trading transactions per payment channel, when gas costs in payment
channel creation and closure increase. In the figure, G1 stands for gas cost
in payment channel creation and G2 stands for gas cost in payment
channel closure. Here we take α¼ 0.5, maximum gas fee¼ 0.0282 Ether,
andmaximum transaction confirmation latency¼ 710 s as an example. As
shown in Fig. 11 (b), the latency saving ratio will increase when the
number of tradings per payment channel increases. Particularly, for users
whose number of tradings per payment channel is less than 2, they will
expect longer transaction confirmation latency in the proposed scheme
than in the conventional scheme. This is because there are at least two
blockchain transactions in the proposed scheme due to payment channel
creation and closure. However, as long as users trademore than twice in a
payment channel, the latency saving ratiowill be larger than0.Besides, for
userswith the same amount of tradings in the payment channel, the higher
the summation of gas costs in payment channel creation and closure is, the
lower the latency saving ratio is, though the difference is quite minor.

5.2.3. How blockchain transaction saving ratio changes
As shown in Fig. 12, the blockchain transaction saving ratio increases

when the average number of tradings per payment channel for all users

Fig. 12. Blockchain transaction saving ratio versus average number of trading
transactions per payment channel.

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
increases in the proposed scheme. Particularly, when the average number
of tradings per payment channel for the proposed scheme is less than 2,
the blockchain transaction saving ratio will be less than 0. This is because
there are at least two blockchain transactions in the proposed scheme due
to payment channel creation and closure. However, as long as users trade
more than twice in average, the more often users choose the proposed
scheme over the conventional scheme, the more onchain transactions
could be saved, which helps ease potential network congestion in
Ethereum caused by trading transactions in HEX.

6. Conclusions and discussions

In this paper, we finished a systematic design of the proposed pay-
ment channel based HEXwhich benefits frequent Ethereum token traders
and alleviates potential Ethereum network congestion. Afterward, we
propose the very first gas-price vs. transaction-confirmation-latency
model to help blockchain transaction issuers to minimize the overall
cost of gas fee and transaction confirmation latency. Based on the pro-
posed gas-price vs. transaction-confirmation-latency function, we quan-
titatively evaluate the performance of our payment-channel based HEX.
Experimental results have been presented to show that our proposed
solution incurs a low overhead while achieving a high efficiency.

While the proposed platform is promising, this paper reveals several
limitations that we intend to address in our future work to refine this
platform:

� Due to the nature of token lock in creating payment channel, mali-
cious HEX users may initiate attacks to HEX by creating a large
number of channels, or creating a large number of cancelled orders.
Therefore, the widely used KYC technique in many token exchanges
or an effective incentive-and-punishment mechanism might be
needed to prevent these attacks.

� Implementation of the proposed system needs to be optimized. As
shown from our experimental results, gas fees in payment channel
creation and closure increase linearly with the number of locked to-
kens’ types. An optimized implementation is required to lower down
gas fees on payment channel creation and closure when the number of
locked tokens’ types is huge.

� More data may be helpful to get more accurate quantitative estimates
of parameters in the gas-price vs. transaction-confirmation-latency
model. Due to high cost in terms of money in setting up Ethereum
full nodes in Amazon Web Services, we are only able to collect
Ethereum transactions for three days for now. If we could afford to
collecting more data in the future, we might be able to compare the
results from data sets in different dates and get more accurate
16
parameter estimates in the gas-price vs. transaction-confirmation-
latency model.

� We focused on the payment-channel based HEX design in Ethereum.
This is because more than 90% of the top 100 cryptocurrencies are
Ethereum based tokens. While, the business logic of our proposed
payment-channel based HEX can be applied to other blockchain
systems which support smart-contract-like functions (e.g., Hyper-
ledger Fabric, EoS). As long as a blockchain system support smart
contract, the deployed smart contract (or chaincode in Hyperledger
Fabric) can serve as a trustful escrow account and verifies the signa-
tures before splitting the deposit and sending different portions to
different accounts.

� We could extend our proposed solution to other blockchain-based
systems, like Bitcoin, BitCash, etc. To achieve this goal, we need to
set up gateway peers as the bridge connecting Ethereum and other
blockchain-based systems, where the gateway works as the
middleman to talk with our proposed payment-channel based HEX
system and other blockchain-based systems. However, a great deal of
security issues need to be addressed when synchronizing two block-
chains. This could be a good research direction for the future work.

� Order matching enginemight be implemented in a decentralized way.
Existing order matching engines are implemented in a centralized
way, which might make the off-chain HEX platform a single point of
failure. For future work, it might be possible to implement the order
matching engine in a decentralized way for further security
improvement Al Breiki et al. [5].

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by Blockchain@UBC, Natural Sciences and
Engineering Research Council of Canada (RGPIN-2019-06348), National
Natural Science Foundation of China (Project No. 61902333), and
Shenzhen Institute of Artificial Intelligence and Robotics for Society
(AIRS).

References

[1] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, URL, http://www.bitc
oin.org/bitcoin.pdf, 2009.

[2] M.A. Khan, K. Salah, Iot security: review, blockchain solutions, and open
challenges, Future Generat. Comput. Syst. 82 (2018) 395–411.

[3] Z. Hong, Z. Wang, W. Cai, V.C. Leung, Connectivity-aware task outsourcing and
scheduling in d2d networks, in: Proc. Of the 26th International Conference on
Computer Communication and Networks (ICCCN), Vancouver, Canada, 2017.

[4] H.R. Hasan, K. Salah, Combating deepfake videos using blockchain and smart
contracts, IEEE Access 7 (2019) 41596–41606.

[5] H. Al Breiki, L. Alqassem, K. Salah, M. Habib ur Rehman, D. Svetinovic,
Decentralized access control for iot data using blockchain and trusted oracles, in:
Proc. of IEEE International Conference on Industrial Internet, Orlando, FL, 2019.

[6] Y. Wu, H. Dai, H. Wang, K.R. Choo, Blockchain-Based Privacy Preservation for 5g-
Enabled Drone Communications, 2020, p. 3164. CoRR abs/2009.03164. URL, htt
ps://arxiv.org/abs/2009.03164. arXiv:2009.

[7] L. Cheng, J. Liu, G. Xu, Z. Zhang, H. Wang, H. Dai, Y. Wu, W. Wang, Sctsc: a
semicentralized traffic signal control mode with attribute-based blockchain in iovs,
IEEE Trans. Comput. Soc. Syst. 6 (2019) 1373–1385.

[8] V. Buterin, A next-generation smart contract and decentralized application
platform, URL, https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[9] W. Cai, Z. Wang, J.B. Ernst, Z. Hong, C. Feng, V.C. Leung, Decentralized
applications: the blockchain-empowered software system, IEEE Access 6 (2018)
53019–53033.

[10] N. �Alvarez Díaz, J. Herrera-Joancomartí, P. Caballero-Gil, Smart contracts based on
blockchain for logistics management, in: Proc. of 1st International Conference on
Internet of Things and Machine Learning, 2017.

[11] A. Back, Hashcash — a denial of service counter-measure, URL, http://www.hash
cash.org/hashcash.pdf, 2002.

[12] J. Chen, X. Xia, D. Lo, J. Grundy, X. Yang, Maintaining Smart Contracts on
Ethereum: Issues, Techniques, and Future Challenges, 2020, 00286 arXiv:2007.

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref2
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref2
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref2
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref3
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref3
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref3
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref4
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref4
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref4
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref5
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref5
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref5
https://arxiv.org/abs/2009.03164
https://arxiv.org/abs/2009.03164
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref7
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref7
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref7
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref7
https://github.com/ethereum/wiki/wiki/White-Paper
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref9
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref9
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref9
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref9
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref10
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref10
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref10
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref10
http://www.hashcash.org/hashcash.pdf
http://www.hashcash.org/hashcash.pdf
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref12
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref12

X. Luo et al. Blockchain: Research and Applications 1 (2020) 100001
[13] C. Decker, R. Wattenhofer, A fast and scalable payment network with bitcoin duplex
micropayment channels, in: Proc. of 17th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, Edmonton, Canada, 2015.

[14] B. Xiao, X. Fan, S. Gao, W. Cai, Edgetoll: a blockchain-based toll collection system
for public sharing of heterogeneous edges, in: Proc. of IEEE International
Conference on Computer Communications Workshops, Paris, France, 2019.

[15] X. Luo, W. Cai, Z. Wang, X. Li, V.C. Leung, A payment channel based hybrid
decentralized ethereum token exchange, in: Proc. of IEEE International Conference
on Blockchain and Cryptocurrency, Seoul, Korea, 2019.

[16] O. Osuntokun, Hardening lightning network, URL, https://diyhpl.us/wiki/transcri
pts/blockchain-protocol-analysis-security-engineering/2018/hardening-lightning/,
2018.

[17] S. Eskandari, S. Moosavi, J. Clark, Sok: Transparent Dishonesty: Front-Running
Attacks on Blockchain, 2019. URL, https://arxiv.org/pdf/1902.05164.pdf.

[18] Q. Dupont, Experiments in Algorithmic Governance: A History and Ethnography of
” the DAO, ” a Failed Decentralized Autonomous Organization, 2017.

[19] L. Luu, D.H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter,
in: Proc. of ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 2016.

[20] Z. Gao, L. Jiang, X. Xia, D. Lo, J. Grundy, Checking smart contracts with structural
code embedding, IEEE Trans. Software Eng. 1 (2020), https://doi.org/10.1109/
TSE.2020.2971482.

[21] J. Chen, X. Xia, D. Lo, J.C. Grundy, X. Luo, T. Chen, DEFECTCHECKER: automated
smart contract defect detection by analyzing EVM bytecode, CoRR abs/
2009.02663. URL, https://arxiv.org/abs/2009.02663, 2020b. arXiv:2009.02663.

[22] S. Kalra, S. Goel, M. Dhawan, S. Sharma, Zeus: analyzing safety of smart contracts,
in: NDSS, 2018.
17
[23] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, K. Salah, A user
authentication scheme of iot devices using blockchain-enabled fog nodes, in: IEEE/
ACS 15th International Conference on Computer Systems and Applications, Aqaba,
Jordan, 2018.

[24] H.R. Hasan, K. Salah, Proof of delivery of digital assets using blockchain and smart
contracts, IEEE Access 6 (2018) 65439–65448.

[25] Ching-Lai Hwang, S.M. Masud, Abu, Multiple Objective Decision Making —

Methods and Applications: A State-Of-The-Art Survey, first ed., Springer-Verlag,
1979.

[26] P.C. Fishburn, Additive utilities with incomplete product sets: application to
priorities and assignments, Oper. Res. 15 (1967) 537–542.

[27] O. Grodzevich, O. Romanko, Normalization and other topics in multi-objective
optimization, in: Proc. of the 1st Fields-MITACS Industrial Problems Workshop,
Toronto, Canada, 2006.

[28] C. Hedrick, Routing information protocol, URL, https://tools.ietf.org/html/rfc1058,
1988.

[29] R.D.D. Veaux, Mixtures of linear regressions, Comput. Stat. Data Anal. 8 (1989)
227–245.

[30] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data
via the em algorithm, J. Roy. Stat. Soc. B 39 (1977) 1–38.

[31] C. Fraley, A.E. Raftery, Model-based clustering, discriminant analysis, and density
estimation, J. Am. Stat. Assoc. 97 (2002) 611–631.

[32] T. Benaglia, D. Chauveau, D. Hunter, D. Young, mixtools: an R package for
analyzing finite mixture models, J. Stat. Software 32 (2009) 1–29.

[33] D. Karlis, E. Xekalaki, Choosing initial values for the EM algorithm for finite
mixtures, Comput. Stat. Data Anal. 41 (2003) 577–590.

[34] G.R. Grimmett, D.R. Stirzaker, Probability and Random Processes, third ed., Oxford
University Press, 2003.

http://refhub.elsevier.com/S2096-7209(20)30001-4/sref13
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref13
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref13
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref14
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref14
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref14
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref15
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref15
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref15
https://diyhpl.us/wiki/transcripts/blockchain-protocol-analysis-security-engineering/2018/hardening-lightning/
https://diyhpl.us/wiki/transcripts/blockchain-protocol-analysis-security-engineering/2018/hardening-lightning/
https://arxiv.org/pdf/1902.05164.pdf
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref18
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref18
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref19
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref19
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref19
https://doi.org/10.1109/TSE.2020.2971482
https://doi.org/10.1109/TSE.2020.2971482
https://arxiv.org/abs/2009.02663
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref22
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref22
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref23
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref23
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref23
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref23
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref24
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref24
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref24
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref25
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref25
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref25
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref26
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref26
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref26
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref27
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref27
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref27
https://tools.ietf.org/html/rfc1058
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref29
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref29
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref29
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref30
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref30
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref30
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref31
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref31
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref31
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref32
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref32
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref32
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref33
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref33
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref33
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref34
http://refhub.elsevier.com/S2096-7209(20)30001-4/sref34

	Application and evaluation of payment channel in hybrid decentralized ethereum token exchange
	1. Introduction
	1.1. State-of-the-art token exchange
	1.2. Comparisons of state-of-the-art token exchange
	1.3. Payment channel

	2. System overview
	2.1. System architecture
	2.1.1. On-chain layer
	2.1.2. Payment channel layer
	2.1.3. Off-chain layer

	2.2. Comparisons with existing solutions
	2.2.1. Working mechanism
	2.2.2. Order execution model

	3. Security analysis
	3.1. Security assumptions
	3.2. Attack vectors
	3.2.1. Attacks toward users
	3.2.2. Attacks toward HEX
	3.2.3. Attacks toward the system

	4. Minimizing overall cost for frequent traders
	4.1. Overall cost modelling
	4.2. Parameter estimation
	4.2.1. Assumptions
	4.2.2. Data collection and pre-processing
	4.2.3. Data modelling
	4.2.4. Results

	4.3. Simulation results

	5. Experiment
	5.1. Experimental setup
	5.1.1. Experimental configuration
	5.1.2. Baseline schemes and performance metrics

	5.2. Experimental cases
	5.2.1. How gas fee saving ratio changes
	5.2.2. How latency saving ratio changes
	5.2.3. How blockchain transaction saving ratio changes

	6. Conclusions and discussions
	Declaration of competing interest
	Acknowledgement
	References

