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Abstract—The popularity of Artificial Intelligence-Generated
Content (AIGC) has experienced significant growth recently.
Despite AIGC’s potential to transform content creation in various
industries, its dependence on extensive computational resources
poses a challenge for widespread adoption. To address this
challenge, AIGC as a service has been proposed. However,
concerns related to dataset compliance have emerged as a
source of apprehension among stakeholders. The complexities
associated with manual supervision, apprehensions regarding
data leakage, and the potential for malicious behavior by third-
party supervisors collectively present formidable challenges in
the regulation of datasets within the domain of AIGC service.
To tackle these challenges, this paper presents a blockchain-
based system for regulating AIGC datasets. Our proposed sys-
tem employs AI, zero-knowledge proofs, and smart contracts
as integral components for overseeing dataset compliance. To
assess the feasibility and effectiveness of the proposed system, a
comprehensive analysis and a series of simulations have been
conducted. These evaluations offer valuable insights into the
system’s security, privacy, and performance.

Index Terms—AIGC, Regulation, Blockchain, Smart contract

I. INTRODUCTION

W ITH the developments of Generative Adversarial Net-
work (GAN), Diffusion, and Transformer, the pop-

ularity of Artificial Intelligence Generated Content (AIGC)
has been increasing. AIGC encompasses the concept of auto-
matically generating content using Artificial Intelligence (AI)
models, such as Generative Pretrained Transformer (GPT)
model [1] for text-to-text generation and the Diffusion model
for text-to-image generation. AIGC, with its ability to auto-
mate content generation for text and images, is expanding the
possibilities in technological and societal systems.

Despite AIGC’s potential to transform content creation in
various industries, its dependence on extensive computational
resources poses a challenge for widespread adoption. To
address this challenge, AIGC as a service has been proposed

Manuscript received xxx, 2024; revised xxx, 2024. This work was supported
in part by the Guangdong Basic and Applied Basic Research Foundation
under Grant 2024A1515012323; in part by Guangdong Pearl River Talent
Recruitment Program under Grant 2019ZT08X603; and in part by Guangdong
Pearl River Talent Plan under Grant 2019JC01X235. (Corresponding author:
Wei Cai.)

Jiaxiang Sun, Rong Zhao, Lehao Lin and Wei Cai are with the School
of Science and Engineering, The Chinese University of Hong Kong,
Shenzhen 518172, China; Yuanfang Chi and Victor C.M. Leung are with
The University of British Columbia, Vancouver, BC V6T 1Z4, Canada,
and also Shenzhen University, Shenzhen 518060, China. Victor C.M.
Leung is also with Shenzhen MSU-BIT University, Shenzhen 518000,
China (e-mail: jiaxiangsun@link.cuhk.edu.cn; rongzhao@link.cuhk.edu.cn;
lehaolin@link.cuhk.edu.cn; yuanchi@ece.ubc.ca; vleung@ieee.org;
weicai@ieee.org).

[2]. In AIGC as a service, AIGC service providers adopt
a dual-step process: initially pre-training models on cloud
servers and then fine-tuning them on edge servers with user-
specific datasets. This approach enables users to access AIGC
services with low latency and high customizability. Once
the fine-tuning of the model is complete, users can submit
instructions for using the fine-tuned model to achieve their
desired output results. Through AIGC as a service, content
generation becomes more accessible and affordable, thereby
promoting its utilization in technological and societal systems.

In AIGC service, the training dataset usually has a much
larger volume, and the fine-tuning dataset is generated regu-
larly. These training and fine-tuning datasets are vital in the
development and functioning of AIGC models. However, these
datasets can sometimes lead to legal issues, particularly if they
contain privacy-sensitive or copyrighted material. A prominent
example is the lawsuit filed by comedian Sarah Silverman
against OpenAI and Meta for using her writing without autho-
rization [3]. Moreover, the necessity and techniques of sharing
generated content among parallel metaverses are discussed in
[4]. Yet, challenges of the regulation of AIGC datasets have
only been studied until recently. For instance, Hacker et al.
[5] underscored the necessity of examining training data to
identify possible privacy or copyright violations. Nevertheless,
the majority of current research primarily addresses legal
issues, with a notable deficiency in technical solutions.

Currently, a notable research gap exists in the area of dataset
regulation within AIGC service. This indicates a need for fur-
ther investigation and exploration in this field. This field faces
challenges in regulating fine-tuning and feedback datasets to
prevent privacy breaches and copyright infringement. These
challenges include the impracticality of manual supervision
due to the large size of training datasets and frequent updates
of fine-tuning datasets, the risk of data leaks in regulation
process, and potential misconduct by third-party regulators.
These challenges highlight the complex relationship between
system engineering, technological systems, as well as societal
systems, in regulating AIGC datasets.

To tackle these challenges, promising solutions can be
found in the utilization of blockchain technology and Zero-
knowledge proof (ZKP) to execute smart contracts and ensure
privacy protection, respectively. Furthermore, advancements in
AI technology contribute to the development of automated
review processes, enhancing the efficiency and accuracy of
identifying compliance issues. In this paper, We introduce a
blockchain-based AIGC dataset regulation system. This inno-
vative system uses AI models for the purpose of supervision.
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Smart contracts are deployed to verify zero-knowledge proofs
and the inference results obtained from these AI models.
Moreover, users and AIGC service providers can utilize regu-
latory AI models to generate zero-knowledge proofs for their
datasets, demonstrating the security and compliance of their
data. By incorporating AI models for supervision and utilizing
smart contracts for verification, our system establishes an
automated and efficient regulatory framework. This paper’s
contributions can be summarized as follows:

• We propose a blockchain-based AIGC dataset regulation
system that enables the utilization of AI models for super-
vision. The system utilizes smart contracts to verify zero-
knowledge proofs for supervision results, ensuring data
security and compliance while automating the regulatory
process. By bridging the gap between advanced technol-
ogy and societal requirements, this solution safeguards
data privacy and streamlines regulatory operations.

• We conduct a security analysis of the AIGC dataset
regulation system, specifically focusing on its ability
to ensure privacy. This research aspect underscores the
system’s strength in protecting confidential data. The
analysis underscores the importance of our system in
creating a privacy-conscious setting for technological
activities and social interactions.

• We simulate and evaluate the efficiency and gas consump-
tion of the system. The analysis focuses on assessing
the effectiveness of the regulatory system, particularly in
terms of its operational performance and resource utiliza-
tion within the blockchain environment. This simulation
illustrates the feasibility of the system and its potential
applicability in technological and societal contexts.

II. RELATED WORK

A. AIGC

AIGC refers to the concept of generating content auto-
matically using AI models. In recent years, AIGC has wit-
nessed significant development. For instance, ChatGPT [6]
has advanced the field by enabling high-quality text-to-text
generation. Additionally, technologies such as Diffusion Mod-
els [7] has demonstrated remarkable progress in high-quality
text-to-image generation. The AIGC process consists of three
stages: pre-training, fine-tuning, and inference [8]. In the pre-
training phase, the model is trained using large-scale datasets.
Following pre-training, fine-tuning is performed to enhance
the model’s knowledge in specific domains or fields. Once
the fine-tuning process is completed, the model is deployed
to offer AIGC services to users. Users can then utilize the
model’s inference capabilities to obtain AIGC results.

Due to the high resources needed for AIGC, the concept
of AIGC as a service has been proposed [2]. In AIGC as a
service, the service providers can pre-train their models on a
cloud server and deploy them on edge servers. Subsequently,
users access the AIGC service from the edge server. This
methodology allows for low latency and high customizability
in accessing the AIGC service. This emerging concept holds
significant importance as a future development direction for
the field of AIGC. In AIGC as a service, blockchain can offer

a secure and reliable framework for AIGC service transactions,
using smart contracts to match AIGC service providers with
users and streamline payments for AIGC services [9].

B. Dataset Regulation

With the growing controversies surrounding AI datasets,
there is a rising focus on dataset regulation [5], [10]. Dataset
regulation involves ensuring that datasets comply with regula-
tions to prevent privacy, copyright, and other related issues.
Hartmann et al. [11] suggest expanding data access rights
to facilitate thorough third-party audits of AI systems while
emphasizing the importance of safeguarding personal data
during auditing processes. The European Union’s Artificial In-
telligence Act (EU AI Act) mandates the provision of detailed
documentation on the datasets used. Additionally, it states
that the utilization and handling of datasets must adhere to
current EU data protection laws, specifically the General Data
Protection Regulation (GDPR) [12], [13]. Currently, dataset
regulation is a topic in AI regulation. However, there is a lack
of dedicated research focusing on dataset regulation.

C. Zero Knowledge Proof

Zero-knowledge proofs (ZKPs) are cryptographic proto-
cols that enable a prover to demonstrate the correctness of
a statement to a verifier, without disclosing any additional
information apart from the statement’s correctness [14]. They
are utilized in different fields such as set membership [15],
training model proofs [16], and smart contracts to guarantee
privacy and security [17]. Within the realm of ZKPs, Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge
(zk-SNARK) represents a particular form of zero-knowledge
proof characterized by its compact proof size and efficient
verification [18]. zk-SNARKs offer a concise and effective
method for validating computation accuracy, thereby lessening
the computational load on verification entities [19].

ZKP and zk-SNARK are widely used in verifiable machine
learning. Verifiable machine learning refers to the application
of cryptography to offer evidence regarding the accuracy and
inference outcomes of machine learning models, while keeping
the models or the input undisclosed [20]. ZKP can guarantee
the integrity of model training in machine learning, while
preserving the privacy of the server’s intellectual property
and maintaining the integrity of the training process [21].
ZKP can also facilitate the verification of decision tree model
predictions and their accuracy on datasets without disclosing
any proprietary information about the models themselves [22].

III. PRELIMINARIES

A. Zero Knowledge Proof

A ZKP compiler called ZEN [23] has been developed
to optimize the generation of efficient and verifiable zero-
knowledge neural network inference schemes. Specifically,
ZEN comprises two components: ZENacc and ZENinfer. The
ZENacc component is designed to furnish zero-knowledge
proofs for the accuracy of a model, while simultaneously
preserving the privacy of the model itself. Meanwhile, the
ZENinfer component is responsible for providing zero-
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Fig. 1. Overview of Blockchain-based AIGC System

knowledge proofs for the outcomes generated by the verified
model, ensuring the confidentiality of the input data throughout
the process.

ZENacc includes four functions:
• ZENacc.GEN generates proving and verification keys

using a neural network model and a security parameter.
• ZENacc.Commit creates a commitment to the model.
• ZENacc.Prove produces a proof of the model’s accuracy

using the model, test dataset, and proving key.
• ZENacc.Verify uses the commitment, proof, verification

key, and the accuracy to confirm the model’s accuracy
while protecting privacy.

ZENinfer consists of three functions:
• ZENinfer.GEN, which generates proving and verification

keys using a neural network model and a security param-
eter.

• ZENinfer.Prove, which produces a proof of the model’s
result utilizing the model, input data, and proving key

• ZENinfer.Verify, which employs the proof, verification
key, and the result to validate the model’s output while
ensuring the privacy of the input data.

IV. CHALLENGES IN AIGC DATASET REGULATION

In this section, we first review the blockchain-based AIGC
service system. Then, we analyze the problems and challenges
of AIGC dataset regulation in AIGC service.

A. Overview of Blockchain-Based AIGC Service System

The overview of blockchain-based AIGC service system
is shown in Fig. 1. The system comprises the following
entities: AIGC service provider, AIGC user, edge server, and
cloud server. We will first introduce the complete process of
blockchain-based AIGC system.

The AIGC service system initiates with the AIGC service
provider conducting pre-training of AIGC base models on the
cloud server using training datasets. Following the pre-training
phase, the AIGC service provider proceeds to deliver the base
model to edge servers via network. Consequently, the edge
server is equipped to deliver AIGC services to users within
the respective region.

Before offering AIGC services to users, the AIGC service
provider must register their services on the blockchain using

smart contracts to showcase their ability to provide AIGC
services. A user requiring AIGC service will submit a service
request to the smart contract on the blockchain. The smart
contract will then match the service request with the corre-
sponding service and send the matching result to both the
AIGC service provider and the user. The transactions between
AIGC users and AIGC service providers will utilize tokens on
the blockchain. Leveraging the distributed ledger capability of
blockchain enables the establishment of secure transactions,
thereby ensuring trust and integrity in the interactions between
AIGC users and AIGC service providers.

AIGC users often have diverse requirements for AIGC
services, often providing domain-specific datasets for fine-
tuning the AIGC model to achieve their desired output. The
edge server will use these fine-tuning datasets to fine-tune
AIGC models. This fine-tuning involves adjusting the model’s
parameters to better suit these identified tasks using provided
fune-tuning dataset. Once the fine-tuning of the model is
complete, AIGC users are able to submit instructions for
utilizing the fine-tuned model to obtain their desired output re-
sults. This iterative process may encompass multiple rounds of
refinement, each aimed at improving the model’s performance
and output quality for the specific applications envisaged by
AIGC users.

After completing the AIGC service, users are encouraged
to submit brief feedback on the service. The feedback infor-
mation will be recorded on the blockchain, which can help
improve the quality of AIGC services and assist others in
choosing appropriate AIGC services.

B. Challenges of AIGC Dataset Regulation

In this AIGC service system, regulators often raise concerns
regarding the usage of datasets. Improper handling of datasets
can give rise to various issues. For instance, if a dataset
contains data related to privacy or copyright, it could poten-
tially lead to legal disputes. Similarly, if the dataset contains
inappropriate information, it may result in the generation of
inaccurate or improper results by AIGC models. Consequently,
the implementation of an AIGC dataset supervision system
becomes imperative. However, challenges such as manual
supervision difficulty, data leakage concerns, and third-party
regulatory misconduct impede research advancement.

Firstly, in AIGC service system, the fine-tuning datasets
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are often comprised of numerous smaller subsets, rendering
manual supervision impractical due to their substantial volume
and high frequency of updates. Similarly, the training datasets
are typically large-scale, making manual oversight ineffec-
tive. Consequently, the exploration of automated methods for
dataset supervision is indispensable. Recent advancements in
AI have made it feasible to employ algorithms for automatic
data inspection. Utilizing these AI algorithms can facilitate
automated supervision, aiding in adherence to privacy regula-
tions and copyright protection within AIGC service system.

Secondly, there exists a risk of data leaks in the regulation
process of AIGC dataset, where datasets may contain critical
information for their owners. Such leaks could infringe upon
the owners’ rights. This risk may deter dataset holders from
engaging in regulation. Thus, a regulatory method that en-
sures data privacy is necessary. Zero-knowledge proof (ZKP),
renowned for providing verification while maintaining data
confidentiality, emerges as a viable solution. Implementing
ZKP in the regulation of AIGC datasets could offer a robust
method for privacy-protective regulation.

Thirdly, employing third-party supervision in AIGC service
can lead to potential misconduct by these external supervi-
sors. These parties might engage in biased behavior, such as
applying different regulatory standards to various individuals,
thus impeding fair regulation. A method to mitigate third-party
misconduct is essential. Blockchain technology, known for its
transparency and immutability, offers a promising approach.
Additionally, the capability of blockchain to automate smart
contracts presents an opportunity to develop an automated
regulatory verification system, potentially enhancing the effi-
ciency and integrity of the regulatory process. To address these
issues, we propose a blockchain-based AIGC service system
employing zero-knowledge proofs for dataset regulation.

V. BLOCKCHAIN-BASED DATASET REGULATION SYSTEM

Leveraging the transparent characteristics of blockchain
and its ability to execute smart contracts, we have designed
a blockchain-based AIGC dataset regulation system. This
system integrates AI functionalities to automate the dataset
review process. To maintain privacy throughout the regulatory
procedure, ZKP technology is utilized. Fig. 2 provides an
overview of the regulation system.

A. System Components in Dataset Regulation System

The system comprises the following components.
Data Regulator: The data regulator plays a pivotal role

in formulating regulatory rules for governing datasets. This
involves creating and providing distinct example regulatory
datasets tailored for different types of regulatory subjects,
such as separate sets for training and fine-tuning datasets. The
regulatory rules and information of these datasets are securely
stored on the blockchain. Additionally, the data regulator is
responsible for deploying smart contracts on the blockchain,
which are designed to facilitate the verification process for a
AI model for regulation.

AIGC Service Provider: The AIGC service provider offers
AI-generated content services within edge networks. They

utilize cloud servers for the pre-training of AIGC models and
edge servers to deliver AIGC services to users. To ensure that
their training dataset adheres to regulatory standards, AIGC
service providers employ AI models and ZKP to generate
proofs for datasets on cloud server. These proofs are then
verified using smart contracts to demonstrate compliance with
the established regulatory requirements.

AIGC User: The AIGC users access AIGC services via the
edge server. They provide a fine-tuning dataset to the edge
server for the purpose of fine-tuning the AIGC model and
subsequently receive results from this tailored model. After the
AIGC service, users are encouraged to offer feedback about
their experience. To demonstrate that their fine-tuning dataset
meets regulatory standards, users will employ the edge server
to generate a proof for the dataset using AI models and ZKP.
This proof is then verified through smart contracts, ensuring
and indicating compliance with the established regulatory
requirements.

Cloud Server: The cloud server has a dual role in the AIGC
system. Firstly, it is used for the pre-training of AIGC models
and for training AI models to meet regulatory compliance
standards. Additionally, the cloud server computes a zero-
knowledge proof for the training dataset to ensure compliance
with regulatory standards. This proof is then forwarded to the
AIGC service provider.

Edge Server: Edge servers are used to deploy AIGC mod-
els, offering users model fine-tuning and inference services.
These servers, upon receiving fine-tuning datasets from users,
fine-tune the model accordingly. Subsequently, they provide
inference outputs based on these personalized models. Addi-
tionally, edge servers are instrumental in training regulation
models. These models are used to generating zero-knowledge
proofs associated with users’ fine-tuning datasets. These proofs
validate the compliance of datasets with regulatory require-
ments before being returned to the users.

Key Management System (KMS): The Key Management
System is a trusted setup place that plays a vital role in
generating proving keys and verification keys for AI models
for regulatory purposes. KMS can be a trusted third party, or
it can be achieved through multi-party computation. When it
receives a model from an edge or cloud server, the system is
responsible for creating proving keys and verification keys for
ZENacc and ZENinfer. These keys are then distributed to the
relevant parties as needed, facilitating the regulatory processes.

AI Models for Regulation: AI models are used to supervise
dataset compliance. They are trained by cloud servers and edge
servers according to regulatory rules and example regulatory
datasets provided by the data regulator. The cloud server trains
AI models to regulate training datasets, while edge servers
train models to regulate fine-tuning datasets. The regulation
models take a dataset as input and output whether the dataset
complies with regulatory standards.

ZKP for Regulation: The system uses the ZEN [23]
scheme, which includes ZENacc and ZENinfer components, to
implement ZKP. ZENacc is used to demonstrate the accuracy
of the regulation AI model on example regulatory datasets,
without revealing the model itself. ZENinfer is used to prove
that a dataset complies with regulatory rules, without revealing
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Fig. 2. Blockchain-Based AIGC Zero Knowledge Dataset Regulation System

the contents of the dataset. The application of ZKP guarantees
the privacy of both the regulatory AI model and datasets.

Blockchain: The blockchain in this context serves three
critical functions. First, it offers a decentralized platform for
executing smart contracts, which are utilized to supervise
datasets. Second, the blockchain acts as an immutable storage
medium for information about regulatory datasets, ensuring
transparent regulatory standards. Finally, it stores both the de-
tails and the proof of dataset regulation outcomes, facilitating
regulatory inquiries and the preservation of this information.

Smart Contract: Smart contracts in this framework are
specifically deployed for dataset regulation. Each smart con-
tract associated with an AI regulation model is deployed using
its inference verification key. These contracts are designed to
receive users’ signature, commitments and proofs for datasets
as inputs. Their primary function is to verify the compliance
of these datasets with predefined regulatory rules. Upon suc-
cessful verification, the smart contract records key information
about the dataset regulation on the blockchain. The process of
smart contracts is shown in Algorithm 1.

B. Blockchain-based Dataset Regulation System

The process of the blockchain-based AIGC dataset regula-
tion system is depicted in Fig. 2. The system consists of two
stages: the initialization stage and the regulation stage.

In the initialization stage of this AIGC system, the data
regulator begins by providing regulatory rules and example
regulatory datasets. These are essential for the regulation for
training and fine-tuning datasets datasets. The information per-
taining to these rules and datasets is stored on the blockchain,
ensuring transparency and consistency in regulatory standards,
thereby preventing the application of different standards to
different entities. Following this, both the cloud server and
edge servers engage in training AI models in accordance with
the established regulation rules. Post-training, these servers
interact with a KMS to obtain a set of keys: the proving
key pka and verification key vka for ZENacc, and similarly, a
proving key pki and verification key vki for ZENinfer. These

Algorithm 1: Smart Contract for Dataset Regulation
Input: Signature s, Dataset commitment cmd, Model

commitment cmm, Output y, Proof π
Output: Verification Result (True/False)
Function createVerifyingKey():

Create verifying key vk from stored constant
variables;

return vk
return
Function saveInformation(s, cmd, cmm, y, π):

Emit event(s, cmd, cmm, y, π);
return
Function verifyProof(s, cmd, cmm, y, π):

vk ← createVerifyingKey() ;
if ZENinfer.Verify(vk, cmd, cmm, y, π) == True
then
saveInformation(s, cmd, cmm, y, π);
return True;

else
return False;

end
return

regulation models will be kept secret afterwards. Then the
cloud server is responsible for computing the accuracy of the
regulation model on example regulatory datasets for training
dataset regulation, while the edge server performs a similar
task for fine-tuning datasets regulation. Both servers utilize
ZENacc.Commit and ZENacc.Prove to create a commitment
for the model alongside a zero-knowledge proof of the model’s
accuracy on these datasets, which serves to protect the privacy
of the trained model. Subsequently, the servers transmit the
commitment, proof, and both vka and vki to the regulator.
The data regulator uses vka to verify the model’s accuracy.
If this verification is successful, vki is then employed to
deploy a smart contract. This contract is designed for verifying
inference result proofs from the AI regulation model. Once the
smart contract is deployed, the initialization stage concludes.
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In the regulation phase, the AIGC service provider sends
training datasets to the cloud server. Then the cloud server
generates a zero-knowledge proof for this dataset using the
regulation model via ZENinfer.Prove, which is sent to the
AIGC service provider. This provider then sends signature and
the proof to the smart contract for regulation of the specific
training dataset. The smart contract performs verification us-
ing ZENinfer.Verify and, post-verification, stores the proof
information for the training dataset on the blockchain for
subsequent regulation queries. Similarly, AIGC user initially
transmits the fine-tuning dataset to the edge server to fine-tune
the model. Prior to this fine-tuning, the edge server employs
ZENinfer.Prove to create a zero-knowledge proof for the fine-
tuning dataset using a regulation model, which is then returned
to the AIGC user. This user subsequently sends signature and
the proof to a smart contract designated for regulating the
specific fine-tuning dataset. The smart contract validates the
proof through ZENinfer.Verify. Upon successful verification,
it records the proof details for the fine-tuning dataset on the
blockchain, enabling future regulation inquiries.

C. Design of Zero Knowledge Proof

The ZEN scheme [23] is employed in the regulation system
to conceal the regulation model and the content of the dataset
during the data supervision process. The accuracy of the
regulation model on the datasets can be verified using ZENacc.
The compliance of the dataset can be verified using ZENinfer.
The utilization of the ZEN scheme ensures the preservation
of model privacy and dataset privacy during the supervision
process. The system includes two proof and verification pro-
cesses: one to prove the accuracy of the regulation model on
example regulatory datasets, and another to prove the dataset’s
compliance with regulation rules.

In the accuracy proof process, the roles of prover and
verifier are assigned to the cloud and edge servers, and
the data regulator, respectively. The process initiates with
the prover sending the model to the KMS. The KMS then
employs ZENacc.Gen to generate the proving key pka and
verification key vka for the accuracy proof. Additionally,
it uses ZENinfer.Gen to produce the proving key pki and
verification key vki for the inference proof. Once the KMS
dispatches these keys to the prover, the prover, having received
pka, utilizes ZENacc.Commit to create a commitment for
the model. Following this, the prover uses ZENacc.Prove to
generate a proof that prove the model’s accuracy on the
example regulatory dataset. Subsequently, the prover forwards
the commitment, proof, vka, and vki to the verifier. The
verifier then applies ZENacc.Verify to authenticate the proof.
After verification, the verifier will deploy a smart contract for
this model using vki. This systematic process ensures that the
accuracy of the model is validated in a secure and reliable
manner, adhering to the established regulatory standards.

In the inference proof process, the cloud and edge servers
act as the prover, while the smart contract serves as the verifier.
The prover begins by utilizing pki and ZENinfer.Prove to
generate a proof for either the training or the fine-tuning
dataset dataset. Following the generation of this proof, it is
sent to the specific smart contract designated for this purpose.

Upon receiving the proof, the smart contract employs its built-
in verification key vki to verify the proof’s authenticity using
ZENinfer.Verify. This methodical approach guarantees that
the verification of the inference results is conducted securely,
ensuring that no additional information is disclosed.

D. Discussion

1) Regulation Flexibility
The proposed system utilizes AI models to supervise

datasets in the AIGC service system. To comply with reg-
ulatory requirements set by a data regulator, multiple cloud
servers can be utilized to train various regulation AI models
for these rules. In practical scenarios, different countries and
regions have distinct data requirements and limitations. The
proposed framework addresses this diversity by depicting it
through multiple data regulators. Each data regulator repre-
sents a regulation standard within a specific jurisdiction, and
corresponding smart contracts can be implemented on the
blockchain to support the regulation. This method offers a
flexible mechanism for varied regional regulation rules.

2) Scalability
The scalability of the proposed system is influenced by

several factors, such as servers and the blockchain. Server-side
scalability depends on the infrastructure, where the number of
servers impacts the system’s ability to generate proofs concur-
rently, and each server’s computational capacity determines the
speed of proof generation. Blockchain-side scalability relies
on smart contracts’ efficiency on the blockchain and choosing
an appropriate blockchain platform is crucial due to varying
transaction processing speeds and smart contract execution
capabilities offered by different platforms.

3) Potential for Cross-Domain Application
The proposed system shows great potential for application

in different domains beyond its initial scope. This system
utilizes AI to manage datasets, which can be adjusted to
oversee and guarantee compliance of datasets in various fields.
For instance, in the healthcare industry, the system could be
used to ensure compliance and protect privacy. With growing
focus on data compliance, the capability to supervise these
datasets effectively and accurately is crucial. Hence, this
system becomes a valuable tool for maintaining data integrity
and compliance across diverse areas.

VI. ANALYSIS

A. Security Analysis

The system is designed to safeguard both the privacy of
the regulation model and the input dataset. Regarding the
regulation model’s privacy, the servers generate a commitment
using the model and a random factor. This commitment, made
available to others, reveals nothing about the model itself,
thereby maintaining its confidentiality. For the dataset’s pri-
vacy, the system only discloses the inference result, along with
the associated commitment and proof. This limited disclosure
ensures that no information about the datasets can be inferred
by external parties. As a result, the privacy of the datasets
is effectively protected. This dual-layered approach to privacy
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protection is integral to the system’s design, ensuring secure
and confidential data handling.

B. Performance Analysis

The system was evaluated on a MacBook Air M2 with
8GB RAM using simulations that focused on performance and
resource usage. The assessment included measuring the time
taken for zero-knowledge proof processes and the gas used
during smart contract execution.

In this simulation, we hypothesize a scenario mandated by
a data regulator to exclude facial information from the image
dataset. Utilizing the CIFAR-10 [24] and ORL [25] datasets,
we developed a facial classification model based on the LeNet
[26] architecture. The model comprises three convolutional
layers with ReLU activations and average pooling, followed by
two fully connected layers to generate a binary classification
output. This model takes a dataset as input and outputs a
result list identifying whether the dataset contains facial in-
formation. Subsequently, we used subsets of 10,000 to 50,000
images from CIFAR-10 for evaluation. Upon completion of the
model’s execution, we employed the ZENinfer framework to
generate and verify zero-knowledge proofs. The supervision
process includes the following steps: 1) The model receives
the dataset as input and produces the supervision result.
While executing the model, quantization is performed to store
quantitative intermediate weight and result. 2) The ZENinfer

framework utilizes the quantitative intermediate weight and
result to create proof for the supervision process. 3) The proof
is sent to a smart contract for verification.

Fig. 3. Time vs Different dataset size

In zero-knowledge proof systems, the time expenditure
is categorized into three distinct phases: preparation, proof
generation, and verification. The preparation phase encom-
passes tasks such as data acquisition, model execution, and
model quantization, which involves transforming the model’s
floating-point values into integers. The proof generation phase
is dedicated to creating zero-knowledge proofs based on the

quantized models. Finally, the verification phase involves the
authentication of the zero-knowledge proofs. Fig. 3 depicts
the relationship between dataset size and the time required
for zero-knowledge proof processing. The graph reveals a
roughly proportional correlation between preparation time and
dataset size. Conversely, because the model used is the same,
both proof generation and verification time remain constant,
exhibiting no variation in response to changes in dataset size.

Fig. 4. Gas usage vs Different dataset size

To analyze the gas consumption in smart contract vali-
dation, we deployed a validator-specific smart contract on
the Ethereum Sepolia testnet. This enabled the measurement
of gas usage during the verification of five unique zero-
knowledge proofs in the smart contract. Data presented in
Fig. 4 encompasses the gas usage, gas fee, and transaction
fee for different verifications. Insights from this figure reveal
minimal variation in gas consumption for verifying diverse
zero-knowledge proofs. This uniformity in gas requirements
for proof verification is likely due to the similar sizes of
the generated proofs, implying a consistent gas demand for
verifying smart contract proofs.

These experiments successfully showcase the performance
and resource utilization of the proposed system, emphasizing
two key aspects: time spent across various stages and the gas
consumption in smart contract verification. The results provide
crucial insights into the efficiency and performance of zero-
knowledge proof systems within blockchain applications.

VII. FUTURE RESEARCH DIRECTIONS

A. ZKP Improvement

The usage of ZKP may introduce certain issues. Current
ZKP algorithm introduces computational overhead. The effi-
ciency of ZKP is crucial for the practical implementation of
our proposed system. Future research should focus on develop-
ing high-efficiency ZKP algorithms, which involves optimizing
algorithms to reduce computational overhead. Research efforts
should also focus on ensuring the post-quantum security of the
ZKP algorithm against quantum computing threats. Further-
more, current ZKP needs specialized knowledge to implement
and verify the proofs. Establishing standards for ZKP in
dataset regulation is necessary to enhance interoperability and
increase adoption rates.

B. Scalability

To ensure the system can handle increasing volumes of
data and users, future work should focus on enhancing overall
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system scalability. Improving server infrastructure by inves-
tigating distributed computing architectures and load balanc-
ing techniques could greatly enhance the system’s ability to
generate proofs. Investigating options like layer-2 scaling or
alternative consensus mechanisms may assist the blockchain
component in managing a higher volume of smart contract
interactions.

C. Real-world Deployment

To transition from theoretical model to practical application,
future research should focus on deploying the system in
real-world scenarios. Conducting comprehensive testing in
real-world conditions will help identify potential issues and
areas for improvement that may not be apparent in simulated
environments. Gathering and analyzing data on the system’s
performance, user experience, and regulatory effectiveness will
be crucial for refining the system and demonstrating its value
to potential adopters.

VIII. CONCLUSION

In this study, we initially explore AIGC and AIGC service,
underscoring the necessity for dataset regulation. We delve into
the complexities associated with dataset governance in AIGC
service system, and introduce a novel solution: a blockchain-
based AIGC zero knowledge dataset regulation system. Our
proposed system leverages AI for automated regulation, em-
ploys ZKP for data privacy, and integrates blockchain and
smart contracts to mitigate third-party misconduct. The paper
further presents a security analysis and performance simula-
tion of our system. This includes an assessment of privacy
safeguards, efficiency metrics like proof generation and verifi-
cation time, and the resource consumption for smart contract
verification proofs. This approach ensures that the system is
not only private but also practical for AIGC service system.
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