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ABSTRACT
Blockchain-based Web 3.0, denoting the next-generation Internet,

has attracted attention from academia and industry. However, the

open-source application and the decentralized storage of users’

interaction data break down the algorithm and data barriers, result-

ing in more fierce competition among service providers. To cope

with the competition, decentralized exchanges (DEXs), the finan-

cial infrastructures of Web 3.0, adopt the transaction fee mining
mechanism, which refunds the transaction fees to users in the form

of governance tokens. However, the ratio of governance tokens a

DEX decides to give to users would affect the enthusiasm of users

to participate, which has not been discussed yet. In this paper, we

establish the DEX market with transaction fee mining and formu-

late our model based on the Hotelling model. Besides, we propose

a two-stage game to formulate the interaction between DEXs and

users and derive the equilibriums under different conditions of two

parameters: the transaction cost difference and users’ stickiness.

We show that though the service provider with a lower transaction

cost can win the market, users’ stickiness can offset the market

advantage. Thus, incentivizing users with transaction fee mining

has become a crucial strategy in the duopoly competition.

CCS CONCEPTS
• Networks → Network economics.
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1 INTRODUCTION
Blockchain-based Web 3.0 is regarded as the next-generation Inter-

net, providing users with decentralized services running on smart

contracts [5]. Smart contracts that provide services in Web 3.0

are open-source, ensuring that these smart contracts cannot be

tampered [19] [8]. Besides, users’ interaction data is stored on the

blockchain and can be accessed by everyone.

The open-source application and the decentralized storage of

users’ interaction data break down the algorithm and data barriers

established in Web 2.0 enterprises, resulting in more fierce compe-

tition among Web 3.0 service providers. For example, Uniswap
1
,

one of the most popular financial infrastructure providers for Web

3.0, lost more than 50% of its liquidity in just a few days after

SushiSwap
2
forked its code and launched a vampire attack. Due

to the loss of data barriers, the value of users’ interaction data no

longer belongs to service providers but users themselves, which sig-

nificantly reduces users’ dependence on service providers. Besides,

the value of Web 3.0 applications is provided by users’ interaction

data other than the applications themselves. Users can fork a new

application by themselves and continue to use the interaction data

in the previous application. Hence, service providers in Web 3.0

reward users who have used their applications with governance

tokens, which are tokens that have both governance rights and

economic values. Otherwise, users can get back their value by es-

tablishing a decentralized autonomous organization (DAO) and

1
https://uniswap.org/

2
https://sushi.com/
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issuing governance tokens by themselves. For example, OpenSea
3
,

the NFT exchange of Web 3.0, intends to offer shares through an

initial public offering (IPO), in which case users cannot get the

value they deserve. It triggers its users to establish OpenDAO
4
and

issue governance tokens called SOS to users traded in Opensea.

Therefore, in the fierce competition of the Web 3.0 era, competing

for and retaining users is a problem that all service providers of

Web 3.0 applications have to consider.

In order to cope with the fierce competition, decentralized ex-

changes (DEXs), one of the most influential applications in Web

3.0, adopt the transaction fee mining mechanism. When users swap

tokens in the DEXs, they need to pay the transaction fee, which

normally takes up 0.3% of the transaction volume. With the trans-

action fee mining mechanism, the DEX refunds the transaction fee

to users in the form of governance tokens, which have attracted

many cost-sensitive users. After dYdX
5
launched its governance

tokens DYDX and announced it would offer the transaction fee

mining, its trading volume skyrocketed in August 2021. According

to CoinGecko, the total trading volume of dYdX reached $9.8 billion

in a month, with daily trading volume exceeding $2.8 billion at one

point
6
.

Asmore andmoreDEXs offer the transaction feemining (MDEX
7
,

IDEX
8
, etc.), competition among different DEXs become increas-

ingly fierce. Unlike competition in other markets, users in the DEX

market not only compare transaction costs but also consider the

rewards of the transaction fee mining. The transaction costs in

DEXs mainly consist of the transaction fees and the gas fees. As

mentioned before, the transaction fees are the costs for swapping

tokens in DEXs. Meanwhile, the gas fees are the costs for running

smart contracts on the blockchain, and smart contracts of different

DEXs consume various gas fees
9
. Users prefer to choose the DEX

with less transaction cost. Besides, the rewards of the transaction

fee mining depend on both the number and value of the received

governance tokens. The number of governance tokens users receive

is determined by the incentive level, which is the proportion of the

governance tokens that DEXs decided to give back to users as re-

wards. As for the governance tokens’ value, Stylianou et al. [17]

and Gandal et al. [11] proposed that the governance tokens have

network effects, and their value is determined by their user base.

A higher incentive level can attract more users and thus higher

value of governance tokens. Therefore, the competition in the DEX

market is a competition of both service providers’ transaction costs

and provided incentive levels.

At the same time, the transaction fee mining affects the supply

of governance tokens, leading to price changes in the secondary

market. According to the analysis from HiveTech
10
, transaction

fee mining increases selling pressure on DYDX and leads to its

price decrease. As its price decreases, so do users’ enthusiasm to

engage in transaction fee mining, leading to an overall decline in

3
https://opensea.io/

4
https://www.theopendao.com/

5
https://dydx.exchange/

6
https://www.coingecko.com/en/exchanges/dydx_perpetual#statistics

7
https://mdex.com/

8
https://idex.io/

9
https://debank.com/

10
https://mirror.xyz/0x633653A579959D7e2C0331A4d0Ef0D114Fd47aA4/

BG2zBm-Bo5p51bDmyslqzDgKQ34xMCi2hz7g7nbO7xI

dYdX’s trading volume. We do not consider the price changes of

the governance tokens in this work. Instead, we emphasize the

importance of determining the incentive level for DEXs.

In this paper, we establish the DEX market with transaction fee

mining and formulate competition among different DEXs based

on the Hotelling model. We consider the DEX market that con-

sists of two service providers and assume that they have different

transaction costs without loss of generality. Meanwhile, users have

different preferences for service providers, and users’ stickiness

measures the cost for switching platforms. To analyze the competi-

tion between service providers, we consider the incentive levels as

the decisions of service providers in our model, which is different

from the Hotelling model. Besides, we propose a two-stage game to

formulate the interactions between service providers and users, and

derive the equilibriums under different conditions of two parame-

ters: the transaction cost difference and users’ stickiness. In Stage I,

service providers optimize their incentive levels to maximize their

profits. After service providers decide their incentive levels (Stage

II), each user chooses the service provider who provides a higher

payoff.

In summary, our key contributions are as follows.

• To the best of our knowledge, we are the first to formulate

the DEX market competition with transaction fee mining.

Besides, our model derives service providers’ optimal incen-

tive levels, which have not been discussed in the context of

platform competition.

• We derive the equilibriums whose objective function in-

volves piece-wise functions that vary under different condi-

tions of the transaction cost difference and users’ stickiness

and analyze the equilibrium results under different parame-

ter conditions.

• We provide insight for DEXs competition by revealing the

equilibriums results.We show that though the service provider

with a lower transaction cost can win the market, users’

stickiness can offset the market advantage. In the most in-

tense competition cases, service providers compete with each

other, and both of them incentivize users with transaction

fee mining.

The remainder of this paper is organized as follows: Section 2

presents the related works and analyzes the difference between our

work and the state-of-the-ark work. The system model is presented

in Section 3. We analyze users’ decisions in Stage II and service

providers’ decisions in Stage I in Sections 4 and 5 separately. Finally,

we conduct simulations to verify the effectiveness of the results in

Section 6. Lastly, we conclude this paper in Section 7 .

2 RELATEDWORK
2.1 DEXs
The popularity of the blockchain-based Web 3.0 has attracted the

attention of academia. Many scholars attempt to analyze the DEX

market and the blockchain-driven Metaverse (e.g., Duan et al. [7]).

In the state-of-the-art literature, related studies in the DEX market

mainly focus on the problem of impermanent loss (e.g., Loesch et al.

[15]), cyclic arbitrage (e.g., Wang et al. [18]) and multi-asset trading

(e.g., Angeris et al. [2], Angeris et al. [3]), etc. Especially, Angeris et

al. [4] give a formal analysis on the market model of a DEX called
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Uniswap and present optimal arbitrage actions. To the best of our

knowledge, our paper is the first paper to analyze the platform

competition in DEX market.

2.2 Platform Competition
Market competition has always been a subject of extensive research.

In Hotelling’s pioneering paper [12], he considered the price compe-

tition between two sellers in a one-dimensional market with linear

transportation costs. Based on the model proposed by Hotelling,

many scholars have studied the platform competition in different

markets, such as the competition among media platforms (e.g., An-

derson et al. [1]; Reisinger [16]), competition among P2P lending

platforms (e.g., Liu et al. [14]) and competition among different

blockchains (e.g., Jiang et al. [13]). However, the research on the

competition between DEXs is still blank at present. Unlike other

markets, there exists a new mechanism called transaction fee min-

ing in the DEX market. Specifically, the transaction fees paid by

users when they trade in DEX are returned to the users in the

form of governance tokens. Therefore, the competition between

different DEXs under the mechanism of transaction fee mining is

worth discussing. Inspired by the model proposed by Fang et al.

[9], we formulate the competition among different DEXs under the

transaction fee mining.

3 SYSTEM MODEL
In this section, we first establish the DEX market and briefly intro-

duce the models in Section 3.1. Then, we study the strategies of

service providers and users in Section 3.2. Then, we establish the

models of users’ payoff and service providers’ profits in Section 3.3

and Section 3.4, respectively. Finally, we formulate the interactions

between DEXs and users in a two-stage game in Section 3.5. The

list of key notations is shown in Table 1.

3.1 Preliminary
The system architecture of the DEX market is shown in Fig.1.

The service providers (e.g., Uniswap, dYdX) provide smart con-

tracts, and users can swap tokens by calling smart contracts with

their blockchain addresses. Since these services are running on the

blockchain, the interaction data is open and can be accessed by

everyone.

In our model, we consider the DEX market that consists of two

service providers (1 and 2) and a set of users M = {1, 2, ..., 𝑀}.
Without loss of generality, we normalize the number of users as one.

The number of users who choose service provider 𝑖 is denoted by𝑁𝑖 ,

andwe can achieve that sum of users choosing two service providers

is one, i.e., 𝑁1 + 𝑁2 = 1. Meanwhile, we refer to the transaction

cost of service provider 𝑖 as 𝑃𝑖 . We assume service provider 1 has a

higher transaction cost without loss of generality, i.e., 𝑃1 ≥ 𝑃2 > 0.

Note that such a duopoly model is widely adopted by literature in

platform competition [6] and blockchain competition [13], etc.

In the DEX market, there is a new type of incentive mechanism

called transaction fee mining, which is different from the previous

economic model. The platforms in the sharing economy (e.g., Uber

and Didi) provide users with subsidies in order to win a larger

market share[10]. Meanwhile, the service providers in the DEX

market issue governance tokens to users as subsidies for transaction

Figure 1: System Architecture

fees. The proportion of the governance tokens that DEXs decide

to give to users is determined by the incentive level. The incentive

level of service provider 𝑖 is denoted by 𝛽𝑖 . The value of governance

tokens is proportional to the user bases of service providers, and

its value varies as the market share of the service provider changes.

Users in the DEX market can achieve desired services and obtain

profits from the network effect of the selected service providers.

As shown in Fig.2, we establish our model based on the Hotelling

Model [12]. We assume that users are uniformly distributed on the

line segment [0, 1], and two service providers are located on the

endpoints, where users’ locations characterize their preferences

on service providers. Meanwhile, users’ stickiness measures the

cost for switching platforms and we denote users’ stickiness by 𝜆.

Different from the Hotelling Model, our model focus on discussing

the incentive level of service providers.

Figure 2: Hotelling Line

3.2 Strategies of Service Providers and Users
3.2.1 Service Providers’ Strategies. For service provider 𝑖 ∈ {1, 2},
he needs to decide his incentive level 𝛽𝑖 ∈ [0, 1]. When making

decisions on the incentive level, service providers have a trade-off

between the user base and the loss of issuing governance tokens

to users. The service provider who sets a high incentive level can

win a larger user base. Due to the network effect, the value of its

governance tokens becomes higher. However, its loss is also larger

since more governance tokens are given to users.

3.2.2 Users’ Strategies. For user 𝑚 ∈ M, he needs to choose a

service provider 𝑖 ∈ {1, 2}. User𝑚’s location on the line segment

characterizes his preference. Besides, he compares the transaction

cost and the reward offered by transaction fee mining. Considering
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all the above factors, he chooses the service provider who provides

a higher payoff.

3.3 Users’ Payoff
Users get different payoffswhen choosing different service providers.

As mentioned above, users’ payoff includes three parts: transaction

cost 𝑃 , personal preference, and the reward offered by transaction

fee mining.

We refer user𝑚’s location on the line segment as 𝑥𝑚 and |𝑥𝑚−𝑥𝑖 |
is the distance between user𝑚 and service provider 𝑖 . Since two

service providers are located on the endpoint, we can get user𝑚’s

distances to service providers 1 and 2 are 𝑥𝑚 and 1−𝑥𝑚 , respectively.

In the Hotelling model, 𝜆 is the travel cost, while 𝜆 represents a

user’s stickiness towards the service provider in our case. The larger

𝜆 is, the higher user’s cost is to switch from his preferred service

provider to another.

The reward offered by transaction fee mining is the product of

the number and value of received governance tokens. The number

of received governance tokens is determined by service provider

𝑖’s incentive level 𝛽𝑖 . As for the value, it is determined by its user

base 𝑁𝑖 . Hence, the reward users receive becomes 𝛽𝑖𝑁𝑖 .

Hence, when user𝑚 choose service provider 𝑖 , the user’s payoff

is summarized as follows:

𝑈 𝑖
𝑚 = −𝑃𝑖 + 𝛽𝑖𝑁𝑖 − 𝜆 |𝑥 − 𝑥𝑖 |, 𝑖 ∈ {1, 2}. (1)

3.4 Service Providers’ Profits
Unlike other markets, the transaction fee in the DEX market is

not the service providers’ profits. The profit of service provider 𝑖

comes from the network effect of the governance tokens he owns,

which is determined by their user base 𝑁𝑖 . Meanwhile, 𝛽𝑖𝑁𝑖 is the

proportion of governance tokens that are given to users who choose

service provider 𝑖 .

Though service providers can attract users by providing trans-

action fee mining, they need to consider the trade-off between the

loss of issuing away governance tokens and the profits gained from

the network effect of their remaining governance tokens.

Hence, the profits of service provider 𝑖 is summarized as follows:

Π𝑖 (𝛽𝑖 ) = (1 − 𝛽𝑖𝑁𝑖 )𝑁𝑖 , 𝑖 ∈ {1, 2}. (2)

3.5 The Two-stage Game
As shown in Fig.3, we formulate the interactions between ser-

vice providers and users as a two-stage game. In Stage I, service

providers optimize their incentive levels to maximize their profits.

After service providers decide their incentive levels (Stage II), each

user chooses the service provider who provides a higher payoff.

Figure 3: The Two-stage Game

We analyze the Nash equilibrium of the two-stage game by back-

ward induction. We analyze users’ decisions in Section 4 and derive

the equilibriums of service providers’ decisions in Section 5.

Table 1: Key Notations

Symbol Definition

M The set of users

𝑥𝑚 The location of user𝑚

𝜆 Users’ stickiness

𝑃𝑖 The cost of users for using service provider 𝑖’s

service

𝑁𝑖 The number of users who choose service provider

𝑖

𝛽𝑖 The incentive level provided by service provider 𝑖

Π𝑖 (𝛽𝑖 ) The profit of service provider 𝑖 with his strategy

𝛽𝑖
𝑈 𝑖
𝑚 The payoff of user𝑚 who choose service provider

𝑖

4 USERS’ DECISIONS IN STAGE II
In this section, we analyze users’ decisions in Stage II. Specifi-

cally, users compare payoffs provided by two service providers and

choose service provider 𝑖 ∈ {1, 2} who offers the higher payoff. Re-

call that payoff of user𝑚 defined in Eq.1, user𝑚’s optimal service

provider 𝑖∗ is:

𝑖∗ = argmax

𝑖∈{1,2}
− 𝑃𝑖 + 𝛽𝑖𝑁𝑖 − 𝜆 |𝑥𝑚 − 𝑥𝑖 |. (3)

We can define users’ decisions game in Stage II as follows:

Definition 4.1. (Users’ Decisions Game in Stage II).

• Players: The set of users M = {1, 2, ..., 𝑀}
• Strategies: Each user𝑚 ∈ M chooses service provider 𝑖 ∈
{1, 2} from the DEX market.

• Payoff:𝑈 𝑖
𝑚 , the payoff of user𝑚 ∈ M choose service provider

𝑖 , which is defined in Eq.1.

The number of users who choose service provider 𝑖 depends on

the strategies of both service provider 𝑖 and 𝑗 , where 𝑖, 𝑗 ∈ {1, 2}, 𝑗 ≠
𝑖 . Next, we give the number of users choosing two service providers

in Lemma 4.2, where Δ𝑃 = 𝑃1 − 𝑃2 ≥ 0.

Lemma 4.2. Given the strategies of two service providers, the num-
bers of users who choose service providers 1 and 2 are:

• If 𝛽1 > 𝜆 + Δ𝑃 and 𝛽2 < 𝜆 − Δ𝑃 , all the users in the DEX
market choose service provider 1, i.e., 𝑁1 = 1 and 𝑁2 = 0.

• If 𝛽1 < 𝜆 + Δ𝑃 and 𝛽2 > 𝜆 − Δ𝑃 , all the users in the DEX
market choose service provider 2, i.e., 𝑁1 = 0 and 𝑁2 = 1.

• If 𝛽1 = 𝜆 + Δ𝑃 and 𝛽2 = 𝜆 − Δ𝑃 , half of the users in the DEX
market choose service provider 1, while the other half choose
service provider 2, i.e., 𝑁1 =

1

2
and 𝑁2 =

1

2
.

• In other cases, we can derive the numbers of users who choose
service provider 1 and service provider 2 in the DEX market,
i.e., 𝑁1 =

𝜆−𝛽2−Δ𝑃
2𝜆−𝛽1−𝛽2 and 𝑁2 =

𝜆−𝛽1+Δ𝑃
2𝜆−𝛽1−𝛽2 .
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Proof of Lemma 4.2 is given in Appendix A. Service provider 2

with a lower transaction cost win more users when both service

providers provide a same incentive level. Besides, we find that

service provider 2 can win the market when 𝜆 − Δ𝑃 ≤ 1 and

𝜆 +Δ𝑃 > 1, which take up half of all cases. Though service provider

1 has a higher transaction cost, he can win all users when service

provider 2 provides a relative low incentive level.

5 SERVICE PROVIDERS’ DECISIONS IN STAGE
I

In this section, we discuss service providers’ decisions in Stage

I. From Stage II, we find that the number of users choose service

provider 𝑖 depends on the incentive level of service provider 𝑖 and

𝑗 , where 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗 . Hence, we denote it as 𝑁𝑖 (𝛽𝑖 , 𝛽 𝑗 ). Recall
that the service provider 𝑖’s profit defined in Eq.2, service provider 𝑖

choose an optimal incentive level 𝛽𝑖 ∈ [0, 1] to maximize his profit,

which is shown as follows:

𝛽∗𝑖 = argmax

𝛽𝑖 ∈[0,1]
(1 − 𝛽𝑖𝑁𝑖 (𝛽𝑖 , 𝛽 𝑗 ))𝑁𝑖 (𝛽𝑖 , 𝛽 𝑗 ), 𝑖 ≠ 𝑗 . (4)

Service providers’ decisions game in Stage I is defined as follows:

Definition 5.1. (Service Providers’ Decisions Game in Stage I).

• Players: Service providers 1 and 2.

• Strategies: Each service provider 𝑖 ∈ {1, 2} choose an incen-

tive level 𝛽𝑖 . The feasible set of incentive level is 𝛽𝑖 ∈ [0, 1].
• Payoff: Π𝑖 (𝛽𝑖 , 𝛽 𝑗 ), 𝑖 ≠ 𝑗 . The payoff is affected by the strate-

gies of both service provider 𝑖 and 𝑗 .

In the following, we discuss the optimal strategies of service

providers 1 and 2 under different conditions of transaction cost

difference and users’ stickiness in Lemma 5.2 and Lemma 5.3.

Lemma 5.2. Given the number of users who choose service provider
1, his optimal strategies under different 𝜆 and Δ𝑃 are summarized as
follows:

• If 𝜆 + Δ𝑃 < 1, 𝛽∗
1
=



0 ,𝛽2 ≤ 𝜆 − Δ𝑃 − 1

min{𝛽1, 𝜆 + Δ𝑃} ,𝜆 − Δ𝑃 − 1 < 𝛽2 < 𝜆 − Δ𝑃

𝜆 + Δ𝑃 ,𝛽2 = 𝜆 − Δ𝑃

min{max{𝜆 + Δ𝑃, 𝛽1}, 1} ,𝜆 − Δ𝑃 < 𝛽2 < 2𝜆

𝜆 + Δ𝑃 ,2𝜆 ≤ 𝛽2 ≤ 𝜆 − Δ𝑃 + 1

argmax

𝛽1={𝜆+Δ𝑃,1}
{Π1 (𝛽1, 𝛽2)} ,𝛽2 > 𝜆 − Δ𝑃 + 1

(5)

• If 𝜆 + Δ𝑃 = 1,

𝛽∗
1
=


0, 𝛽2 ≤ 𝜆 − Δ𝑃 − 1

min{𝛽1, 1}, 𝜆 − Δ𝑃 − 1 < 𝛽2 < 𝜆 − Δ𝑃

𝜆 + Δ𝑃, 𝛽2 = 𝜆 − Δ𝑃

0, 𝛽2 > 𝜆 − Δ𝑃

(6)

• If 𝜆 + Δ𝑃 > 1,

𝛽∗
1
=


0, 𝛽2 ≤ 𝜆 − Δ𝑃 − 1

min{𝛽1, 1}, 𝜆 − Δ𝑃 − 1 < 𝛽2 < 𝜆 − Δ𝑃

0, 𝛽2 = 𝜆 − Δ𝑃

0, 𝛽2 > 𝜆 − Δ𝑃

(7)

Proof of Lemma 5.2 is shown in Section 5.3. Recall that 𝛽1 and

𝛽2 are defined in Eq.20 and Eq.27, respectively. When the users’

stickiness is much larger than the transaction cost difference, ser-

vice provider 1 does not provide incentives because the cost for

users to switch to another DEX platform is too high. Users will

not switch unless service provider 1 provides an extremely high

incentive level.

Lemma 5.3. Given the number of users who choose service provider
2, his optimal strategies under different 𝜆 and Δ𝑃 are summarized as
follows:

• If 𝜆 − Δ𝑃 < 0,

𝛽∗
2
=


0 ,𝛽1 < 𝜆 + Δ𝑃

0 ,𝛽1 = 𝜆 + Δ𝑃

0 ,𝛽1 > 𝜆 + Δ𝑃

(8)

• If 0 ≤ 𝜆 − Δ𝑃 < 1,

𝛽∗
2
=



0 ,𝛽1 ≤ 𝜆 + Δ𝑃 − 1

min{𝛽2, 𝜆 − Δ𝑃} ,𝜆 + Δ𝑃 − 1 < 𝛽1 < 𝜆 + Δ𝑃

𝜆 − Δ𝑃 ,𝛽1 = 𝜆 + Δ𝑃

max{𝛽2, 𝜆 − Δ𝑃} ,𝜆 + Δ𝑃 < 𝛽1 < 2𝜆

𝜆 − Δ𝑃 ,𝛽1 ≥ 2𝜆

(9)

• If 𝜆 − Δ𝑃 = 1,

𝛽∗
2
=


0, 𝛽1 ≤ 𝜆 + Δ𝑃 − 1

𝛽2, 𝜆 + Δ𝑃 − 1 < 𝛽1 < 𝜆 + Δ𝑃

𝜆 − Δ𝑃, 𝛽1 = 𝜆 + Δ𝑃

0, 𝛽1 > 𝜆 + Δ𝑃

(10)

• If 𝜆 − Δ𝑃 > 1,

𝛽∗
2
=


0, 𝛽1 ≤ 𝜆 + Δ𝑃 − 1

𝛽2, 𝜆 + Δ𝑃 − 1 < 𝛽1 < 𝜆 + Δ𝑃

0, 𝛽1 = 𝜆 + Δ𝑃

0, 𝛽1 > 𝜆 + Δ𝑃

(11)

Proof of Lemma 5.3 is shown in Section 5.4.When the transaction

cost difference is larger than the users’ stickiness, service provider

2 does not need to provide incentives. Even service provider 1

provides the maximum incentive level, i.e., 𝛽1 = 1, he can still win

large number of users and the governance tokens have high value

because of the network effect.
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5.1 Nash Equilibrium Analysis
According to the previous analysis, we have derived the optimal

strategies of service providers 1 and 2. Each service provider 𝑖 ∈
{1, 2} chooses his incentive level 𝛽𝑖 ∈ [0, 1] to maximize his profit

Π𝑖 (𝛽𝑖 , 𝛽 𝑗 ), where 𝑗 ∈ {1, 2}, 𝑗 ≠ 𝑖 . The equilibrium of service

providers’ incentive level game is defined as follows:

Definition 5.4. (Incentive Level Equilibrium in Stage I). The equi-

librium of the service providers’ incentive level game is (𝛽∗
1
, 𝛽∗

2
)

such that for each service provider 𝑖 ∈ {1, 2},

Π𝑖 (𝛽∗𝑖 , 𝛽
∗
𝑗 ) ≥ Π𝑖 (𝛽𝑖 , 𝛽∗𝑗 ),∀𝛽𝑖 ∈ [0, 1] (12)

The analysis of the incentive level equilibrium in Stage I is ex-

tremely challenging since the objective functions of service providers

1 and 2 are piece-wise functions, which varies under different condi-

tions of 𝜆−Δ𝑃 and 𝜆+Δ𝑃 . We solve the problem by decomposing it

into several cases. We first consider the case when service providers

have price differences.

Lemma 5.5. Given Δ𝑃 = 𝑃1 − 𝑃2 > 0, the equilibriums of service
providers’ decisions game under different 𝜆 and Δ𝑃 (Stage I) are:

• When 𝜆 − Δ𝑃 < 0 and 𝜆 + Δ𝑃 < 1, there exist three possible
equilibriums

(𝛽∗
1
, 𝛽∗

2
) =


(𝜆 + Δ𝑃, 0), 𝑖 𝑓 𝛽1 ≤ 𝜆 + Δ𝑃

(𝛽1, 0), 𝑖 𝑓 𝜆 + Δ𝑃 < 𝛽1 < 1

(1, 0), 𝑖 𝑓 𝛽1 ≥ 1

(13)

• When 𝜆 − Δ𝑃 < 0 and 𝜆 + Δ𝑃 ≥ 1, there exists a unique
equilibrium (𝛽∗

1
, 𝛽∗

2
) = (0, 0).

• When 0 ≤ 𝜆 − Δ𝑃 < 1 and 𝜆 + Δ𝑃 ≤ 1, there exists a unique
equilibrium (𝛽∗

1
, 𝛽∗

2
) = (𝜆 + Δ𝑃, 𝜆 − Δ𝑃).

• When 0 ≤ 𝜆 − Δ𝑃 < 1 and 1 < 𝜆 + Δ𝑃 < 2, there exist two
possible equilibriums

(𝛽∗
1
, 𝛽∗

2
) =

{
(𝛽1, 0), 𝑖 𝑓 𝛽1 ≤ 𝜆 + Δ𝑃 − 1

(1, 𝛽2), 𝑖 𝑓 𝛽1 > 1, 𝛽2 < 𝜆 − Δ𝑃
(14)

Meanwhile, if the above conditions are both satisfied, there exist
two co-existing equilibriums (𝛽∗

1
, 𝛽∗

2
) = (𝛽1, 0) and (𝛽∗

1
, 𝛽∗

2
) =

(1, 𝛽2). However, there exists no equilibrium in other condi-
tions.

• When 0 ≤ 𝜆−Δ𝑃 < 1 and 𝜆 +Δ𝑃 ≥ 2, there exist two possible
equilibriums

(𝛽∗
1
, 𝛽∗

2
) =

{
(𝛽1, 0), 𝑖 𝑓 𝛽1 < 1

(1, 0), 𝑖 𝑓 𝛽1 ≥ 1

(15)

• When 𝜆 − Δ𝑃 ≥ 1 and 𝜆 + Δ𝑃 > 1, there exists a unique
equilibrium (𝛽∗

1
, 𝛽∗

2
) = (0, 0).

Proof of Lemma 5.5 is given in Appendix B. Recall the optimal

strategies of service providers 1 and 2 that are derived in Lemma

5.2 and Lemma 5.3, respectively. Due to the piece-wise objective

function of service providers, the equilibrium results are very com-

plex. In most cases, there exists a unique equilibrium. We list some

interesting observations when 0 ≤ 𝜆 − Δ𝑃 < 1 and 1 < 𝜆 + Δ𝑃 < 2

as follows:

• When 𝜆 < Δ𝑃+2
3

, there exists no equilibrium. If service

provider 2 provides a high incentive level, i.e., 𝛽2 = 𝜆 − Δ𝑃 ,
no user chooses service provider 1 and thus 𝛽∗

1
(𝛽2) = 0.

However, service provider 2 will not provide such a high

incentive level if service provider 1 does not provide incen-

tives. Meanwhile, service provider 1 provides 𝛽∗
1
(𝛽2) = 1

to attract users when service provider 2 does not provide

incentive, i.e., 𝛽2 = 0. However, the high incentive level of

service provider 1 leads to service provider 2 will provide

𝛽2 = 𝜆 − Δ𝑃 to attract users. Hence, two service providers

will keep competing and can not achieve equilibrium.

• When
2

√
Δ𝑃2−Δ𝑃+1+Δ𝑃+1

3
< 𝜆 < 𝑓 (Δ𝑃)11, there exist two

co-existing equilibriums (𝛽∗
1
, 𝛽∗

2
) = (𝛽1, 0) and (𝛽∗

1
, 𝛽∗

2
) =

(1, 𝛽2). We find that service provider 1 can win a larger user

base in the equilibrium when he chooses to provide the

incentive level with the lower incentive level, i.e., 𝛽∗
1
= 𝛽1.

Since service provider 2 does not provide incentives, he can

win a larger user base. Service provider 1 can win a larger

user base by providing a lower incentive level, and thus his

profit is also larger in this equilibrium.

In the following, we discuss the equilibriumswhen service providers

do not have price differences, i.e., Δ𝑃 = 𝑃1 − 𝑃2 = 0.

Lemma 5.6. Given 𝑃1 = 𝑃2, the equilibriums of service providers’
decisions game under different 𝜆 are:

• When 0 < 𝜆 < 1, there exists a unique equilibrium (𝛽∗
1
, 𝛽∗

2
) =

(𝜆, 𝜆).
• When 𝜆 = 1, there exist various equilibriums (𝛽∗

1
, 𝛽∗

2
) =

(𝛽1, 𝛽2) = (𝛽2, 𝛽1).
• When 𝜆 > 1, there exists a unique equilibrium (𝛽∗

1
, 𝛽∗

2
) =

(0, 0).

Proof of Lemma 5.6 is given in Appendix B. When 𝜆 = 1 and

service providers provide the same incentive level, the reward re-

ceived from transaction fee mining are equal to the cost induced by

users’ stickiness. Meanwhile, transaction costs of service providers

are the same. Hence, users get same payoff when choosing service

providers, and both service providers can win half of the users in

the market.

5.2 Equilibrium Characterization
To present insights, we divide the domain of 𝜆 and Δ𝑃 into four

regions to show how 𝜆 + Δ𝑃 and 𝜆 − Δ𝑃 affect the behaviors. More-

over, we define 𝜆 + Δ𝑃 as the impact level of users’ stickiness and

transaction cost difference and divide it into two levels. We define

the impact level to be "large" when 𝜆 + Δ𝑃 > 1 and "small" when
0 < 𝜆 + Δ𝑃 < 1. Then, we define the market to be "cost dominating"
when 𝜆 − Δ𝑃 < 0 and "stickiness dominating" when 𝜆 − Δ𝑃 > 0.

Theorem 5.7. There exists four equilibrium structures, which are
decided by 𝜆 + Δ𝑃 and 𝜆 − Δ𝑃 :

11
where 𝑓 (Δ𝑃 ) = 𝑔 (Δ𝑃 )

9
3
√
2

−
3
√
2(6Δ𝑃−13(Δ𝑃 )2 )

9𝑔 (Δ𝑃 ) − 2(Δ𝑃−3)
9

,

𝑔 (Δ𝑃 ) = 3

√︁
−70(Δ𝑃 )3 + 198(Δ𝑃 )2 + 9ℎ (Δ𝑃 ) + 108(Δ𝑃 ) + 27,

ℎ (Δ𝑃 ) =
√︁
−48(Δ𝑃 )6 − 192(Δ𝑃 )5 + 228(Δ𝑃 )4 + 492(Δ𝑃 )3 + 276(Δ𝑃 )2 + 72(Δ𝑃 ) + 9.
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• "Impact level is small and it is stickiness dominating", i.e.,
0 < 𝜆 + Δ𝑃 < 1 and 𝜆 − Δ𝑃 > 0: there exists a unique
equilibrium (𝛽∗

1
, 𝛽∗

2
) = (𝜆+Δ𝑃, 𝜆−Δ𝑃). Both service providers

provide incentives.
• "Impact level is small and it is cost dominating", i.e., 0 <

𝜆 + Δ𝑃 < 1 and 𝜆 − Δ𝑃 < 0: there exists a unique equilibrium
(𝛽∗

1
, 𝛽∗

2
) = (min{max{𝜆 + Δ𝑃, 𝛽1}, 1}, 0). Service provider 2,

who has a lower cost, does not provide incentives, while service
provider 1 provides incentives depending on 𝜆 and Δ𝑃 .

• "Impact level is large and it is cost dominating", i.e., 𝜆+Δ𝑃 > 1

and 𝜆 − Δ𝑃 < 0: there exists a unique equilibrium (𝛽∗
1
, 𝛽∗

2
) =

(0, 0). Service provider 1 quits the DEX market, and service
provider 2 does not provide incentive.

• "Impact level is large and it is stickiness dominating", i.e.,
𝜆 + Δ𝑃 > 1 and 𝜆 − Δ𝑃 > 0: there exists various unique
equilibriums (𝛽∗

1
, 𝛽∗

2
) = (min{max{0, 𝛽1}, 1}, 0), (𝛽∗

1
, 𝛽∗

2
) =

(1, 𝛽2). Menawhile, there also exist two co-existing equilibri-
ums (𝛽∗

1
, 𝛽∗

2
) = (𝛽1, 0) and (𝛽∗

1
, 𝛽∗

2
) = (1, 𝛽2). Besides, there

might not exists any equilibrium. Both service providers are
possible to provide incentives.

When the impact level is small and it is stickiness dominating,

both service providers 1 and 2 can take over the whole market by

providing incentive levels 𝛽1 = 𝜆+Δ𝑃 and 𝛽2 = 𝜆−Δ𝑃 , respectively.
Hence, we can achieve the equilibrium (𝛽∗

1
, 𝛽∗

2
) = (𝜆 + Δ𝑃, 𝜆 − Δ𝑃)

and both of them win half of the users in the DEX market.

When the impact level is small and it is cost dominating, service

provider 2 is more competitive. All users choose service provider 2

unless service provider 1 provides an incentive level 𝛽1 ≥ 𝜆 + Δ𝑃 .
Due to the cost advantage, service provider 2 has a large user base.

The loss of issuing governance tokens is large enough such that

he does not provide incentive, i.e., 𝛽∗
2
= 0. Given 𝛽2 = 0, we derive

𝛽∗
1
(𝛽2) = min{max{𝜆 + Δ𝑃, 𝛽1}, 1}. Hence, we can achieve the

equilibrium (𝛽∗
1
, 𝛽∗

2
) = (min{max{𝜆 + Δ𝑃, 𝛽1}, 1}, 0).

When the impact level is large and it is cost dominating, service

provider 2 take over the DEXmarket even when he does not provide

incentives, i.e.𝛽2 = 0. Hence, service provider 1 quits the market.

Hence, we can achieve the equilibrium (𝛽∗
1
, 𝛽∗

2
) = (0, 0).

When the impact level is large and it is stickiness dominating, the

problem is complicated and we decompose the problem into several

cases. First, when 𝜆−Δ𝑃 > 1, users’ stickiness is large enough such

that both of the service providers have a positive user base. Due

to the cost advantage of service provider 2, the optimal strategy

of service provider 1 is not to provide incentives since he cannot

achieve a higher payoff. Second, when 0 < 𝜆 − Δ𝑃 < 1, service

provider 1 is competitive. He can win more users by providing

a high incentive level and can let service provider 2 provides a

positive incentive level. When 𝜆 < Δ𝑃+2
3

, He can even let service

provider 2 provides an incentive level 𝛽2 = 𝜆 − Δ𝑃 to take over the

market.

So far, we have completed the discussion in Theorem 5.7 and we

mark the following insights:

• The service provider with a less transaction cost can win the

market without providing governance tokens. Even can let

the service provider with higher transaction cost quit the

market in some cases.

• Though the service provider with a lower transaction cost

can win the market, users’ stickiness can offset the market

advantage. In the most intense competition cases, i.e., 0 <

𝜆 − Δ𝑃 < 1, service providers compete with each other, and

both of them incentivize users with transaction fee mining.

5.3 Proof of Lemma 5.2
According to backward induction, we can get the number of users

choose service provider 1 from Stage II:

• When 𝛽2 < 𝜆 − Δ𝑃 ,

𝑁1 =

{
𝜆−𝛽2−Δ𝑃
2𝜆−𝛽1−𝛽2 ,𝛽1 ≤ 𝜆 + Δ𝑃

1 ,𝛽1 > 𝜆 + Δ𝑃
(16)

• When 𝛽2 > 𝜆 − Δ𝑃 ,

𝑁1 =

{
0 ,𝛽1 < 𝜆 + Δ𝑃

𝜆−𝛽2−Δ𝑃
2𝜆−𝛽1−𝛽2 ,𝛽1 ≥ 𝜆 + Δ𝑃

(17)

• When 𝛽2 = 𝜆 − Δ𝑃 ,

𝑁1 =


0 ,𝛽1 < 𝜆 + Δ𝑃

1

2
,𝛽1 = 𝜆 + Δ𝑃

1 ,𝛽1 > 𝜆 + Δ𝑃

(18)

By substituting 𝑁1 into Eq.2, we can get the profit function of

service provider 1. Since service provider 1’s profit function is dif-

ferent when the strategies of service provider 2 is in different cases,

we discuss the optimal strategies of service provider 1 separately.

When 𝛽2 < 𝜆 − Δ𝑃 , service provider 1’s profit is reorganized as

follows:

Π1 (𝛽1, 𝛽2)

=

{
𝜆−𝛽2+Δ𝑃
2𝜆−𝛽1−𝛽2 − 𝛽1 ( 𝜆−𝛽2+Δ𝑃

2𝜆−𝛽1−𝛽2 )
2 ,𝛽1 ≤ 𝜆 + Δ𝑃

1 − 𝛽1 ,𝛽1 > 𝜆 + Δ𝑃
(19)

To find out the optimal strategy in this case, we need to find

out whether the function in the first section is convex or concave

by taking the first and second order derivative. Let the first order

derivative equals to 0, we can obtain:

𝛽1 =
(2𝜆 − 𝛽2) (1 − 𝜆 + 𝛽2 + Δ𝑃)

1 + 𝜆 − 𝛽2 − Δ𝑃
(20)

We find that the curve is different in the following three cases.

Hence, we discuss the optimal strategies separately:

• If 𝛽2 ≤ 𝜆 − 1 − Δ𝑃 , the profit of service provider 1 keeps

decreasing as 𝛽1 increases. Hence, we can get 𝛽∗
1
= 0.

• If 𝜆 − 1 − Δ𝑃 < 𝛽2 ≤ 𝜆 − 1

2
− Δ𝑃 , we can get 𝛽∗

1
= 𝛽1. How-

ever, we need to consider the domain of the function in the

first section and the domain of service provider 1’s strategy.

Hence, the optimal strategy becomes 𝛽∗
1
= min{𝛽1, 𝜆+Δ𝑃, 1}.

• If 𝜆 − 1

2
− Δ𝑃 < 𝛽2 < 𝜆 − Δ𝑃 , we can get 𝛽∗

1
= 𝛽1. Similar to

the reasons explained in previous case, the optimal strategy

becomes 𝛽∗
1
= min{𝛽1, 𝜆 + Δ𝑃, 1}.

When 𝛽2 > 𝜆 − Δ𝑃 , service provider 1’s profit is reorganized as

follows:

Π1 (𝛽1, 𝛽2)
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=

{
0 ,𝛽1 < 𝜆 + Δ𝑃

𝜆−𝛽2+Δ𝑃
2𝜆−𝛽1−𝛽2 − 𝛽1 ( 𝜆−𝛽2+Δ𝑃

2𝜆−𝛽1−𝛽2 )
2 ,𝛽1 ≥ 𝜆 + Δ𝑃

(21)

We can find that service provider 1’s profits is always 0 when

𝜆 + Δ𝑃 ≥ 1. Hence, we let the optimal strategy of service provider

1 to be 0. As for the cases when 𝜆 + Δ𝑃 < 1. Similarly, the curve is

different in three cases. Hence, we discuss the optimal strategies

separately:

• If 𝜆 − Δ𝑃 < 𝛽2 < 2𝜆, we can get 𝛽∗
1
= 𝛽1. However, we need

to consider the domain of the function in the second section

and the domain of service provider 1’s strategy. Hence, the

optimal strategy becomes 𝛽∗
1
= min{max{𝜆 + Δ𝑃, 𝛽1}, 1}.

• If 2𝜆 ≤ 𝛽2 ≤ 1 + 𝜆 − Δ𝑃 , the profit of service provider

1 keeps decreasing as 𝛽1 increases in the function in the

second section. Hence, we can get 𝛽∗
1
= 𝜆 + Δ𝑃 .

• If 1 + 𝜆 − Δ𝑃 < 𝛽2, 𝛽
∗
1
has two possible values: 𝜆 + Δ𝑃, 1. We

need to compare Π1 (𝜆 + Δ𝑃, 𝛽2) and Π1 (1, 𝛽2). Hence, we
can get 𝛽∗

1
= argmax

𝛽1={𝜆+Δ𝑃,1}
{Π1 (𝛽1, 𝛽2)}.

When 𝛽2 = 𝜆 − Δ𝑃 , service provider 1’s profit is reorganized as

follows:

Π1 (𝛽1, 𝛽2) =


0 ,𝛽1 < 𝜆 + Δ𝑃

1

2
− 𝛽1

4
,𝛽1 = 𝜆 + Δ𝑃

0 ,𝛽1 > 𝜆 + Δ𝑃

(22)

We can find that service provider 1 has a positive profits only

when 𝛽1 = 𝜆 + Δ𝑃 . If 𝜆 + Δ𝑃 ≤ 1, we can get 𝛽∗
1
= 𝜆 + Δ𝑃 . Other-

wise, service provider 1’s profits is always 0 and we let the optimal

strategy of service provider 1 to be 0.

5.4 Proof of Lemma 5.3
Through backward induction, the number of users who choose

service provider 2 from Stage II:

• When 𝛽1 < 𝜆 + Δ𝑃 ,

𝑁2 =

{
𝜆−𝛽1−Δ𝑃
2𝜆−𝛽1−𝛽2 ,𝛽2 ≤ 𝜆 − Δ𝑃

1 ,𝛽2 > 𝜆 − Δ𝑃
(23)

• When 𝛽1 > 𝜆 + Δ𝑃 ,

𝑁2 =

{
0 ,𝛽2 < 𝜆 − Δ𝑃

𝜆−𝛽1−Δ𝑃
2𝜆−𝛽1−𝛽2 ,𝛽2 ≥ 𝜆 − Δ𝑃

(24)

• When 𝛽1 = 𝜆 + Δ𝑃 ,

𝑁2 =


0 ,𝛽2 < 𝜆 − Δ𝑃

1

2
,𝛽2 = 𝜆 − Δ𝑃

1 ,𝛽2 > 𝜆 − Δ𝑃

(25)

With the number of users choosing service provider 2, we can

derive the profit function of service provider 2, which is separated

into three cases. For each cases, we can find out the optimal strategy

of service provider 1.

When 𝛽1 < 𝜆 + Δ𝑃 , service provider 2’s profit is reorganized as

follows:

Π2 (𝛽1, 𝛽2)

=

{
𝜆−𝛽1+Δ𝑃
2𝜆−𝛽1−𝛽2 − 𝛽2 ( 𝜆−𝛽1+Δ𝑃

2𝜆−𝛽1−𝛽2 )
2, 𝛽2 ≤ 𝜆 − Δ𝑃

1 − 𝛽2, 𝛽2 > 𝜆 − Δ𝑃
(26)

Obviously, the function in the second section is a downward

straight line. If 𝜆 − Δ𝑃 ≤ 0, the optimal strategy of service provider

2 is 𝛽∗
2
= 0. While in other cases, we need to consider whether the

function in the first section is convex or concave to find out the

optimal strategy. Let the first order derivative equals to 0, we can

obtain:

𝛽2 =
(2𝜆 − 𝛽1) (1 − 𝜆 + 𝛽1 − Δ𝑃)

1 + 𝜆 − 𝛽1 + Δ𝑃
(27)

We find that 𝛽2 ≤ 1 when 𝛽2 ∈ [0, 1]. Besides, the curve is

different in the following three cases. Hence, we discuss the optimal

strategies separately:

• If 𝛽1 ≤ 𝜆− 1+Δ𝑃 , the profit of service provider 2 goes down
as 𝛽2 goes up. Hence, we can get 𝛽∗

2
= 0.

• If 𝜆−1+Δ𝑃 < 𝛽1 ≤ 𝜆− 1

2
+Δ𝑃 , we can get 𝛽∗

2
= 𝛽2. Besides, we

find that 𝛽2 is always less than 1 when 𝛽1 ∈ [0, 1]. However,
we still need to consider the domain of the function in the

first section. Hence, we can get 𝛽∗
2
= min{𝛽2, 𝜆 − Δ𝑃}.

• If 𝜆 − 1

2
+ Δ𝑃 < 𝛽1 < 𝜆 + Δ𝑃 , we can get 𝛽∗

2
= 𝛽2. Similar

to the reasons explained in previous case, we can get 𝛽∗
2
=

min{𝛽2, 𝜆 − Δ𝑃}.
When 𝛽1 > 𝜆 + Δ𝑃 , service provider 2’s profit is reorganized as

follows:

Π2 (𝛽1, 𝛽2)

=

{
0, 𝛽2 < 𝜆 − Δ𝑃

𝜆−𝛽1+Δ𝑃
2𝜆−𝛽1−𝛽2 − 𝛽2 ( 𝜆−𝛽1+Δ𝑃

2𝜆−𝛽1−𝛽2 )
2, 𝛽2 ≥ 𝜆 − Δ𝑃

(28)

We can find that service provider 2’s profits is always 0 when

𝜆 − Δ𝑃 ≥ 1. Hence, we let the optimal strategy of service provider

1 to be 0. As for the case when 𝜆 − Δ𝑃 ≤ 0, service provider 2’s

profits is the function in the second section. The profits goes down

as 𝛽2 increases. Hence, we can get 𝛽∗
2
= 0. When 0 < 𝜆 + Δ𝑃 < 1,

the curve is different in two cases. Hence, we discuss the optimal

strategies separately:

• If 𝜆 + Δ𝑃 < 𝛽1 < 2𝜆, we can get 𝛽∗
2
= 𝛽2. Meanwhile, 𝛽2 < 1

when 𝛽1 ∈ [0, 1]. Considering the domain of the function in

the second section, we can get 𝛽∗
2
= max{𝛽2, 𝜆 − Δ𝑃}.

• If 𝛽1 ≥ 2𝜆, the profit of service provider 2 keeps decreasing

when 𝛽2 ≥ 𝜆 − Δ𝑃 . Hence, we can get 𝛽∗
2
= 𝜆 − Δ𝑃 .

When 𝛽1 = 𝜆 + Δ𝑃 , service provider 2’s profit is reorganized as

follows:

Π2 (𝛽1, 𝛽2) =


0, 𝛽2 < 𝜆 − Δ𝑃

1

2
− 𝛽2

4
, 𝛽2 = 𝜆 − Δ𝑃

0, 𝛽2 > 𝜆 − Δ𝑃

(29)

We can find that service provider 2 has a positive profits only

when 𝛽2 = 𝜆 − Δ𝑃 . If 𝜆 − Δ𝑃 ≤ 1, we can get 𝛽∗
2

= 𝜆 − Δ𝑃 .
Otherwise, service provider 2’s profits is always 0 and we let the

optimal strategy of service provider 2 to be 0.

BSCI Session 2 BSCI '22, May 30, 2022, Nagasaki, Japan

66



6 SIMULATION RESULTS
In this section, we perform simulations to verify the results we

derived.

6.1 Nash Equilibrium
As shown in Fig.4, the simulation results demonstrate the equi-

librium results under different conditions of Δ𝑃 and 𝜆. The hori-

zontal coordinate represents the difference in cost, i.e., Δ𝑃 , while
the vertical coordinate represents the users’ stickiness, i.e., 𝜆. For

the green region, there exists no equilibrium. As for the orange

region, there exists two co-existing equilibriums (𝛽∗
1
, 𝛽∗

2
) = (𝛽1, 0)

and (𝛽∗
1
, 𝛽∗

2
) = (1, 𝛽2). For the remaining grey region, there exists

a unique equilibrium and we demonstrate the equilibrium results

(𝛽∗
1
, 𝛽∗

2
) in the figure. The simulation results verify the results of

our previous analysis in Lemma 5.5 and Lemma 5.6.

Figure 4: Simulation Results

6.2 Service Provider’s Profits
In this subsection, we perform simulations on service providers’ util-

ities with different parameter settings. With the simulation results,

we try to find out the reason why there are different equilibrium

results in different parameter settings.

6.2.1 When 𝜆 + Δ𝑃 < 1 and 𝜆 − Δ𝑃 < 0. In Fig.5(a) and Fig.5(b),

we let 𝜆 + Δ𝑃 = 0.9 and modify 𝜆 − Δ𝑃 from -0.1 to -0.9, with a step

size of 0.2.

Firstly, we consider the case when the optimal strategy of service

provider 2 is 0 in Fig.5(a). We can find that the optimal strategy

of service provider 1 is 𝛽1 when 𝛽1 > 𝜆 + Δ𝑃 . In order to better

demonstrate the results, we demonstrate the simulation results with

the value of 𝛽1 range from 0 to 2.5. However, since the incentive

level needs to be smaller than 1 and larger than 𝜆 + Δ𝑃 , the optimal

strategies of service provider 1 have three possible values: 𝜆 +
Δ𝑃, 𝛽1, 1.

While in Fig.5(b), we perform simulations to show the optimal

strategies of service provider 2 when service provider 1’s optimal

strategy is 1. We can find that the optimal strategies is 0 even when

service provider 1 choose his maximum incentive level. We can

conclude that service provider 2’s optimal strategy is always 0

due to the cost advantage. Hence, there exists three equilibriums

(𝛽∗
1
, 𝛽∗

2
) = (𝛽1, 0), (𝛽∗

1
, 𝛽∗

2
) = (𝜆+Δ𝑃, 0) and (𝛽∗

1
, 𝛽∗

2
) = (1, 0) in this

case.

6.2.2 When 𝜆 + Δ𝑃 > 1 and 𝜆 − Δ𝑃 > 0.
In Fig.5(c) we set the parameter 𝜆 + Δ𝑃 = 2.7 and modify the

parameter 𝜆−Δ𝑃 from 0.3 to 1.1, with a step size of 0.2. We consider

the case when the optimal strategy of service provider 2 is 0. In

order to better demonstrate the results, we perform simulations

with different value of 𝛽1 range from -2 to 2. From the simulation

results, we can find that the optimal strategy of service provider 1

is 𝛽1. However, due to the limit of the incentive level’s domain, the

optimal strategies of service provider 1 have three possible values:

0, 𝛽1, 1.

In Fig.5(d), we set the parameter 𝜆 +Δ𝑃 = 1.7 and modify the pa-

rameter 𝜆−Δ𝑃 from 0.1 to 0.9, with a step size of 0.2.We demonstrate

the optimal strategy of service provider 2 when service provider

1’s strategy is 1. The optimal strategies of service provider 2 is 𝛽2

when 𝛽2 < 𝜆 − Δ𝑃 . We can find that 𝛽∗
2
= 𝛽2 when 𝛽2 < 𝜆 − Δ𝑃

and 𝛽∗
2
= 𝜆 − Δ𝑃 otherwise.

In Fig.5(e), we set the parameter 𝜆 − Δ𝑃 = 0.4 and modify the

parameter 𝜆 + Δ𝑃 from 1.4 to 2.2, with a step size of 0.2. Similar

to Fig.5(d), we also demonstrate the optimal strategies of service

provider 2 when service provider 1 set up the maximum incentive

level. The optimal strategies of service provider 2 is 𝛽2 when 𝛽2 <

𝜆−Δ𝑃 . We can find that 𝛽∗
2
= 𝛽2 when 𝛽2 > 0 and 𝛽∗

2
= 0 otherwise.

In conclusion, we can explain the reason why the equilibrium

results in this case is so complex. Due to the cost advantage, service

provider 2’s optimal strategy is 0 under most conditions. Meanwhile,

service provider 1’s optimal strategy is 𝛽1, correspondingly. Due

to the domain of incentive level is 𝛽1 ∈ [0, 1], the optimal strategy

of service provider becomes 0 when 𝛽1 < 0 and becomes 1 when

𝛽1 > 1. Hence, there exists three equilibrium (𝛽∗
1
, 𝛽∗

2
) = (0, 0),

(𝛽∗
1
, 𝛽∗

2
) = (𝛽1, 0) and (𝛽∗

1
, 𝛽∗

2
) = (1, 0).

However, when the incentive level of service provider is 1, the

optimal strategy of service provider 2 is not always 0 as shown

in Fig.5(e). The optimal strategy of service provider 2 becomes 𝛽2

when 𝛽2 > 0. Hence, there exists an equilibrium (𝛽∗
1
, 𝛽∗

2
) = (1, 𝛽2).

Meanwhile, when 𝛽2 > 𝜆 − Δ𝑃 , the optimal strategy of service

provider 2 becomes 𝜆−Δ𝑃 . However, the optimal strategy of service

provider 1 is not 1. Hence, there’s no equilibrium in this case.

6.3 When 𝜆 − Δ𝑃 = 1 and 𝜆 + Δ𝑃 = 1

From the condition we can know that 𝜆 = 1 and Δ𝑃 = 0. In Fig.5(f),

we demonstrate the utility of service provider 1 and scatter his

optimal strategy when the strategy of service provider 2 varies. We
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(a) The service provider 1’s profitΠ1 when 𝜆+Δ𝑃 = 0.9

and 𝛽2 = 0

(b) The service provider 2’s profitΠ2 when 𝜆+Δ𝑃 = 0.9

and 𝛽1 = 1

(c) The service provider 1’s profit Π1 when 𝜆+Δ𝑃 = 2.7

and 𝛽2 = 0

(d) The service provider 2’s profitΠ2 when 𝜆+Δ𝑃 = 1.7

and 𝛽1 = 1

(e) The service provider 2’s profitΠ2 when 𝜆−Δ𝑃 = 0.4

and 𝛽1 = 1

(f) The service provider 1’s profit Π1 when 𝜆 = 1,Δ𝑃 =

0

Figure 5: Service Providers’ Profits

can find that the optimal strategy is always same as the strategy of

service provider 2.

6.4 Other cases
When 𝜆 + Δ𝑃 < 1 and 𝜆 − Δ𝑃 > 0: When 𝛽2 = 𝜆 − Δ𝑃 , the utility
of service provider 1 is positive only when 𝛽1 = 𝜆 + Δ𝑃 , vice versa.
When 𝜆 + Δ𝑃 > 1 and 𝜆 − Δ𝑃 < 0: Even when 𝛽2 = 0, the utility of

service provider 1 is always 0. These two cases are too simple so

that we would not demonstrate the results of service providers.

7 CONCLUSION
This paper study a novel and interesting question on the DEX

market competition with transaction fee mining mechanism. We

propose a two-stage game to formulate the interactions between

DEXs and users. Different from the price competition discussed in

state-of-the-art platform competition work, we consider service

providers’ incentive levels in our model and derive their optimal in-

centive levels in this paper. Besides, we also derive the equilibriums

under different conditions of the transaction cost difference and

users’ stickiness and analyze these equilibrium results. We show

that though the service provider with a lower transaction cost can

win the market, users’ stickiness can offset the market advantage.

In the most intense competition cases, service providers compete

with each other, and both of them incentivize users with transaction

fee mining.
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APPENDIX
A USERS’ DECISIONS
When 𝛽1 > 𝜆 + Δ𝑃 and 𝛽2 < 𝜆 − Δ𝑃 , we can derive:

𝑈 1

𝑚 −𝑈 2

𝑚 = (𝛽1 − 𝜆 − Δ𝑃)𝑥𝑚 − (𝛽2 − 𝜆 + Δ𝑃) (1 − 𝑥𝑚) > 0 (30)

Hence, the utility of choosing service provider 1 is always greater

than that of service provider 2. Similarly, we can get𝑈 2

𝑚 > 𝑈 1

𝑚 when

𝛽1 < 𝜆 + Δ𝑃 and 𝛽2 > 𝜆 − Δ𝑃 .
In other cases, we can consider there’s a marginal user 𝑛 in the

DEX market, where the payoffs of choosing service providers 1

and 2 are same, i.e., 𝑈 1

𝑛 = 𝑈 2

𝑛 . Hence, we can derive the location of

marginal user is:

𝑥𝑛 =
1

2

+ 𝛽1𝑁1 − 𝛽2𝑁2 − Δ𝑃

2𝜆
(31)

Since 𝑁1 = 𝑥𝑛, 𝑁2 = 1 − 𝑥𝑛 , we can derive the number of user

𝑁1 and 𝑁2. When 2𝜆 − 𝛽1 − 𝛽2 ≠ 0, the number of users choose

service provider 1 is:

𝑁1 =
𝜆 − 𝛽2 − Δ𝑃

2𝜆 − 𝛽1 − 𝛽2
(32)

Meanwhile, when 𝛽1 = 𝜆 + Δ𝑃 and 𝛽2 = 𝜆 − Δ𝑃 , we can derive

𝑁1 = 𝑁2 =
1

2
. The proof is now completed.

B NASH EQUILIBRIUM
In order to achieve the Nash Equilibrium, we conduct the analysis

in the following cases:

• 𝜆 − Δ𝑃 < 0, 𝜆 + Δ𝑃 < 1

• 𝜆 − Δ𝑃 < 0, 𝜆 + Δ𝑃 = 1

• 𝜆 − Δ𝑃 < 0, 𝜆 + Δ𝑃 > 1

• 0 ≤ 𝜆 − Δ𝑃 < 1, 𝜆 + Δ𝑃 < 1

• 0 ≤ 𝜆 − Δ𝑃 < 1, 𝜆 + Δ𝑃 = 1

• 0 ≤ 𝜆 − Δ𝑃 < 1, 𝜆 + Δ𝑃 > 1

• 𝜆 − Δ𝑃 = 1, 𝜆 + Δ𝑃 = 1, i.e., 𝜆 = 1 and Δ𝑃 = 0

• 𝜆 − Δ𝑃 ≥ 1, 𝜆 + Δ𝑃 > 1

(1) When 𝜆 − Δ𝑃 < 0 and 𝜆 + Δ𝑃 < 1,

The optimal strategy of service provider 1:

𝛽∗
1
=


min{max{𝜆 + Δ𝑃, 𝛽1}, 1} ,0 ≤ 𝛽2 < 2𝜆

𝜆 + Δ𝑃 ,2𝜆 ≤ 𝛽2 ≤ 𝜆 − Δ𝑃 + 1

argmax

𝛽1={𝜆+Δ𝑃,1}
{Π1 (𝛽1, 𝛽2)} ,𝜆 − Δ𝑃 + 1 < 𝛽2 ≤ 1

(33)

The optimal strategy of service provider 2:

𝛽∗
2
=


0, 0 ≤ 𝛽1 < 𝜆 + Δ𝑃

0, 𝛽1 = 𝜆 + Δ𝑃

0, 𝜆 + Δ𝑃 < 𝛽1 ≤ 1

(34)

When 𝛽2 = 0, 𝛽∗
1
(𝛽2) has three possible values: 𝜆 + Δ𝑃, 𝛽1, 1,

which depends on the value of 𝛽1. When 𝜆 + Δ𝑃 < 𝛽1 < 1,

𝛽∗
1
(𝛽2) = 𝛽1 when 𝛽2 = 0. When 𝛽1 ≥ 1, 𝛽∗

1
(𝛽2) = 1 when

𝛽2 = 0. When 𝛽1 ≤ 𝜆 + Δ𝑃 , 𝛽∗
1
(𝛽2) = 𝜆 + Δ𝑃 when 𝛽2 =

0. Meanwhile, we can get 𝛽∗
2
(𝛽1) = 0 for any 𝛽1 ∈ [0, 1].

Hence, there exists equilibriums (𝛽∗
1
, 𝛽∗

2
) = (min{max{𝜆 +

Δ𝑃, 𝛽1}, 1}, 0).
(2) When 𝜆 − Δ𝑃 < 0 and 𝜆 + Δ𝑃 = 1,

The optimal strategy of service provider 1:

𝛽∗
1
= 0,∀𝛽2 ∈ [0, 1] (35)

The optimal strategy of service provider 2:

𝛽∗
2
= 0,∀𝛽1 ∈ [0, 1] (36)

For any 𝛽1 ∈ [0, 1], we can achieve 𝛽∗
2
(𝛽1) = 0. Meanwhile,

we can achieve 𝛽∗
1
(𝛽2) = 0 for any 𝛽2 ∈ [0, 1]. Hence, there

exists equilibrium (𝛽∗
1
, 𝛽∗

2
) = (0, 0).

(3) When 𝜆 − Δ𝑃 < 0 and 𝜆 + Δ𝑃 > 1,

The optimal strategy of service provider 1:

𝛽∗
1
= 0,∀𝛽2 ∈ [0, 1] (37)

The optimal strategy of service provider 2:

𝛽∗
2
= 0,∀𝛽1 ∈ [0, 1] (38)

For any 𝛽1 ∈ [0, 1], we can achieve 𝛽∗
2
(𝛽1) = 0. Meanwhile,

we can achieve 𝛽∗
1
(𝛽2) = 0 for any 𝛽2 ∈ [0, 1]. Hence, there

exists equilibrium (𝛽∗
1
, 𝛽∗

2
) = (0, 0).

(4) When 0 ≤ 𝜆 − Δ𝑃 < 1 and 𝜆 + Δ𝑃 < 1,

The optimal strategy of service provider 1:

𝛽∗
1
=


min{𝛽1, 𝜆 + Δ𝑃} ,0 ≤ 𝛽2 < 𝜆 − Δ𝑃

𝜆 + Δ𝑃 ,𝛽2 = 𝜆 − Δ𝑃

min{max{𝜆 + Δ𝑃, 𝛽1}, 1} ,𝜆 − Δ𝑃 < 𝛽2 < 2𝜆

𝜆 + Δ𝑃 ,2𝜆 ≤ 𝛽2 ≤ 1

(39)

The optimal strategy of service provider 2:

𝛽∗
2
=


min{𝛽2, 𝜆 − Δ𝑃} ,0 ≤ 𝛽1 < 𝜆 + Δ𝑃

𝜆 − Δ𝑃 ,𝛽1 = 𝜆 + Δ𝑃

max{𝛽2, 𝜆 − Δ𝑃} ,𝜆 + Δ𝑃 < 𝛽1 < 2𝜆

𝜆 − Δ𝑃 ,2𝜆 ≤ 𝛽1 ≤ 1

(40)
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When 𝛽1 = 𝜆 + Δ𝑃 , 𝛽∗
2
(𝛽1) = 𝜆 − Δ𝑃 . When 𝛽2 = 𝜆 − Δ𝑃 ,

𝛽∗
1
(𝛽2) = 𝜆 + Δ𝑃 . Hence, we can easily find the equilibrium

(𝛽∗
1
, 𝛽∗

2
) = (𝜆 + Δ𝑃, 𝜆 − Δ𝑃).

When 𝛽1 = 1, 𝛽∗
2
(𝛽1) = 𝜆−Δ𝑃 .When 𝛽2 = 𝜆−Δ𝑃 , 𝛽∗

1
(𝛽2) ≠ 1.

Hence, there’s no equilibrium when 𝛽∗
1
= 1.

When 𝛽1 = 𝛽1, 𝛽
∗
2
(𝛽1) has two possible value: 𝜆 − Δ𝑃, 𝛽2.

If 𝛽2 = 𝜆 − Δ𝑃 , 𝛽∗
1
(𝛽2) ≠ 𝛽1. If 𝛽2 = 𝛽2 and 𝛽1 = 𝛽1, we

can derive 𝛽∗
1
= 𝜆 + Δ𝑃 and 𝛽∗

2
= 𝜆 − Δ𝑃 by solving the

equations. Hence, we can find the equilibrium (𝛽∗
1
, 𝛽∗

2
) =

(𝜆 + Δ𝑃, 𝜆 − Δ𝑃).
(5) When 0 ≤ 𝜆 − Δ𝑃 < 1 and 𝜆 + Δ𝑃 = 1,

The optimal strategy of service provider 1:

𝛽∗
1
=


min{𝛽1, 1} ,0 ≤ 𝛽2 < 𝜆 − Δ𝑃

1 ,𝛽2 = 𝜆 − Δ𝑃

0 ,𝜆 − Δ𝑃 < 𝛽2 ≤ 1

(41)

The optimal strategy of service provider 2:

𝛽∗
2
=


0 ,𝛽1 = 0

min{𝛽2, 𝜆 − Δ𝑃} ,0 < 𝛽1 < 1

𝜆 − Δ𝑃 ,𝛽1 = 1

(42)

When 𝛽2 = 𝜆−Δ𝑃 , 𝛽∗
1
(𝛽2) = 1.When 𝛽1 = 1, 𝛽∗

2
(𝛽1) = 𝜆−Δ𝑃 .

Hence, we can easily find the equilibrium (𝛽∗
1
, 𝛽∗

2
) = (1, 𝜆 −

Δ𝑃).
When 𝛽2 = 0, 𝛽∗

1
(𝛽2) has two possible values: 𝛽1, 1. However,

𝛽∗
2
(𝛽1) ≠ 0 when 𝛽1 = 𝛽1 or 1. Hence, there’s no equilibrium

when 𝛽2 = 0.

When 𝛽2 = 𝛽2, 𝛽
∗
1
(𝛽2) has two possible values: 𝛽1, 1. If 𝛽1 = 1,

𝛽∗
2
(𝛽1) ≠ 𝛽2. If 𝛽1 = 𝛽1, 𝛽

∗
2
(𝛽1) has two possible values:

𝛽2, 𝜆 − Δ𝑃 . From previous discussion we know that when

𝛽∗
1
= 𝛽1 and 𝛽∗

2
= 𝛽2, we can get 𝛽∗

1
= 𝜆 + Δ𝑃, 𝛽∗

2
= 𝜆 − Δ𝑃 .

Hence, there’s no equilibrium when 𝛽∗
2
= 𝛽2.

(6) When 0 ≤ 𝜆 − Δ𝑃 < 1 and 𝜆 + Δ𝑃 > 1,

The optimal strategy of service provider 1:

𝛽∗
1
=


min{𝛽1, 1}, 0 ≤ 𝛽2 < 𝜆 − Δ𝑃

0, 𝛽2 = 𝜆 − Δ𝑃

0, 𝜆 − Δ𝑃 < 𝛽2 ≤ 1

(43)

The optimal strategy of service provider 2:

𝛽∗
2
=

{
0, 0 ≤ 𝛽1 ≤ 𝜆 + Δ𝑃 − 1

min{𝛽2, 𝜆 − Δ𝑃}, 𝜆 + Δ𝑃 − 1 < 𝛽1
(44)

• If 𝜆 + Δ𝑃 < 2,

When 𝛽2 = 0, 𝛽∗
1
(𝛽2) has two possible values: 𝛽1, 1. If

𝛽1 = 1, 𝛽∗
2
(𝛽1) ≠ 0. If 𝛽1 = 𝛽1, 𝛽

∗
2
(𝛽1) = 0 if 𝛽1 ≤ 𝜆+Δ𝑃−1.

Hence, there exists equilibrium (𝛽1, 0) if 𝛽1 < 1 and 𝛽1 ≤
𝜆 + Δ𝑃 − 1.

When 𝛽2 = 𝜆 − Δ𝑃 , 𝛽∗
1
(𝛽2) = 0. When 𝛽∗

1
= 0, 𝛽∗

2
(𝛽1) ≠

𝜆 − Δ𝑃 . Hence, there’s no equilibrium when 𝛽2 = 𝜆 − Δ𝑃 .

When 𝛽2 = 𝛽2, 𝛽
∗
1
(𝛽2) has two possible values: 𝛽1, 1. From

previous discussion we know that 𝛽1 = 𝜆+Δ𝑃 and 𝛽2 = 𝜆−

Δ𝑃 when 𝛽2 = 𝛽2 and 𝛽1 = 𝛽1, which does not satisfy the

domain of incentive level. Hence, there’s no equilibrium

if 𝛽1 = 𝛽1. If 𝛽1 = 1, 𝛽∗
2
(𝛽1) = min{𝛽2, 𝜆 − Δ𝑃}. Hence,

there exists equilibrium (𝛽∗
1
, 𝛽∗

2
) = (1, 𝛽2) if 𝛽1 > 1 and

𝛽2 < 𝜆 − Δ𝑃 .
• If 𝜆 + Δ𝑃 ≥ 2,

When 𝛽2 = 0, 𝛽∗
1
(𝛽2) has two possible values: 𝛽1, 1. When

𝛽1 = min{𝛽1, 1}, 𝛽∗
2
(𝛽1) = 0 since min{𝛽1, 1} ≤ 𝜆+Δ𝑃 −1.

Hence, there exists equilibrium (𝛽∗
1
, 𝛽∗

2
) = (min{𝛽1, 1}, 0).

(7) When 𝜆 − Δ𝑃 = 1 and 𝜆 + Δ𝑃 = 1, i.e., 𝜆 = 1 and Δ𝑃 = 0,

The optimal strategy of service provider 1:

𝛽∗
1
=


0, 𝛽2 = 0

min{𝛽1, 1}, 0 < 𝛽2 < 1

1, 𝛽2 = 1

(45)

The optimal strategy of service provider 2:

𝛽∗
2
=


0, 𝛽1 = 0

𝛽2, 0 < 𝛽1 < 1

1, 𝛽1 = 1

(46)

From the condition, we know that Δ𝑃 = 0 and 𝜆 = 1. By

substituting them into equation, we can get min{𝛽1, 1} =

𝛽1 = 𝛽2 and 𝛽2 = 𝛽1. When 𝛽2 = 𝛽1 ∈ [0, 1], 𝛽∗
1
(𝛽2) = 𝛽2.

When 𝛽1 = 𝛽2 ∈ [0, 1], 𝛽∗
2
(𝛽1) = 𝛽2. Hence, there exists

equilibrium (𝛽∗
1
, 𝛽∗

2
) = (𝛽2, 𝛽1).

(8) When 𝜆 − Δ𝑃 ≥ 1 and 𝜆 + Δ𝑃 > 1,

The optimal strategy of service provider 1:

𝛽∗
1
=


0 ,0 ≤ 𝛽2 ≤ 𝜆 − Δ𝑃 − 1

min{𝛽1, 1} ,𝜆 − Δ𝑃 − 1 < 𝛽2 < 𝜆 − Δ𝑃

0 ,𝛽2 = 𝜆 − Δ𝑃

(47)

The optimal strategy of service provider 2:

𝛽∗
2
=

{
0 ,0 ≤ 𝛽1 ≤ 𝜆 + Δ𝑃 − 1

𝛽2 ,𝜆 + Δ𝑃 − 1 < 𝛽1
(48)

• If 𝜆 + Δ𝑃 ≥ 2,

When 𝛽2 = 0, 𝛽∗
1
(𝛽2) = 0.When 𝛽1 = 0, 𝛽∗

2
(𝛽1) = 0. Hence,

we can easily find the equilibrium (𝛽∗
1
, 𝛽∗

2
) = (0, 0).

• If 𝜆 + Δ𝑃 < 2,

When 𝛽2 = 0, 𝛽∗
1
(𝛽2) = 0.When 𝛽1 = 0, 𝛽∗

2
(𝛽1) = 0. Hence,

we can easily find the equilibrium (𝛽∗
1
, 𝛽∗

2
) = (0, 0).

When 𝛽2 = 𝛽2, 𝛽
∗
1
(𝛽2) has three possible values: 0, 𝛽1, 1. If

𝛽1 = 0, 𝛽∗
2
(𝛽1) ≠ 𝛽2. If 𝛽1 = 𝛽1, 𝛽

∗
2
(𝛽1) = 𝛽2 if 𝛽1 > 𝜆 +

𝑃 − 1. From previous discussion we know that 𝛽1 = 𝜆 +Δ𝑃
and 𝛽2 = 𝜆 − Δ𝑃 when 𝛽2 = 𝛽2 and 𝛽1 = 𝛽1, which

does not satisfy the domain of incentive level. If 𝛽1 = 1,

𝛽∗
2
(𝛽1) = 𝛽2. The equilibrium exists if min{𝛽1, 1} = 1 and

𝜆 − Δ𝑃 − 1 < 𝛽2 < 𝜆 − Δ𝑃 . However, there’s no solution.

Hence, there’s no equilibrium when 𝛽∗
2
= 𝛽2.
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