
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

A Multidimensional Contract Design for Smart
Contract-as-a-Service

Jinghan Sun , Hou-Wan Long , Hong Kang , Zhixuan Fang , Member, IEEE,

Abdulmotaleb El Saddik , Fellow, IEEE, and Wei Cai , Senior Member, IEEE

Abstract—Empowered by blockchain technology, smart con-
tracts have attracted considerable interest from Web3 users
due to their distinct advantages. Nevertheless, it is challenging
to address problems caused by the dramatic expansion of the
Web3 ecosystem. This article introduces the smart contract-as-a-
service (SCaaS) paradigm to mitigate smart contracts’ redundant
deployment via their composability and reusability. Moreover, we
design trust and incentive schemes to ensure project security and
developer engagement in SCaaS. Specifically, we first introduce a
reputation filter by leveraging the authentic on-chain data, aiming
to eliminate high-risk contracts. We then design a contract-
based incentive mechanism to help the foundation attract hetero-
geneous developers with multidimensional private information,
and maximize the foundation’s utility by inducing developers
to undertake projects of differing complexities based on their
ability. We further differentiate between veteran and newcome
developers and examine their influences on foundational strate-
gies. Finally, extensive experimental results demonstrate that
our proposed contracts can efficiently remove high-risk smart
contracts, maximize the foundation’s utility, and ensure that
developers select contracts honestly and participate in the SCaaS
ecosystem actively.

Index Terms—Incentive mechanism (IM), multidimensional
contract, reputation evaluation, smart contract-as-a-service
(SCaaS).

Received 5 March 2024; revised 25 October 2024; accepted 4 November
2024. This work was supported in part by Guangdong Basic and Applied Basic
Research Foundation under Grant 2024A1515012323; in part by the Open
Topics of Key Laboratory of Blockchain Technology and Data Security, The
Ministry of Industry and Information Technology of the People’s Republic
of China; and in part by the CUHK(SZ)-White Matrix Joint Metaverse
Laboratory. (Corresponding author: Wei Cai.)

Jinghan Sun is with The Chinese University of Hong Kong, Shen-
zhen 518172, China, and also with Mohamed Bin Zayed University of
Artificial Intelligence (MBZUAI), Masdar City, UAE (e-mail: Jinghan-
sun@link.cuhk.edu.cn).

Hou-Wan Long is with The Chinese University of Hong Kong, Hong Kong,
China (e-mail: houwanlong@link.cuhk.edu.hk).

Hong Kang and Wei Cai are with The Chinese University of Hong
Kong, Shenzhen 518172, China (e-mail: hongkang1@link.cuhk.edu.cn;
caiwei@cuhk.edu.cn).

Zhixuan Fang is with Tsinghua University, Beijing 100084, China, and
also with Shanghai Qi Zhi Institute, Shanghai 200232, China (e-mail:
zfang@mail.tsinghua.edu.cn).

Abdulmotaleb El Saddik is with Mohamed Bin Zayed University of Artifi-
cial Intelligence (MBZUAI), Masdar City, UAE and also with the University
of Ottawa, Ottawa, ON K1N 6N5, Canada (e-mail: elsaddik@uottawa.ca).

Digital Object Identifier 10.1109/TCSS.2024.3514924

I. INTRODUCTION

B
LOCKCHAIN technology endows smart contracts with

decentralization and immutability, thereby enabling smart

contracts attracting a large number of users and developers to

participate in the Web3 ecosystem currently [1], [2], [3]. How-

ever, the sharp expansion of the ecosystem has caused various

problems that hinder Web3 development. First, the rapid surge

of on-chain smart contracts’ deployment reduces blockchain’s

decentralization. Using Ethereum (ETH) as an example, the

number of on-chain smart contracts has escalated 11 times in

the past year1, thus leading to the size of Ethereum’s full nodes

expanding from 2.0 terabytes in January 2019 to 16.9 terabytes

in January 20242. This excessive data storage imposes a higher

threshold for new nodes’ participation in the blockchain, con-

sequently diminishing the decentralization of the blockchain

[4]. Second, users’ increasingly complex demands and higher

quality expectations for decentralized applications (Dapps) lead

to their elevated development costs. Users now require that

smart contracts not only be more secure but also perform more

efficiently, minimizing vulnerabilities and reducing transaction

costs [5]. Additionally, they expect Dapps to seamlessly inte-

grate with existing Web2 applications, allowing for a smoother

and more interconnected user experience [6]. Furthermore, the

fierce competition in the Web3 market significantly augments

user acquisition costs for Dapps to vie for user engagement

and retention [7]. At the same time, the security risks asso-

ciated with Dapps intensify significantly. From January 2023

to January 2024, the number of unique active wallets (UAE)3

on the Ethereum Virtual Machine (EVM) surged by more

than 5.7 times4, accompanied by the number rise in malicious

wallets. Additionally, the escalation in both the quantity and

complexity of Dapps presents challenges in scrutinizing and

managing smart contracts, thereby jeopardizing the financial

security of Web3 users due to the vulnerabilities inherent in

these contracts [8].

To tackle these challenges, it is necessary to encourage

developers to reuse the existing smart contracts with target

1https://dune.com/sharptraderx/scdot
2https://etherscan.io/chartsync/chainarchive
3A Unique Active Wallet refers to singular crypto wallet address that

interacts with Dapp’s smart contracts.
4https://dune.com/queries/2759476/4591722

2329-924X © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0003-1326-8225
https://orcid.org/0009-0008-4246-3069
https://orcid.org/0009-0001-9713-8211
https://orcid.org/0000-0001-7979-4269
https://orcid.org/0000-0002-7690-8547
https://orcid.org/0000-0002-4658-0034
mailto:Jinghansun@link.cuhk.edu.cn
mailto:houwanlong@link.cuhk.edu.hk
mailto:hongkang1@link.cuhk.edu.cn
mailto:caiwei@cuhk.edu.cn
mailto:zfang@mail.tsinghua.edu.cn
mailto:elsaddik@uottawa.ca
https://dune.com/sharptraderx/scdot
https://etherscan.io/chartsync/chainarchive
https://dune.com/queries/2759476/4591722

2 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

functionalities during Dapps development. This approach can

mitigate the storage burden by avoiding on-chain smart con-

tracts’ duplication, save marginal costs in both development

and user acquisition, and bolster project security by reusing

mature and trustworthy smart contract modules. However, the

situation of reusing smart contracts is not that optimistic. Over

60% of smart contracts have never been executed, and 90%

of smart contracts have been executed less than ten times [9].

This issue is partly due to the potential transfer of security

vulnerabilities from the existing projects to new projects [10],

and the inadequacy of effective incentive mechanisms. Existing

public chains and platforms mainly encourage developers to

reuse smart contracts through two indirect incentives: simplify-

ing the reuse process and improving developers’ abilities. Yet,

no public chains or platforms offer direct incentives for smart

contracts’ reuse, such as distributing bonuses, highlighting a gap

in encouraging smart contract reuse effectively.

On the other hand, as a far-reaching official organization that

encourages developers’ engagement through direct incentive5,

the blockchain foundation has no encouragement for reusing

smart contracts during this process. However, based on the ad-

vantages of reusing smart contracts, foundations have sufficient

motivation to promote this practice. Additionally, the project

proposals are screened by foundation staff and the selection

criteria are ambiguous, which is overly centralized and intro-

duces potential bias and opaque competition. This approach

may deter developer involvement in ecosystem development

[11], [12]. Moreover, it is challenging for the foundation to

design the incentive mechanism. Since the escalating com-

plexity of Dapps leads to increased development costs, it is

crucial to offer rewards that match the complexity of projects

to encourage developers to tackle sophisticated tasks that meet

market demands. However, developers with lower ability are not

capable of handling higher complexity in smart contracts [13].

Concurrently, developers’ private information, i.e., their abili-

ties and the reputation of their projects, remains undisclosed.

Developers may tend to hide their information to gain higher

profits, making it challenging to induce them to disclose their

private information during the incentive process.

To help the foundation overcome the aforementioned short-

ages, this article introduces a three-stage system, as depicted

in Fig. 1. We first propose the Smart contract-as-a-service

(SCaaS) paradigm to mitigate the smart contract’s redundant

deployment. Within this service-oriented computing model, de-

velopers can use smart contracts as computing components to

achieve smart contracts’ reusability and composability, stream-

lining Dapp development by assembling existing contracts such

as “LEGO bricks”. The SCaaS ecosystem comprises two key

roles: 1) a public blockchain foundation that puts forward

project requirements, and 2) a group of developers willing

5Using the BNB Chain Builder Grants and the ETH Ecosystem Support
Project as illustrations, these initiatives define their focus areas and encourage
developers to submit proposals that align with them. After evaluating these
proposals, the organizations reward winners with native tokens, stablecoins,
or fiat currency, supporting further development.

Fig. 1. Framework of the system.

to develop these projects. Specifically, the public blockchain

foundation declares its desired project types, and developers

submit proposals about what existing smart contracts they plan

to reuse by SCaaS, adhering to the foundation’s demands. These

proposals will be screened in the next stage to decide developers

that can engage in the incentive stage.

In the next stage, we introduce a “reputation filter” to replace

the centralized proposal screening process run by the founda-

tion staff. Inspired by the research [14], [15], which indicate

the significant impact of project reputation on user behavior, the

reputation filter takes the reputation of reused smart contracts

as a key screening criterion to deter malicious developers from

reusing unsafe smart contracts. By leveraging the traceability of

on-chain transactions, the reputation ratings are evaluated by

using transaction volume as the calculation metric. Contracts

with low reputations are considered “high-risk” or “malicious”

and are excluded, while those passing the filter are considered

trustworthy, eligible to participate in the incentive stage, and

entitled to appropriate rewards.

In the final stage, to attract developers using SCaaS to de-

ploy smart contracts according to their proposal, we help the

foundation design a contract-theoretic incentive mechanism.

Contract theory is particularly relevant in a monopolized mar-

ket setting, where there is an employer (i.e., the foundation)

and a group of employees (i.e., developers). The foundation,

unaware of developers’ private information, can overcome this

information asymmetry by presenting a list of contracts tai-

lored for heterogeneous developers, which is a core feature

of contract theory [16], [17]. While the foundation does not

know developers’ private information, he can overcome the

information asymmetry by providing a contracts list for hetero-

geneous developers based on contract theory. These contracts

offer projects of varying complexity tailored to developers’

different levels of abilities and ensure that developers honestly

select the contract specifically designed for them based on their

private information. This approach aims to provide feasible pay-

offs for developers while maximizing the foundation’s profit.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 3

Specifically, we aim to achieve the following targets at the

incentive stage: 1) Identification of the conditions that motivate

developers to participate in projects. Most existing literature

assumes developers’ eagerness to engage, but this idealistic

assumption overlooks developer involvement’s cost. It’s nec-

essary to design the incentive mechanism for a more realistic

scenario. 2) Incentive mechanism design for multidimensional

private information. While most studies consider only one-

dimensional private information, multiple factors influence the

benefits for participants. Both developers’ ability and projects’

reputation impact the foundation’s revenue, thereby requiring

simultaneous consideration of these factors in the incentive

stage. 3) Analysis of the effects of developer population vari-

ability on foundation strategy. The literature usually assumes a

fixed amount of developers during decision-making. In this arti-

cle, by introducing the “reputation filter”, the reputation thresh-

old alters the number of developers eligible for the incentive

stage, thus complicating the identification of the foundation’s

optimal strategy. 4) Evaluation of newcome and veteran de-

velopers’ influence on contract formulation. Prior collaboration

experience among developers and the foundation influences the

foundation’s understanding of developers’ private information.

It’s necessary to analyze how this varying private information

understanding influences the foundation’s contract design, as

well as its strategies employed to retain veteran developers

while attracting new ones.

Our major contributions are summarized as follows:

1) Interaction Characterization with Multidimensional In-

formation in SCaaS Market. We build the model that cap-

tures the foundation and developers’ interactions based

on realistic scenarios involving information asymmetry

within the SCaaS market. To the best of our knowledge,

we are the first to propose the SCaaS paradigm and con-

duct the related economic analysis.

2) Reputation Filter Design Based on the On-chain Data.

We propose a reputation filter to ensure developers reuse

trustworthy smart contracts. Unlike most existing work,

this approach leverages authentic on-chain data as a crite-

rion, thus ensuring the reused smart contract’s reliability

and escalating the cost of malicious behavior.

3) Incentive Mechanism Design Under Multidimensional

Private Information. We design incentive contracts for

developers based on multidimensional private infor-

mation by utilizing contract theory. We analyze the

optimal contract design strategy and investigate the im-

pact of newcome and veteran developers on the optimal

contracts.

4) Performance Evaluation of the Incentive Contract. We

corroborate the effectiveness of our proposed incentive

mechanism through extensive simulations. Experimental

results show that the foundation should set an optimal

reputation threshold to both ensure project reliability and

foster wider developer engagement. Our optimal con-

tracts stimulate developers with higher abilities to engage

in the SCaaS ecosystem, promoting honest contract selec-

tion and the undertaking of more complex projects.

II. RELATED WORK

A. As-a-Service Paradigm

The “as-a-Service” paradigm, a cornerstone of cloud comput-

ing, can be defined as a pay-as-you-go model that offers users

web-based services utilizing cloud computing resources [18],

[19], [20], [21]. This model encompasses widely recognized

services such as Software-as-a-Service (SaaS) [18], Platform-

as-a-Service (PaaS) [19] and, Infrastructure-as-a-Service (IaaS)

[20], [21]. Beyond these traditional cloud computing services,

Blockchain-as-a-Service (BaaS) merges the cloud computing

service and blockchain technology, aiming to facilitate the

construction of new blockchains [22]. However, BaaS targets

building new blockchains, rather than providing smart con-

tract services. Expanding on this model, several new frame-

works have emerged to integrate blockchain with other critical

systems. Notable examples include the blockchain-enhanced

Sensor-as-a-Service (SEaaS) [23], which enhances IoT systems

security, the Integrated Fuzzy Decision Tree based Blockchain

Federated Safety-as-a-Service for IIoT (IFDT-BCF-SAS-IIOT)

[24], which focuses on enhancing both IoT environment secu-

rity and decision accuracy, the Trusted Computing-as-a-Service

(TCaaS) [25], which strengthens data confidentiality. In paral-

lel, smart contracts—automated codes stored on a blockchain—

have gained considerable attention due to their immutable

nature, providing decentralized services without requiring a

trusted external authority. The literature has considered its ben-

efits and use of smart contracts to provide services in different

areas, such as blockchain-driven Metaverse (e.g., Duan et al.

[26]), federated learning (e.g., Fan et al. [27]), and cloud gaming

(e.g., Fan et al. [28]), etc. To the best of our knowledge, our

article is the first to propose the novel SCaaS paradigm that

utilizes smart contracts as a computing component to provide

service based on reusing smart contracts.

B. Incentive Scheme in Smart Contracts Reuse

Current practices and literature support developers in reusing

smart contracts through two approaches. On the one hand, they

focus on reducing the barriers to smart contract reuse. Initiatives

such as OpenZeppelin6 and Gnosis V27 provide open-source

smart contract repositories on GitHub, offering developers

standardized, audited, and reusable smart contracts. Part et al.

[29] and Khan et al. [30] proposed a mechanism to standardize

the management and sharing of smart contracts, enhancing their

reusability. Moreover, development tools such as Truffle8 con-

vert the complex raw requests made to the ETH Network into

contract abstractions, streamlining the process of smart contract

reuse. Shen et al. [31] proposed a visualization approach to

generate a visual solidity code to make it easier to reuse

smart contracts. Hsian et al. [32] introduced a graphical editor

designed to standardize protocols, reducing the complexity of

migrating contracts across different platforms and blockchains.

6https://github.com/OpenZeppelin/openzeppelin-contracts
7https://github.com/gnosis/gp-v2-contracts
8https://trufflesuite.com/docs/truffle/how-to/contracts

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/gnosis/gp-v2-contracts
https://trufflesuite.com/docs/truffle/how-to/contracts

4 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE I
MOSTLY USED SMART CONTRACTS BASED ON EVM BLOCKCHAIN

Rank Contract Address Project Name Transactions Amount

1 0x00000000006c3852cbef3e08e8df289169ede581 OpenSea 12629208
2 0x68b3465833fb72a70ecdf485e0e4c7bd8665fc45 UniSwap V3 10852857
3 0xef1c6e67703c7bd7107eed8303fbe6ec2554bf6b Uniswap Old Version 10493008
4 0x7a250d5630b4cf539739df2c5dacb4c659f2488d Uniswap Deployer 10024286
...

999 0xd54f502e184b6b739d7d27a6410a67dc462d69c8 dYdX: Gps Statement Verifier Governor 20738
1000 0x4dd942baa75810a3c1e876e79d5cd35e09c97a76 Dash 2 Trade 20713

...
2965 0xc068efbf9009dcf06a5783f8bb8cac66311dfab5 DrunkenVikingsTribe 6000

Meanwhile, there’s an emphasis on enhancing developers’

skills in smart contract reuse. Developers are encouraged to

participate in discussions and seek advice on smart contract

development, including aspects of reusability, on platforms

such as Ethereum Stack Exchange9 and Solidity Forum10,

enabling developers to reuse smart contracts more easily.

C. Reputation Evaluation Scheme

The reputation model, extensively utilized in P2P (peer-to-

peer) networks and e-commerce scenarios [33], reflects the

perspectives and evaluations between the task publisher and the

developers, or between developers themselves, in the crowd-

sourcing process. Reputation value is primarily gauged through

trust rating [33], [34]. In terms of trust rating calculation,

the existing literature primarily classifies trust into direct trust

and indirect trust [35], [36], [37]. Direct trust originates from

personal experience, referring to the trust the task publisher

establishes from the target developer based on their interactions

and experiences. Indirect trust arises from third-party recom-

mendations, indicating the trust other developers or users form

from the target developer. Parhizka et al. [35] and Dai et al.

[37] calculated trust ratings by using the binary rating method,

where negative ratings signify distrust and positive ones convey

trust. Su et al. [38] utilized multiscale rating to calculate diverse

degrees of trust. Subsequently, the total trust rating, indicative

of the overall reputation, is determined by a sum of both direct

and indirect trust, considering their respective weight factors.

III. REPUTATION FILTER

A. Aim of the Filter

To bolster the security of smart contracts within the SCaaS

paradigm, we first verify the reliability of the smart contracts

intended for reuse. A reputation filter is thus established before

the incentive phase, aiming at eliminating risky smart contracts.

This process involves assessing the smart contract’s risk by

calculating the reputation value of the existing smart contracts

it reuses. Nonetheless, conventional methods for calculating

reputation prove inadequate for Dapps. In the SCaaS sce-

nario, direct trust represents the foundation’s trust rating against

9https://ethereum.stackexchange.com/
10https://forum.soliditylang.org/

existing smart contracts that developers intend to reuse, and this

is also how public blockchain selects project proposals in real-

ity. Yet, this approach is highly centralized, granting the foun-

dation excessive control over proposal selection. As a result, we

do not consider direct trust in our system. Conversely, indirect

trust represents Web3 users’ trust ratings placed in the reused

smart contracts of the new projects. However, this method is

more vulnerable to Sybil attacks in decentralized networks,

where malicious accounts can more effortlessly endorse risky

smart contracts, leading to manipulated outcomes. Hence, we

introduce the following approach for calculating indirect trust.

B. Reputation Filter Model

Compared with centralized networks, decentralized networks

have a unique characteristic: every on-chain transaction requires

a gas fee. Consequently, if the volume of on-chain transactions

for smart contracts serves as a criterion for calculating indirect

trust, then engaging in malicious behavior would require incur-

ring gas fees to manipulate the indirect trust ratings. Consider-

ing that the ETH foundation builder grants cap at 30 000 USDs,

with the evaluation that the average gas fee per transaction

on the ETH last year was around 5 USDs11, we include all

smart contracts exceeding 6000 transactions in our reputation

repository, shown in Table I, and deem them relatively trustwor-

thy. In this framework, for a malicious account to get a risky

smart contract listed in the repository, it would need to spend a

minimum of 30 000 USDs on gas fees, thereby making the cost

of malicious activities surpass the maximum reward available

for development participation. In this table, we observe that

OpenSea ranks as the most utilized in the table12, with Drunk-

enVikingTribe being the least. Therefore, the reputation value

of new smart contracts generated through the SCaaS paradigm

can be defined as

τ(i,n) =

∑L

l=1 τl
L

,L 6= 0 (1)

where τ(i,n) denotes the reputation value of developer n of

type-i, as outlined in Section IV-B, and τl signifies the repu-

tation value of the existing smart contract proposed for reuse

11https://dune.com/lucadavid049/gas-station-20
12Actually, USDT records the highest volume of on-chain transactions, but

as it is a stablecoin not satisfying the specific demands of project development,
we have opted to exclude it.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

https://ethereum.stackexchange.com/
https://forum.soliditylang.org/
https://dune.com/lucadavid049/gas-station-20

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 5

by the developer, with L representing the total amount of smart

contracts being reused (τ(i,n) equals zero when a developer

opts not to reuse any smart contract). To establish the value

of τl, we assign the transaction count of the highest-ranked

smart contract a baseline value of 1. This method facilitates

the calculation of the reputation value for each reused smart

contract in the library (represented as τl) by dividing its transac-

tion volume by that of the benchmark contract. Consequently,

we have τ(i,n) ∈ [0, 1], and only those with τ(i,n) ≥ τmin are

permitted through the reputation filter, where τmin is the rep-

utation threshold for a submitted smart contract to progress to

the subsequent incentive stage.

Unlike most existing work which develops a third-party plat-

form to compute new projects’ reputation value or relies on

the foundation staff, we leverage the authentic on-chain data as

the formulation metrics to accomplish the same objective more

efficiently and reliably.

IV. SYSTEM MODEL

A. Use Case Example

The complexity of Dapp smart contracts development is inti-

mately related to their functionalities. Taking DeFi (decentral-

ized finance) projects as an example, the market presents a range

from Dapps that only facilitate basic swap operations to those

offering sophisticated features such as lending and leveraging.

We classify the market’s trending DeFi projects according to

different complexity tiers, each with distinct characteristics.

1) Low Complexity DeFi: These are fundamental token

swap and exchange platforms, such as Uniswap V1 and

MetaMask, dedicated solely to token exchanges.

2) Medium Complexity DeFi: Lending and borrowing plat-

forms, such as Aave, require more complex smart con-

tracts to manage collateral and interest rates. Another

project named “blend” extends support to both ERC20

token and NFT collaterals, necessitating the development

of more complex smart contracts for integration of DeFi

and NFT.

3) High Complexity DeFi: This tier includes advanced de-

centralized exchanges such as dydx, which not only facil-

itate token exchanges and lending but also extend services

to leverage and derivatives.

Projects with lower complexity have lower development cost

and are more user-friendly, making them suitable for Web3

market beginners, while high complexity projects demand more

development expense but cater to the demands of professional

users. To meet users’ diverse trading demands, foundations

should incentivize developers to develop DeFi projects span-

ning these different complexity levels. Inspired by [39], which

shows that developers with greater skills can handle more com-

plex tasks due to their growing experience, and [40], which

demonstrates that higher rewards motivate developers to tackle

more complex projects, we assume developers with higher abil-

ity are capable of handling higher complexity in smart contracts

and receive more rewards accordingly. The purpose of this

section is to help the blockchain foundation design a series

of contracts. Within these contracts, developers, categorized

by varying ability levels (denoted as θ) select smart contract

development tasks of corresponding complexity (denoted as a).

Furthermore, under the premise of ensuring the foundation’s

revenue, these developers will receive rewards that align with

the complexity of their respective projects.

B. Developer’s Type

We consider that the developers are within a monopolistic

marketplace of the SCaaS rewarding ecosystem, where there

is only one public blockchain foundation13. We assume that a

population of N developers submitting proposals to the repu-

tation filter. Developers are characterized by two-dimensional

information: the development ability θ and the reputation value

τ of their smart contracts. Within this framework, a developer

n (n ∈ {1, N}) with Γi , (θi, τ(i,n)) is defined as a type-i
developer. We assume that all developers fall into to a set I =

{1, . . . , I}, consisting of I types. These types are arranged in

nondecreasing order of ability θ, i.e., θ1 ≤ θ2 ≤ · · · ≤ θI . Each

type i ∈ I comprises Ni developers, and the total number of

developers is given by
∑

i∈I Ni =N . And τ(i,n) represents the

reputation value of the smart contract associated with developer

n, belonging to type-i, and τ(i,n) is independent of the ability θ.

For convenience presentation, we denote τ(i,n) as the reputation

value of a type-i developer.

We posit that during smart contract development, all devel-

opers do not change their type. These developers can be further

divided into either newcomers or veterans, depending on their

prior collaboration experience with the foundation. Veteran

developers, having past cooperation with the foundation, are

known by the foundation for their private information regard-

ing the developer type. Consequently, the foundation’s contract

construction for them will be under complete information. In

contrast, the foundation lacks prior engagement with new devel-

opers, leaving it without knowledge of their private information,

and thus involving an incomplete information scenario in con-

tract construction. Nevertheless, the foundation might possess

insights into the distribution of developer types based on the

market investigation. We propose to design different contracts

for veteran and newcome developers, based on symmetric and

asymmetric information respectively, to optimize the founda-

tion’s profit.

The notations in this article are summarized in Table II.

C. Contract Formulation

Contract theory is a highly utilized theoretical framework

investigating how employers design contracts for employees in

scenarios with private information asymmetry. In line with this,

we introduce a contract-based approach aimed at tackling the

specific challenge of designing incentive mechanisms involving

the foundation and developers.

13According to public blockchains with the largest user and developer base,
such as ETH, Polygon, Binance Smart Chain, and Avalanche, each has only
one official foundation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE II
SUMMARY OF NOTATIONS

Symbols Descriptions

τ(i,n), τl, τmin The reputation value of developer n’s smart contract, the reused smart contract l, and filter’s threshold, respectively

L The number of smart contracts that developer i reuses
θ The ability of developer
a The project complexity
n The individual developer
N The number of developers submitting proposals

N†(τmin) The number of developers passing the filter
Ni The number of developers that belongs to type-i
Γ The type of developer

I, I† The total number of types of developers who submit proposals and pass the reputation filter, respectively

I, I† The set of types of developers who submit proposals and pass the reputation filter, respectively
L The contract list
Ω The set of contract items
ωi The contract item i

R(ai) The reward for type-i developer
gbase The basic gas fee of project development
c The task cost coefficient
α The satisfaction level of foundation
ψ The quality coefficient of smart contract
λi The proportion of type-i developers

U i
D
(θi, τ(i,n), ωi) The utility of type-i developer

Un
F
(τmin, ωi), U

i
F
(τmin, ωi) The payoff of foundation against developer n and all type-i developers, respectively

UC
F
(τmin,Ω), UI

F
(τmin,Ω) The total payoff of foundation in the scenario involving veteran developers and newcome developers, respectively

A contract list L= (τmin,Ω) is devised by the foundation

to stimulate developers to participate in the SCaaS rewarding

system. The contract list describes the relationship between

reputation value, smart contracts’ complexity, and the corre-

sponding rewards. Within the list, the minimum reputation

value τmin is a standard requirement for all developer types,

acting as a benchmark for the reputation filter. This implies that

only developers with a reputation value τ(i,n) ≥ τmin fulfill the

foundation’s criteria and are eligible for rewards, while those

with τ(i,n) < τmin are not qualified for signing the contract with

the foundation. Besides, the contract list encompasses I con-

tract items Ω= {ωi}i∈I , each tailored to a specific developer

type. Each contract item ωi , (ai, R(ai)) defines the relation-

ship between the type-i developer’s project complexity and the

corresponding reward. Here, ai represents the required project

complexity for each type-i developer in the SCaaS, and R(ai)
indicates the reward, usually the public blockchain’s native

token, granted to a type-i developer who passes the reputation

filter and completes project development. Developers will be

out of participation if their payoff, as defined in Section IV-C

1), turns out to be negative.

The contract design is illustrated in Fig. 2. The contract is

feasible and optimized if and only if developers choose the

contract item which is devised for them deliberately. This means

the type-i developer can get the maximized profit only when he

chooses the contract item ωi, completes a smart contract with a

project complexity of ai, and receives a corresponding reward

of R(ai). Specifically, we can ensure the contract’s feasibil-

ity and optimality by individual rationality (IR) and incentive

compatibility (IC) constrain, which we will introduce further in

Section V.

1) Payoff Function of Developers: For the type-i developer

who signs the contract ωi, their payoff during the incentive

Fig. 2. Contract design.

stage can be defined as the difference between the foundation’s

reward R(ai) and the cost incurred in smart contract develop-

ment. Therefore, type-i developer’s payoff can be defined as

U i
D(θi, τ(i,n), ωi) = 1τ(i,n)≥τmin

R(ai)− gbase
1

θi
cai (2)

where

1τ(i,n)≥τmin
=

{

1, if τ(i,n) ≥ τmin

0, Otherwise

Here, c represents the task cost coefficient. Inspired by [33],

[41], we assume that each smart contract development incurs a

base gas fee, gbase, essential for on-chain deployment. And ai is

the project’s corresponding complexity, which is proportional

to the cost. This cost bears an inverse relationship with the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 7

developer’s ability level θi, implying that greater developer

ability typically results in reduced costs [13]. And 1τ(i,n)≥τmin

represents only developers with τ(i,n) ≥ τmin are qualified for

the smart contracts development.

2) Payoff Function of Foundation: Under a predetermined

minimum reputation value, the foundation’s payoff is calculated

by subtracting the payment made to developers from the income

gained from the project. First, let’s consider the foundation’s

payoff Un
F obtained from an individual developer n, who be-

longs to type i and signs the contract ωi. The payoff function

can be defined as follows:

Un
F (τmin, ωi) = 1τ(i,n)≥τmin

[α ln(1 + θiaiψ + τmin)−R(ai)]
(3)

where the indicator function 1τ(i,n)≥τmin
signifies that the devel-

oper with reputation value τ(i,n) < τmin will be excluded from

the incentive stage. Consequently, these developers will neither

receive rewards nor contribute to the foundation’s profits. α > 0

is the foundation’s equivalent profit coefficient, reflecting the

extent of satisfaction or benefit the foundation gains from a

developer’s work. Assume that all the developers provide an

identical satisfaction coefficient α, with the foundation’s profit

proportionally increasing as α rises. The smart contract quality

coefficient ψ represents the quality of the smart contract. Note

that developers with higher ability θi can build higher quality

projects for the foundation, and projects with higher complexity

ai can attract more users by advanced functionalities, thereby

enhancing the foundation’s profit. τmin is the threshold of the

reputation filter that is set by the foundation. Setting a higher

τmin threshold signals greater trustworthiness to users and can

lead to increased market profits for the foundation.

We assume that τ(i,n) follows a normal distribution, i.e

τ(i,n) ∼ U(µ, σ2). We use the set I† = {i|τ(i,n) ≥ τmin} to de-

note the set of developers whose reputation value meets or

exceeds τmin, so the total developer types can be I† = |I†|. We

then reindex these developer types as {iI†}i∈{1,...,I†}, basing

the index solely on the ability θi rather than τ(i,n), since the

reputation value does not affect developer’s payoff as long as

it’s no less than τmin. Given that τ(i,n) is independent of θi,
for simplicity, we continue to refer to type-i as type-iI† . Fur-

thermore, the population of developers eligible for the incentive

stage is contingent on the threshold τmin. Hence, this population

can be defined as a function of the minimum reputation value,

i.e., N†(τmin).
We denote the probability that a developer belongs to type i

as λi, and
∑I†

i=1 λi = 1. Then we can express the foundation’s

payoff U i
F against all the type-i developers as

U i
F (τmin, ωi)

=N†(τmin)λi[α ln(1 + θiaiψ + τmin)−R(ai)]. (4)

Subsequently, we can obtain the foundation’s total payoff

UF (τmin,Ω)

=N†(τmin)

I†

∑

i=1

λi[α ln(1 + θiaiψ + τmin)−R(ai)]. (5)

In the following, we will categorize developers into two

groups: veteran developers and newcome developers, in align-

ment with realistic scenarios. Subsequently, we will derive op-

timal strategies tailored to each group’s distinct characteristics,

utilizing contract theory as the guiding framework.

V. MULTIDIMENSIONAL CONTRACT DESIGN

In this section, we analyze the foundation’s optimal incentive

mechanism for both veteran and newcome developers. For each

category, we will first ensure the feasibility of the contract,

which means developers can get the maximum payoff when

they select the contract deliberately designed for their type.

Subsequently, we will make sure the contract is optimal for the

foundation which can bring the foundation the highest payoff

compared with other feasible contracts.

A. Contract Design for Veteran Developer

The contract design against the veteran developer typically

involves scenarios with complete information. Owing to their

past interactions or collaborations with the foundation, the foun-

dation is well-informed about each veteran developer’s specific

type and the precise number of developers within each type.

This condition enables the foundation to tailor contracts to each

developer’s specific type and ensure that developers select the

contract accordingly. However, in practical terms, a key premise

for developers’ involvement in smart contract development is

the assurance of nonnegative payoffs. Consequently, in this

context, it is essential to apply individual rationality (IR) to

guarantee the feasibility of the contract.

Definition 1 [individual rationality (IR)]: Each type-i devel-

opers gets the nonnegative payoff by choosing the contract item

ωi which is specifically designed for their type, i.e.,

U i
D(θi, τ(i,n), ωi)≥ 0, ∀i ∈ I†. (6)

We denote the foundation’s total payoff in this scenario as

UC
F (τmin,Ω). Thus, for the veteran developers, we can formu-

late the optimal multidimensional contract L∗
C = (τmin,Ω) by

solving

max
τmin,Ω

UC
F (τmin,Ω)

s.t. U i
D(θi, τ(i,n), ωi)≥ 0, ∀i ∈ I†. (7)

To address the contract design problem (16), we will first

calculate the foundation’s optimal rewardR∗
i (ai) in response to

any given project complexity ai. After that, this optimal reward

R∗
i (ai) will be substituted into the foundation’s utility function,

and we will deduce both the optimal project complexity ai and

the optimal minimum reputation value τmin.

Lemma 1: For any given project complexity ai, let the reward

for type-i developers be

R∗
i (ai) = gbasec

1

θi
ai, ∀i ∈ I† (8)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

then

1.1) R∗(a) satisfy IR constraint

1.2) Foundation’s utility is maximized if the reward for

type-i developers are identical to R∗(ai)
Proof: Please refer to the Appendix.

Lemma 1 demonstrates that under a complete information

scenario, type-i developers are compensated by the foundation

with a reward equal to their development costs, which means

the foundation will design the contract that satisfies the IR

constraint and offers developers zero payoff.

By substituting (8) into maxτmin,Ω U
C
F (τmin,Ω), the objec-

tive function (16) is equivalent to

max
τmin,ai

N†(τmin)
I†

∑

i=1

λi

[

α ln(1 + θiaiψ+ τmin)− gbasec
1

θi
ai

]

.

(9)

From this point, we can derive the optimal project complexity

for each type that maximizes the foundation’s payoff. First, find

the first derivative of ai for UC
F (τmin,Ω) in (10)

dUC
F (τmin,Ω)

dai

=N†(τmin)λi

(

αθiψ

1 + θiaiψ + τmin
− gbasec

1

θi

)

. (10)

Next, find the second derivative of ai for UC
F (τmin,Ω).

d2UC
F (τmin,Ω)

da2
i

=
−N†(τmin)λiαθ

2
iψ

2

(1 + θiaiψ + τmin)2
(11)

It can be seen that (d2UC
F (τmin,Ω)/da

2
i)< 0, indicating that

UC
F (τmin,Ω) is a concave function. Since the sum of concave

functions remains concave, the final problem can be calculated

as a concave optimization problem. We can then obtain the

optimal project complexity a∗i for type-i developer, which is

a∗i =
αθi
gbasec

− 1 + τmin

θiψ
. (12)

After substituting a∗i back, the optimization problem is sim-

plified as

max
τmin

UC
F (τmin), ∀i ∈ I†. (13)

Lemma 2: DefineKC = (
∑I

i=1 λi[α ln(αψθ2
i/gbasec)−α+

(gbasec/θ
2
iψ)]/

∑I

i=1(λigbasec/θ
2
iψ)). Based on the contract

designed for veteran developers, UC
F (τmin) is a concave func-

tion iff τmin ∈ (τ1, τ2) ∩ (0, 1) where τ1 and τ2 are the roots of

(14). Otherwise it is an convex function of τmin

τ 2
min + (KC − µ)τmin − (KCµ+ 2σ2). (14)

Proof: Please refer to the appendix.

By Lemma 2, we can obtain the maxima of UC
F (τmin) within

its domain. The point is to divide the domain of UC
F (τmin)

into concave and convex segments respectfully. In concave

segments, we can find the local maxima by using convex opti-

mization tools, e.g., CVX. In convex segments, we then evaluate

the function at the endpoints, as local maxima cannot occur in

these regions. We denote the optimal strategy of τmin as τ∗min

where τ∗min = argmaxτmin
UC
F (τmin).

Theorem 1: In the complete information scenario, to max-

imize utility, the foundation will set τmin = τ∗min and provide

contract item ω∗
i to developer of type-i, where

ω∗
i =

(

αθi
gbasec

− 1 + τ∗min

θiψ
, α− gbasec(1 + τ∗min)

θ2
iψ

)

.

Proof: Please refer to the appendix.

Theorem 1 shows that the foundation provides optimal con-

tract item ω∗
i for each developer type and set minimum rep-

utation value equal to τ∗min to maximize its profit. But only

those developers with reputation value larger than τ∗min can get

positive payoff.

B. Contract Design for Newcome Developer

The contract design for newcome developers usually entails

scenarios with incomplete information. The foundation lacks

prior collaboration with these developers, so it does not have

detailed information about the specific type of each individual

newcomer. Nonetheless, the foundation holds a broad under-

standing of the different types of developers and their respective

proportions (λi, ∀i ∈ I†) in the market. When faced with such

incomplete information, the foundation can design a contract

that adheres to incentive compatibility (IC) constraints, thereby

ensuring that developers of each category can accept specific

contract items.

Definition 2 (IC): Each type-i developer can achieve their

payoff maximization by choosing the contract item ωi specifi-

cally designed for their type, compared with any other contract

ωj (i 6= j), i.e.

U i
D(θi, τ(i,n), ωi)≥ U i

D(θi, τ(i,n), ωj), ∀i, j ∈ I†, i 6= j.
(15)

We denote the foundation’s total payoff in this scenario as

U I
F (τmin,Ω). Thus, for the newcome developers, we can ob-

tain the optimal multidimensional contract L∗
I = (τmin,Ω) by

solving

max
τmin,Ω

U I
F (τmin,Ω)

s.t. U i
D(θi, τ(i,n), ωi)≥ 0, ∀i ∈ I†

U i
D(θi, τ(i,n), ωi)≥ U i

D(θi, τ(i,n), ωj), ∀i, j ∈ I†, i 6= j.
(16)

The strategy of the optimal contract design can be obtained

from the solution of (16). We first reduce the IR and IC con-

straints to deduce the Lemma 3 and Lemma 4.

Lemma 3: In the scenario of incomplete information, if the

feasibility of the contract L∗
I = (τmin,Ω) holds, the contract

item for any newcome developer type in I† holds the following

condition based on the IR constraints:

R(a1)− gbase
1

θ1

ca1 ≥ 0.

Proof: Please refer to the appendix.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 9

It shows that even the developers with the lowest ability

θ1 can receive nonnegative payoff if they choose

contract item ω1 which is deliberately designed for them.

Furthermore, from U i
D(θi, τ(i,n), ωi)> U i

D(θi, τ(i,n), ω1)≥ 0,
∀i ∈ I†, i 6= 1, we can have that for any types of developers

can receive a nonnegative payoff when they select the contract

ω1. And it is notable that developers whose types are not

within I†, e.g., τ(i,n) < τmin, will not be provided with any

contract item, so they will not receive any development task

or reward, i.e., R(ai) = ai = 0, ∀i /∈ I†.

Lemma 4: In the scenario involved newcome developers, the

feasible contracts L∗
I = (τmin,Ω) holds the following condi-

tions based on the IC constraints.

4.1) 0 ≤R(a1)≤ · · · ≤R(aI†)
4.2) 0 ≤ a1 ≤ · · · ≤ aI†

4.3) R(ai)− gbase(c/θi)ai ≥R(ai+1)− gbase(c/θi)ai+1,
∀i ∈ {1, . . . , I† − 1}

4.4) R(ai)− gbase(c/θi)ai ≥R(ai−1)− gbase(c/θi)ai−1,
∀i ∈ {2, . . . , I†}.

Proof: Please refer to the appendix.

Constraints 4.1 and 4.2 show developers with lower abil-

ity will be requested to develop smart contracts with lower

complexity and thus receive less reward. Constraints 4.3 and

4.4 are the local upward incentive constraints (LUIC) and lo-

cal downward incentive constraints (LDIC) respectively, which

characterize the relationship between type-i developers and

their upward and downward neighborhoods.

Lemma 5: For any given project complexity ai, let the reward

for type-i developers be

R∗(ai) = gbasec

(

1

θi
ai + qi

)

where,

qi =

0, if i= 1

i−1
∑

j=1

(

1

θj
− 1

θj+1

)

aj , if i= 2, . . . , I†
(17)

then

5.1) R∗(a) satisfy IR and IC constraint

5.2) Foundation’s utility is maximized if the reward for

type-i developers are identical to R∗(ai)

Proof: Please refer to the appendix.

By substituting (17) into (16), we now have the objective

function simplified as (18), shown at the bottom of the page.

From this point, we can derive the optimal project complexity

for each type that maximizes the foundation’s payoff based on

the incomplete information scenario. We initially find the first

derivative of ai for U I
F (τmin,Ω), as shown in (19), and then

show that (18) is a concave function with respect to ai, such

that the optimal contract can be found under each feasible τmin

dU I
F

dai
=

N†(τmin)

{

λiαθiψ

1 + θiaiψ + τmin
− gbasec

[

λi
1

θi
+

1 −
i
∑

j=1

λj

(

1

θi
− 1

θi+1

)

]}

,

if i= 1, . . . , I† − 1

N†(τmin)

(

λiαθiψ

1 + θiaiψ + τmin
− λigbasec

1

θi

)

,

if i= I†.
(19)

Based on (19), the second derivative of ai for U I
F is as

follows:

d2U I
F (τmin,Ω)

da2
i

=
−N†(τmin)λiαθ

2
iψ

2

(1 + θiaiψ + τmin)2
(20)

It can be seen that (d2U I
F (τmin,Ω)/da

2
i)< 0, indicating that

U I
F (τmin,Ω) is a concave function. Since the sum of concave

functions remains concave, the final problem can be formulated

as a concave optimization problem. We can then obtain the

optimal project complexity a∗i for type-i developer as:

a∗i =

λiα

λigbasec+ (1 −∑i

j=1 λj)(1 − θi
θi+1

)
− 1 + τmin

θiψ
,

if i= 1, . . . , I† − 1.

αθi
gbasec

− 1 + τmin

θiψ
, if i= I†

(21)

max
τmin,Ω

U I
F (τmin,Ω) = max

τmin,Ω
N†(τmin)

I†−1
∑

i=1

λiαln(1 + θiaiψ + τmin)− gbasecai

λi
1

θi
+

1 −
i
∑

j=1

λj

(

1

θi
− 1

θi+1

)

+N†(τmin)λI†

[

αln(1 + θI†aI†ψ + τmin)− gbase
1

θI†

aI†

]

(18)

U I
F =N†(τmin)

(

I−1
∑

i=1

λi

(

α ln

(

λiαθ
2
iψ

gbasec(λi + (1 −
∑i

j=1 λj)(1 − θi
θi+1

))

)

− λiα

λi + (1 −
∑i

j=1 λj)(1 − θi
θi+1

)

+
(1 + τmin)gbasec

θ2
iψ

)

+ λI

(

α ln

(

αθ2
Iψ

gbasec

)

− α+
(1 + τmin)gbasec

θ2
Iψ

))

. (22)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

After substituting a∗i back, the optimization problem is sim-

plified to an one variable function as shown in (22), at the

bottom of the previous page. For simplicity, we define constant

KI in (23), shown at the bottom of the page.

Lemma 6: In the scenario involved newcome developers,

UC
F (τmin) is a concave function of τmin iff τmin ∈ (τ1, τ2) ∩

(0, 1) where τ1 and τ2 are the root of (24). Otherwise it is an

convex function

τ 2
min + (KI − µ)τmin − (KIµ+ 2σ2). (24)

Proof: Please refer to the appendix.

We can utilize the method in Lemma 2 to obtain the maxima

of U I
F (τmin) within its domain. The derived solution meets

the monotonicity condition automatically when the developer

type follows a uniform distribution. Otherwise, we can use the

algorithm in the literature [42] to obtain the optimal solution.

And here we denote the optimal strategy of τmin as τ∗min where

τ∗min = argmaxτmin
U I
F (τmin).

Theorem 2: Given newcome developers, to maximize utility,

the foundation will set τmin = τ∗min and provide contract item

ω∗
i to developer of type-i as stated in (25), shown at the bottom

of the page.

Theorem 2 characterizes the foundation’s optimal contract

designed for each newcome developer type with τ(i,n) ≥ τmin

in the incomplete information scenario.

VI. PERFORMANCE EVALUATION

In this section, we conduct numerical simulations to evaluate

the performance of both the reputation filter and the contract-

theoretic mechanism tailored for the ecosystem within the

SCaaS market context. Unless stated otherwise, we set default

parameters α= 10, ψ = 10, c= 1, and gbase = 10. Consistent

with the majority of existing studies about reputation system

and contract theory, we assume that the τ(i,n) is uniformly

distributed in [0, 1] and Ni is uniformly distributed in [1, 10]

with I = 10. Based on these parameters, our evaluation results

are as follows.

A. Performance of the Reputation Filter

We first analyze the influence of standard deviation (std) and

the mean of new projects’ reputation τ(i,n) on the foundation’s

Fig. 3. Developers’ utility under different contract items.

utility. Fig. 3 illustrates that as the reputation mean increases,

there is a significant increase in foundation utility, suggesting

that a higher average reputation of the projects can enhance

the foundation’s utility. Conversely, foundation utility appears

to be inversely correlated with reputation std, which indicates

that higher variability in reputation correlates with lower utility.

This could imply that foundations prefer a more consistent and

predictable range of reputation values.

We then examine the foundation’s utility across various rep-

utation filter thresholds τmin as the number of both veteran and

newcomer developers rises, depicted in Fig. 4. We observe that

the optimal τmin for veteran developers is marginally higher

than for newcomers. Notably, while higher project reputation

values boost the foundation’s profit, the optimal τmin for both

groups leans towards the lower value to avoid deterring devel-

oper participation because of the high reputation demand for

new projects. The utility of the foundation is markedly higher

with veteran developers for all τmin levels under the same devel-

oper population, suggesting that veterans significantly enhance

the foundation’s utility. In both scenarios, the foundation’s util-

ity is positively correlated with an increase in the number of

developers.

KI =

I−1
∑

i=1

λi

(

α ln

(

λiαθ
2
iψ

gbasec(λi + (1 −∑i

j=1 λj)(1 − θi
θi+1

))

)

− λiα

λi + (1 −∑i

j=1 λj)(1 − θi
θi+1

)
+
gbasec

θ2
iψ

)

+ λI

(

α ln

(

αθ2
Iψ

gbasec

)

− α+
gbasec

θ2
Iψ

)

(23)

ω∗
i =

(

λiαθi

gbasec(λi + (1 −∑i

j=1 λj)(1 − θi
θi+1

))
− 1 + τmin

θiψ
,

λiα

λi + (1 −∑i

j=1 λj)(1 − θi
θi+1

)
− gbasec(1 + τmin)

θ2
iψ

)

,

if i= 1, . . . , I − 1
(

αθi
gbasec

− 1 + τmin

θiψ
, α− gbasec(1 + τmin)

θ2
iψ

)

, if i= I.

(25)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 11

Fig. 4. Performance of different reputation values τmin. (a) Foundation’s
utility against veteran developers. (b) Foundation’s utility against new-come
developers.

Fig. 5. Performance under satisfaction coefficient α.

B. Influence of the Satisfaction Coefficient α

Fig. 5 illustrates how the foundation’s satisfaction coefficient

and developers’ ability affect the required project complexity.

We observe that the complexity of project development for both

newcome and veteran developers increases with their increasing

abilities, implying constraint 4.2 holds. Notably, veteran devel-

opers start at and sustain a higher complexity level compared

with the newcome developers with the same ability. In contrast,

when the ability of newcome developers is at its lowest (θ = 1),

the complexity they manage nearly diminishes to zero. At their

peak ability (θ = 10), both newcome and veteran developers can

handle the same project complexity. Moreover, newcome devel-

opers with greater ability experience a steeper increase in the

complexity of their projects with their abilities improvement.

Overall, the figure illustrates the crucial influence of veteran

developers (contrasted with newcomers) in managing complex

tasks. Furthermore, the alpha parameter is positively correlated

with the complexity of projects across all skill levels, suggesting

that a greater satisfaction (or benefit) coefficient of the foun-

dation further motivates developers to undertake projects with

higher complexity.

Fig. 6. Performance under basic gas price of different public blockchains
gbase.

C. Influence of the Gas Price

Compared with Fig. 5, Fig. 6 delineates the influence of the

gbase on developer behavior. From Fig. 6, we observe that a

lower gas price motivates developers to create smart contracts

with greater complexity. This is because the high gas cost char-

acteristic serves as a deterrent to carrying out complex projects,

leading developers towards the adoption of less complex

projects to manage costs effectively. It is discerned from on-

chain data that in EVM-based blockchains with the largest de-

veloper base, such as Polygon, BSC, and ETH, which are listed

according to ascending gas fees, the number of smart contracts

created last year (January 2023 to January 2024) decreased

sequentially. Specifically, the creation of smart contracts on

Polygon surpassed that on BSC, and BSC experienced a higher

number of smart contract creations than ETH. According to

[43], blockchains that support higher complexity attract de-

velopers to create more projects, which suggests that the ex-

perimental results in Fig. 4 are reflective of the actual trends

witnessed.

D. Feasibility of the Proposed Optimal Contract Items

Since the results of the newcome developers and veteran

developers are the same, we choose the newcome developers as

an objective and compare the utility of different types of veteran

developers while selecting different contract items. Fig. 7 shows

that the developers’ utilities are nonnegative if they select the

contract items that are intended for them, which is verified by

IR constraints in Lemma 3. Developers with each type result

in different utilities by selecting different contract items and

can get their maximum utility by selecting the contract items

specially designed for their type, indicating the IC constraints

in Lemma 4.

E. Influence of the Developer Type

We analyze the impact of the diversity of developer

types. Fig. 8 delineates the foundation’s profits within our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 7. Developers’ utility under different contract items.

Fig. 8. Performance under different numbers of developer types.

contract-based framework. It is discernible that even when the

population of developers is held constant, the publisher’s profits

escalate with the increasing number of developer types. This

suggests that a greater variety of developer types enables the

foundation to offer an expanded array of contract items, thereby

attracting a broader spectrum of highly skilled developers to

engage in project development. While fulfilling the demand

for projects with lower complexity, it is also possible to fa-

cilitate the development of more complex projects, catering

to the sophisticated requirements of users. Furthermore, it is

observed that veteran developers consistently bring more utility

to the foundation compared with newcome developers, with the

largest difference when there are five types of developer abili-

ties. This implies that when the number of types of developers

participating in the ecosystem construction is lower, choosing

veteran developers can gain higher utility for the foundation.

Conversely, when the diversity of types is higher, the necessity

for the foundation to stringently differentiate between a veteran

and a newcomer developer diminishes.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed a three-stage system to help

the foundation stimulate developers’ involvement and reuse the

existing smart contracts when developing new ones. We first

introduced the SCaaS paradigm to mitigate smart contracts’

redundant deployment and studied the selection and incentive

mechanism of trustworthy developers in the SCaaS. Specifi-

cally, we have introduced the reputation filter to eliminate risky

smart contracts based on the on-chain transaction volume. We

then leveraged the multidimensional contract theory to for-

mulate the interaction between the foundation and heteroge-

neous developers under newcome and veteran developers. In

the incentive contracts, we have induced developers to reveal

their private information by utilizing IR and IC constraints

and thus optimize the foundation’s utility. We also conducted

experiments to validate the effectiveness of the reputation filter

and the multidimensional contracts. In future work, we will

consider using Soulbound Tokens [44], [45], [46] to identify

the malicious newly created accounts to defraud foundation

rewards, thus ensuring veteran developers’ utility in our system.

Simultaneously, we will collaborate with ChainIDE [47], [48],

a multichain integrated development environment (IDE) that

supports full-stack development, to implement and validate the

proposed method. This collaboration will enable us to explore

practical applications and refine our approach through real-

world scenarios, which we aim to present in future work.

APPENDIX

A. Proof of Lemma 1

Condition 1.1: R∗(ai)− gbasec(1/θi)ai ≥ 0

Hence it satisfies IR constraint.

Condition 1.2: We prove by contradiction. Suppose there

exists an optimal reward R̃(ai) for type-i developers such

that R̃(ai)<R∗(ai). In this case, R̃(ai)− gbasec(1/θi)ai <
0, which contradicts with the IR constraint. We also suppose

there exists an optimal reward R̃(ai) for type-i developers such

that R̃(ai)>R∗(ai). In this case, R̃(ai)− gbasec(1/θi)ai > 0.

Since the foundation can increase its utility by reducing re-

ward until R̃(ai)− gbasec(1/θi)ai = 0, it contradicts with the

assumption of R̃(ai)>R∗(ai).
Hence, by rewarding type-i developers R∗(ai), foundation’s

utility is maximised.

B. Proof of Lemma 2

To prove Lemma 2, we calculate the second derivative ofUC
F .

According to (12), foundation will require developer

of type i to complete a smart contract of complexity

a∗i = (αθi/gbasec)− (1 + τmin/θiψ) to maximize its payoff.

Therefore

UC
F =N†(τmin)

I
∑

i=1

λi

[

α ln

(

1 + θi

(

αθi
gbasec

− 1 + τmin

θiψ

)

ψ

+ τmin

)

− gbasec
1

θi

(

αθi
gbasec

− 1 + τmin

θiψ

)

]

=N†(τmin)

I
∑

i=1

λi

[

α ln

(

αψθ2
i

gbasec

)

− α+
(1 + τmin)gbasec

θ2
iψ

]

.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 13

For the simplicity of writing, we denote
∑I

i=1 λi[α
ln(αψθ2

i/gbasec)− α+ ((1 + τmin)gbasec/θ
2
iψ)] as hC(τmin),

i.e., UC
F =N(τmin)hC(τmin).

h′C(τmin) =
I
∑

i=1

λigbasec

θ2
iψ

h′′C(τmin) = 0.

(26)

Under the assumption that τ(i,n) ∼N(µ, σ2), the density

function of τ(i,n) is

f(τmin) =
1√
2πσ

e
−(τmin−µ)2

2σ2 . (27)

And the cumulative density function of τ(i,n) is

F (τmin) = Pr(τ(i,n) ≤ τmin) =

∫

τmin−µ

σ

−∞

1√
2π
e

−x2

2 dx. (28)

Let 1τ(i,n)≥τmin
be an indicator function such that:

1τ(i,n)≥τmin
=

{

1, τ(i,n) ≥ τmin

0, τ(i,n) < τmin.
(29)

Since τ(i,n) is normal distributed, we can obtain the discrete

density function of 1τ(i,n)≥τmin

Pr(1τ(i,n)≥τmin
= 1) = Pr(τ(i,n) ≥ τmin) = 1 − F (τmin)

Pr(1τ(i,n)≥τmin
= 0) = Pr(τ(i,n) < τmin) = F (τmin). (30)

Then Npass, the exact number of developers that pass the rep-

utation filter, can be derived by

Npass =

N
∑

n=1

1τ(i,n)≥τmin
. (31)

Npass follows a binomial distribution with population N and

probability 1 − F (τmin)

Npass ∼ b(N, 1 − F (τmin)). (32)

Therefore, N(τmin), the number of developers passing the

reputation filter approximated by the foundation, is given by

the expectation of Npass

N(τmin) = E[Npass] =N(1 − F (τmin))

=N

∫

µ−τmin
σ

−∞

1√
2π
e

−x2

2 dx. (33)

Then differentiate N(τmin) twice with respect to τmin

N ′(τmin) =
−N
σ
√

2π
e

−(µ−τmin)2

2σ2 < 0

N ′′(τmin) =
−N(µ− τmin)

σ3
√

2π
e

−(µ−τmin)2

2σ2 < 0.

(34)

Then differentiate UC
F twice with respect to τmin

{

UC′

F =N ′(τmin)hC(τmin) +N(τmin)h
′
C(τmin)

UC′′

F = 2N ′(τmin)h
′
C(τmin) +N ′′(τmin)hC(τmin).

(35)

By computation, UC′′

F < 0 iff τ 2
min + (KC − µ)τmin −

(KCµ+ 2σ2)< 0. Recall the domain of UC
F (τmin) is

(0, 1). Therefore, UC
F is a concave function of τmin iff

τmin ∈ (τ1, τ2) ∩ (0, 1) where τ1 and τ2 are the roots of (14).

Proof of Lemma 2 is completed.

C. Proof of Theorem 1

According to Lemma 2, the final problem is a concave op-

timization problem and we can solve for a value of τmin such

that UC
F is maximized, denoted as τ#min.

Therefore, optimal minimum reputation value is τ∗min = τ#min

and, according to (12), the optimal project complexity required

from type-i developer is

a∗i =
αθi
gbasec

− 1 + τ∗min

θiψ
. (36)

Subsequently, the reward given to developers belong to type-i

once they pass the filter is

R(a∗i) = gbasec
1

θi

(

αθi
gbasec

− 1 + τ∗min

θiψ

)

= α− gbasec(1 + τ∗min)

θ2
iψ

. (37)

The optimal contract item provided to developer type-i is

φ∗i =

(

αθi
gbasec

− 1 + τ∗min

θiψ
, α− gbasec(1 + τ∗min)

θ2
iψ

)

. (38)

D. Proof of Lemma 3

According to IR constraint

R(ai)− gbase
1

θi
cai ≥ 0, ∀i ∈ {1, . . . , I†} (39)

we have

R(a1)− gbase
1

θ1

ca1 ≥ 0. (40)

Proof of Lemma 3 is completed.

E. Proof of Lemma 4

To prove conditions 4.1 and 4.2, first we prove that, under IC

constraint, θi < θj if and only if ai ≤ aj .

We prove by contradiction. Suppose that there exists the case

where θi < θj and ai > aj . Then we have

(θj − θi)(aj − ai)< 0. (41)

According to the IC constraints, we have

R(ai)− gbasec
1

θi
ai ≥R(aj)− gbasec

1

θi
aj

R(aj)− gbasec
1

θj
aj ≥R(ai)− gbasec

1

θj
ai.

(42)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Combining the above two equations, we have

− 1

θi
ai −

1

θj
aj ≥− 1

θi
aj −

1

θj
ai

⇔
(

1

θj
− 1

θi

)

(aj − ai)≤ 0

⇔ (θj − θi)(aj − ai)≥ 0 (43)

which is in contradiction with (41). Hence, under IC constraint,

θi < θj if and only if ai ≤ aj .

Condition 4.2: We have proven θi < θj if and only if ai ≤ aj ,

and since θ1 ≤ · · · ≤ θI† , we have 0 ≤ a1 ≤ · · · ≤ aI† .

Condition 4.1: For type-i developers, the following IC con-

straints must be satisfied:

R(ai)− gbasec
1

θi
ai ≥R(aj)− gbasec

1

θi
aj

⇔ 1

θi
(aj − ai)≥R(aj)−R(ai). (44)

Thus, we have if ai > aj , then 0> (1/θi)(aj − ai)≥R(aj)−
R(ai), which means that R(ai)>R(aj). Since 0 ≤ a1 ≤ · · · ≤
aI† , we have 0 ≤R(a1)≤ · · · ≤R(aI†)

Condition 4.3: According to IC constraint, we have

R(ai)− gbasec
1

θi
ai ≥R(aj)− gbasec

1

θi
aj ,

∀i, j ∈ {1, 2, . . . , I†}. (45)

Here, substitute j with j = i+ 1, and then we have

R(ai)− gbasec
1

θi
ai ≥R(ai+1)− gbasec

1

θi
ai+1,

∀i ∈ {1, . . . , I† − 1}. (46)

Condition 4.4: Substitute j with j = i− 1 in (45), and then

we have

R(ai)− gbasec
1

θi
ai ≥R(ai−1)− gbasec

1

θi
ai−1,

∀i ∈ {2, . . . , I†}. (47)

Proof of Lemma 4 is completed.

F. Proof of Lemma 5

Condition 5.1: We first show that R∗(a) satisfied IR

constraint

R∗(ai)− gbasec
1

θi
ai = gbasecqi ≥ 0, ∀i ∈ {1, . . . , I†}. (48)

Therefore, R∗(a) satisfies IR constraint.

We then show that R∗(a) satisfied IC constraint through

induction. We denote by Ω(k) the subset of Ω, which contains

the first k contract items in Ω, i.e., Ω(k) = {(ai, R(ai))|i=
1, . . . , k}.

We first verify that Ω(1) satisfies IC constraint. Since there

is only one contract item, the IC constraint must be satisfied.

Then, we show that if Ω(k) satisfies IC constraint, then

Ω(k + 1) also satisfies IC constraint. This corresponds to two

aspects:

1) For the new type (k + 1), the IC constraint is satisfied, i.e.,

R(ak+1)− gbasec
1

θk+1

ak+1 ≥R(ai)− gbasec
1

θk+1

ai,

∀i ∈ {1, . . . , k}. (49)

2) For existing types 1, . . . , k, the IC constraint is still sat-

isfied in the presence of type k + 1, i.e.,

R(ai)− gbasec
1

θi
ai ≥R(aj)− gbasec

1

θi
aj

∀i ∈ {1, . . . , k + 1}. (50)

We first prove (49). Since Ω(k) satisfy IC constraint, the IC

constraint for type-k developers holds, i.e.,

R(ai)− gbasec
1

θk
ai ≤R(ak)− gbasec

1

θk
ak,

∀i ∈ {1, . . . , k}. (51)

Besides, according to condition 4.4, we have

R(ak+1)≥R(ak) + gbasec
1

θk+1

(ak+1 − ak). (52)

By combining (51) and (52), we have

R(ak+1) +R(ak)− gbasec
1

θk
ak

≥R(ak) + gbasec
1

θk+1

(ak+1 − ak) +R(ai)− gbasec
1

θk
ai

(53)

which can be written as

R(ak+1)− gbasec
1

θk+1

ak+1

≥R(ai)− gbasec
1

θk+1

ak + gbasec
1

θk
(ak − ai)

≥R(ai)− gbasec
1

θk+1

ak

≥R(ai)− gbasec
1

θk+1

ai, ∀i ∈ {1, . . . , k}. (54)

The last two inequalities are both base on that the condition

4.2, i.e., ai ≤ ak, ∀i ∈ {1, . . . , k}. Thus, the IC constraint for

type-(k + 1) developers hold

Then, we prove (50). It is obvious that proving (50) is equiv-

alent to proving the following:

R(ai)− gbasec
1

θi
ai ≥R(ak+1)− gbasec

1

θi
ak+1,

∀i ∈ {1, . . . , k}. (55)

According to condition 4.3, we have

R(ak+1)≤R(ak) + gbasec
1

θk
(ak+1 − ak). (56)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 15

hI(τmin) =
I−1
∑

i=1

λi

(

α ln

(

λiαθ
2
iψ

gbasec(λi + (1 −∑i

j=1 λj)(1 − θi
θi+1

))

)

− λiα

(λi + (1 −∑i

j=1 λj)(1 − θi
θi+1

))

+
(1 + τmin)gbasec

θ2
iψ

)

+ λI

(

α ln

(

αθ2
Iψ

gbasec

)

− α+
(1 + τmin)gbasec

θ2
Iψ

)

. (63)

Also, since IC constraint for type-i (i ∈ {1, . . . , k}) developers

hold, i.e.,

R(ai)− gbasec
1

θi
ai ≥R(ak)− gbasec

1

θi
ak. (57)

By combining the above two inequality (56) and (57), we have

R(ak+1) +R(ak)− gbasec
1

θi
ak

≤R(ak) + gbasec
1

θk
(ak+1 − ak) +R(ai)− gbasec

1

θi
ai

(58)

which can be written as

R(ai)− gbasec
1

θi
ai

≥R(ak+1)− gbasec
1

θi
ak − gbasec

1

θk
(ak+1 − ak)

≥R(ak+1)− gbasec
1

θi
ak − gbasec

1

θi
(ak+1 − ak)

=R(ak+1)− gbasec
1

θi
ak+1, ∀i ∈ {1, . . . , k}. (59)

Hence, R∗(a) satisfies IR and IC constraints.

Condition 5.2: We then show that the reward in (17) gives

the maximum utility to the foundation. Assume there is a

reward R̃(a) such that, given fixed project complexity set

a,N†(τmin)
∑I†

i=1 λiR̃(ai)<N†(τmin)
∑I†

i=1 λiR
∗(ai). Thus,

there is at least one R̃(ai)<R∗(ai).
To make the contract feasible, based on condition 4.4, the

following constraint on R̃(ai) have to be satisfied:

R̃(ai)≥ R̃(ai−1) + gbasec
1

θi
(ai − ai−1) (60)

which can be written as

R̃(ai−1)≤ R̃(ai) + gbasec
1

θi
(ai−1 − ai)

<R∗(ai) + gbasec
1

θi
(ai−1 − ai) =R∗(ai−1). (61)

Continue the above process, we can obtain that

R̃(a1)<R∗(a1) = gbasec
1

θ1

a1 (62)

which violates IR constraint of type-1 developers.

Therefore, the foundation’s utility function is maximised by

the reward in (17).

G. Proof of Lemma 6

To prove Lemma 6, we calculate the second derivative of U I
F .

For the simplicity of writing, we define hI(τmin) in

(63), shown at the top of the page. In this case, U I
F =

N(τmin)hI(τmin)

h′I(τmin) =

I
∑

i=1

λigbasec

θ2
iψ

h′′I (τmin) = 0.

(64)

Then differentiate U I
F twice with respect to τmin

{

U I′

F =N ′(τmin)hI(τmin) +N(τmin)h
′
I(τmin)

U I′′

F = 2N ′(τmin)h
′
I(τmin) +N ′′(τmin)hI(τmin)< 0.

(65)

By computation, U I′′

I < 0 iff τ 2
min + (KI − µ)τmin −

(KIµ+ 2σ2)< 0. Recall the domain of U I
F (τmin) is

(0, 1).Therefore, U I
F is a concave function of τmin iff

τmin ∈ (τ1, τ2) ∩ (0, 1) where τ1 and τ2 are the roots of (24).

Proof of Lemma 5 is completed.

H. Proof of Theorem 2

According to Lemma 5, the final problem is a cnoncave

optimization problem and we can solve for a value of τmin such

that U I
F is maximized, denoted as τ#min.

Therefore, optimal minimum reputation value is τ∗min = τ#min

and the optimal project complexity required from type-i devel-

oper is a∗I in (21). Subsequently, the reward given to developers

belong to type-i once they pass the filter is

R(a∗i) = gbasec
1

θi
a∗i . (66)

The optimal contract item provided to developer type-i is

φ∗i =

(

a∗I , gbasec
1

θi
a∗i

)

. (67)

REFERENCES

[1] H. Taherdoost, “Smart contracts in blockchain technology: A critical
review,” Information, vol. 14, no. 2, p. 117, 2023.

[2] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Bus.

Inf. Syst. Eng., vol. 59, pp. 183–187, Mar. 2017.
[3] N. Kannengießer, M. Pfister, M. Greulich, S. Lins, and A. Sun-

yaev, Bridges Between Islands: Cross-Chain Technology for Distributed

Ledger Technology, pp. 5298–5307, 2020.
[4] M. Goint, C. Bertelle, and C. Duvallet, “Secure access control to data

in off-chain storage in blockchain-based consent systems,” Mathematics,
vol. 11, no. 7, p. 1592, 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

[5] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-
Hani, “Blockchain smart contracts: Applications, challenges, and future
trends,” Peer-to-peer Netw. Appl., vol. 14, pp. 2901–2925, Apr. 2021.

[6] G. Yu et al., “Toward web3 applications: Easing the access and transi-
tion,” IEEE Trans. Comput. Social Syst., vol. 11, no. 5, pp. 6098–6111,
Oct. 2024.

[7] N. Six, N. Herbaut, and C. Salinesi, “Blockchain software patterns for
the design of decentralized applications: A systematic literature review,”
Blockchain: Res. Appl., vol. 3, no. 2, 2022, Art. no. 100061.

[8] T. Sharma, Z. Zhou, A. Miller, and Y. Wang, “Exploring security
practices of smart contract developers,” 2022, arXiv:2204.11193.

[9] G. A. Oliva, A. E. Hassan, and Z. M. Jiang, “An exploratory study of
smart contracts in the ethereum blockchain platform,” Empirical Softw.

Eng., vol. 25, pp. 1864–1904, Mar. 2020.
[10] F. A. Alaba, H. A. Sulaimon, M. I. Marisa, and O. Najeem, “Smart

contracts security application and challenges: A review,” Cloud Comput.

Data Sci., vol. 5, no. 1, pp. 15–41, 2024.
[11] V. Bracamonte and H. Okada, “An exploratory study on the influence

of guidelines on crowdfunding projects in the ethereum blockchain
platform,” in Proc. Social Inform.: 9th Int. Conf., SocInfo, Oxford, UK:
Springer, Sep. 2017, pp. 347–354.

[12] M. B. Neitz, “The influencers: Facebook’s libra, public blockchains, and
the ethical considerations of centralization,” NCJL Tech., vol. 21, p. 41,
Dec. 2019.

[13] S. Baltes and S. Diehl, “Towards a theory of software development
expertise,” in Proc. 2018 26th ACM joint Meeting Eur. Softw. Eng. Conf.

Symp. Foundations Softw. Eng., 2018, pp. 187–200.
[14] N. Archak, “Money, glory and cheap talk: analyzing strategic behavior of

contestants in simultaneous crowdsourcing contests on topcoder. com,”
in Proc. 19th Int. Conf. World Wide Web, 2010, pp. 21–30.

[15] M. Daltayanni, Reputation Systems in Labor and Advertising Market-

places, Santa Cruz, California, USA: University of California, 2015.
[16] D. Yang, Y. Ji, Z. Kou, X. Zhong, and S. Zhang, “Asynchronous

federated learning with incentive mechanism based on contract theory,”
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Piscataway, NJ,
USA: IEEE Press, 2024, pp. 1–6.

[17] H. Ma, Y. Gu, H. Wu, L. Xing, and X. Zhang, “A dual incentive
mechanism based on graph attention neural network and contract in
mobile opportunistic networks,” Phys. Commun., vol. 67, 2024, Art. no.
102485.

[18] N. Phumchusri and P. Amornvetchayakul, “Machine learning models
for predicting customer churn: a case study in a software-as-a-service
inventory management company,” Int. J. Bus. Intell. Data Mining, vol.
24, no. 1, pp. 74–106, 2024.

[19] E. Keller and J. Rexford, “The “platform as a service” model for
networking,” INM/WREN, vol. 10, pp. 95–108, Apr. 2010.

[20] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study of
infrastructure as a service (IaaS),” Int. J. Eng. Inf. Technol., vol. 2,
no. 1, pp. 60–63, 2010.

[21] M. N. Moeti, “Infrastructure as a service adoption model for south
african universities using thematic analysis,” South Afr. J. Inf. Manage.,
vol. 26, no. 1, p. 14, 2024.

[22] M. Samaniego, U. Jamsrandorj, and R. Deters, “Blockchain as a service
for IoT,” in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE Green

Comput. Commun. (GreenCom) IEEE Cyber, Phys. Social Comput.

(CPSCom) IEEE Smart Data (SmartData), Piscataway, NJ, USA: IEEE
Press, 2016, pp. 433–436.

[23] B. U. I. Khan et al., “Blockchain-enhanced sensor-as-a-service (SEaaS)
in IoT: Leveraging blockchain for efficient and secure sensing data
transactions,” Information, vol. 15, no. 4, p. 212, 2024.

[24] A. M. Tripathi and L. S. Umrao, “Integrated fuzzy decision tree based
blockchain federated safety-as-a-service for IIoT,” Cluster Comput.,
vol. 28, no. 2, p. 95, 2024.

[25] W.-W. Li, W. Meng, K.-H. Yeh, and S.-C. Cha, “Trusting computing as
a service for blockchain applications,” IEEE Internet Things J., vol. 10,
no. 13, pp. 11326–11342, 2023.

[26] H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for
social good: A university campus prototype,” in Proc. 29th ACM Int.

Conf. Multimedia, 2021, pp. 153–161.
[27] S. Fan, H. Zhang, Y. Zeng, and W. Cai, “Hybrid blockchain-based

resource trading system for federated learning in edge computing,” IEEE

Internet Things J., vol. 8, no. 4, pp. 2252–2264, Feb. 2021.

[28] S. Fan, J. Zhao, R. Zhao, Z. Wang, and W. Cai, “CryptoArcade: A cloud
gaming system with blockchain-based token economy,” IEEE Trans.

Cloud Comput., vol. 11, no. 3, pp. 2445–2458, Jul./Sep. 2023.
[29] J. Park, S. Jeong, and K. Yeom, “Smart contract broker: Improving

smart contract reusability in a blockchain environment,” Sensors, vol. 23,
no. 13, p. 6149, 2023.

[30] F. Khan, I. David, D. Varro, and S. McIntosh, “Code cloning in smart
contracts on the ethereum platform: An extended replication study,”
IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 2006–2019, Apr. 2022.

[31] X. Shen, W. Li, H. Xu, X. Wang, and Z. Wang, “A reuse-oriented visual
smart contract code generator for efficient development of complex
multi-party interaction scenarios,” Appl. Sci., vol. 13, no. 14, p. 8094,
2023.

[32] Y. A. Hsain, N. Laaz, and S. Mbarki, “SCEditor: A graphical editor
prototype for smart contract design and development.” Int. J. Adv.

Comput. Sci. Appl., vol. 15, no. 3, pp. 1185–1195, 2024.
[33] S. Fu, X. Huang, L. Liu, and Y. Luo, “BFCRI: A blockchain-based

framework for crowdsourcing with reputation and incentive,” IEEE

Trans. Cloud Comput., vol. 11, no. 2, pp. 2158–2174, Apr./Jun. 2023.
[34] H. Jiao, J. Liu, J. Li, and C. Liu, “A framework for reputation boot-

strapping based on reputation utility and game theories,” in Proc. IEEE

10th Int. Conf. Trust, Secur. Privacy Comput. Commun., Piscataway, NJ,
USA: IEEE Press, 2011, pp. 344–351.

[35] E. Parhizkar, M. H. Nikravan, R. C. Holte, and S. Zilles, “Combining
direct trust and indirect trust in multi-agent systems,” in Proc. IJCAI,
2020, pp. 311–317.

[36] H. Bangui, M. Ge, and B. Buhnova, “Deep-learning based reputation
model for indirect trust management,” Procedia Comput. Sci., vol. 220,
pp. 405–412, Jan. 2023.

[37] M. Dai, Z. Su, Y. Wang, and Q. Xu, “Contract theory based incentive
scheme for mobile crowd sensing networks,” in Proc. Int. Conf. Sel.

Topics Mobile Wireless Netw. (MoWNeT), Piscataway, NJ, USA: IEEE
Press, 2018, pp. 1–5.

[38] Z. Su, L. Liu, M. Li, X. Fan, and Y. Zhou, “ServiceTrust: Trust
management in service provision networks,” in Proc. IEEE Int.

Conf. Services Comput., Piscataway, NJ, USA: IEEE Press, 2013,
pp. 272–279.

[39] M. Zhou and A. Mockus, “Developer fluency: Achieving true mastery
in software projects,” in Proc. 18th ACM SIGSOFT Int. Symp. Found.

Softw. Eng., 2010, pp. 137–146.
[40] B. Wang et al., “Secrets of RLHF in large language models part II:

Reward modeling,” 2024, arXiv:2401.06080.
[41] N. Ding, Z. Fang, and J. Huang, “Optimal contract design for efficient

federated learning with multi-dimensional private information,” IEEE J.

Sel. Areas Commun., vol. 39, no. 1, pp. 186–200, Jan. 2021.
[42] Z. Xiong, J. Kang, D. Niyato, P. Wang, H. V. Poor, and S. Xie, “A

multi-dimensional contract approach for data rewarding in mobile net-
works,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5779–5793,
Sep. 2020.

[43] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, “A system-
atic literature review of blockchain and smart contract development:
Techniques, tools, and open challenges,” J. Syst. Softw., vol. 174, 2021,
Art. no. 110891.

[44] T. V. Tumati, “SBTCert: A soulbound token certificate verification
system,” Ph.D. dissertation, California State Univ., Northridge, LA,
USA, 2023.

[45] T. J. Chaffer and J. Goldston, “On the existential basis of self-sovereign
identity and soulbound tokens: An examination of the “self” in the age
of web3,” J. Strategic Innov. Sustainability, vol. 17, no. 3, pp. 1–9,
2022.

[46] T. V. Tumati, Y. Tian, and X. Jiang, “A soulbound token certificate
verification system (sbtcert): Design and implementation,” in Proc. IEEE

14th Annu. Comput. Commun. Workshop Conf. (CCWC), Piscataway, NJ,
USA: IEEE Press, 2024, pp. 0345–0350.

[47] H. Qiu, X. Wu, S. Zhang, V. C. Leung, and W. Cai, “ChainIDE: A
cloud-based integrated development environment for cross-blockchain
smart contracts,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci.

(CloudCom), Piscataway, NJ, USA: IEEE Press, 2019, pp. 317–319.
[48] W. Liang, Y. Liu, C. Yang, S. Xie, K. Li, and W. Susilo, “On

identity, transaction, and smart contract privacy on permissioned and
permissionless blockchain: A comprehensive survey,” ACM Comput.

Surveys, vol. 56, no. 12, pp. 1–35, 2024.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: MULTIDIMENSIONAL CONTRACT DESIGN FOR SMART CONTRACT-AS-A-SERVICE 17

Jinghan Sun received the M.Eng. degree in me-
chanical engineering from Huazhong University of
Science and Technology, Wuhan, China. She is
working toward the Ph.D. degree in computer and
information engineering with the School of Science
and Engineering, The Chinese University of Hong
Kong, Shenzhen, China.

Currently, she works as a Research Assistant with
Mohamed bin Zayed University of Artificial Intel-
ligence, Abu Dhabi, UAE. Her research interests
include blockchain, token economy, and Web3.

Hou-Wan Long is working toward the B.Sc. de-
gree in risk management science from The Chinese
University of Hong Kong, Hong Kong SAR.

His research interests include blockchain, token
economy, and financial technology.

Hong Kang received the B.Eng. degree in elec-
tronic information engineering from The University
of Electronic Science and Technology of China,
Chengdu, China, and University of Glasgow, Scot-
land, U.K., in 2021. He is currently working toward
the M.Phil. degree in computer and information
engineering with the School of Science and En-
gineering, The Chinese University of Hong Kong,
Shenzhen, China.

He is working as a Research Assistant with
the Human-Crypto Society Laboratory, Shenzhen,

China. His research interests include blockchain, mechanism design, and edge
intelligence.

Zhixuan Fang (Member, IEEE) received the B.S.
degree in physics from Peking University, Beijing,
China, in 2013, and the Ph.D. degree in computer
science from Tsinghua University, Beijing, China,
in 2018.

Currently, he is a tenure-track Assistant Professor
with the Institute for Interdisciplinary Information
Sciences (IIIS), Tsinghua University. His research
interests include the design and analysis of multia-
gent systems, blockchain, and networked systems.

Abdulmotaleb El Saddik (Fellow, IEEE) is a Dis-
tinguished Professor and is an internationally recog-
nized scholar who has made seminal contributions
to the knowledge and understanding of multimedia
computing, communications and applications. His
visionary work looks toward the establishment of
Digital Twins using AI, Haptics, AR/VR/Haptics
and 5G that allow people to interact in real-time
with one another as well as with their digital repre-
sentation in the Metaverse. He has been extremely
productive of high-quality research and impact. He

is the Editor in Chief of the ACM Transactions on Multimedia Computing,

Communications and Applications (ACM TOMM), a Senior Associate Editor
of IEEE CONSUMER ELECTRONICS MAGAZINE (IEEE MCE), and Guest Editor
for several Transactions and Journals. He has authored and co-authored ten
books and more than 600 peer-reviewed articles and five patents and chaired
more than 50 conferences and workshops. He has received research grants
and contracts totaling more than $30 M. He has supervised more than 160
researchers. He is the author of the book Haptics Technologies: Bringing

Touch to Multimedia.
Dr. El Saddik is a fellow of the Royal Society of Canada, IEEE, the

Canadian Academy of Engineering and the Engineering Institute of Canada.
He is an ACM Distinguished Scientist and has received several awards,
including the Friedrich Wilhelm Bessel Award from the German Humboldt
Foundation, the IEEE Instrumentation and Measurement Society Technical
Achievement Award. He also received IEEE Canada C.C. Gotlieb (Computer)
Medal and A.G.L. McNaughton Gold Medal for important contributions to the
field of computer engineering and science and the IEEE TCSC Achievement
Award for Excellence in Scalable Computing.

Wei Cai (Senior Member, IEEE) received the
B.Eng. degree in software engineering from Xiamen
University, Xiamen, China, in 2008, the M.S. degree
in electrical engineering and computer science from
Seoul National University, Seoul, Korea, in 2011,
and the Ph.D. degree in electrical and computer en-
gineering from The University of British Columbia
(UBC), Vancouver, Canada, in 2016.

From 2016 to 2018, he was a Postdoctoral Re-
search Fellow with UBC. Currently, he is an As-

sistant Professor of Computer Engineering with the School of Science and
Engineering, The Chinese University of Hong Kong, Shenzhen, China. He is
serving as the Director of the Human-Crypto Society Laboratory, Shenzhen,
China, as well as the Director of the CUHK(SZ)-White Matrix Joint Metaverse
Laboratory, Shenzhen, China. He has co-authored more than 100 journal and
conference papers in the areas of distributed/decentralized systems.

Dr. Cai is now serving as an Associate Editor for IEEE TRANSACTIONS

ON COMPUTATIONAL SOCIAL SYSTEMS (TCSS), IEEE TRANSACTIONS ON

CLOUD COMPUTING (TCC), ACM Transactions on Multimedia Computing,

Communications and Applications (TOMM), program Co-Chair for ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video in 2023 and open-source software competition Co-Chair for ACM
Multimedia in 2023. He was a recipient of six Best Paper Awards. He is a
member of the ACM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 17,2025 at 02:16:34 UTC from IEEE Xplore. Restrictions apply.

