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Abstract—As mobile applications grow increasingly computation-intensive, the challenges arising from the limitations of mobile
devices in terms of computing resources and battery life become more pronounced. Mobile Edge Computing (MEC) provides a
promising avenue to address these challenges and enhance user experience. While existing studies have extensively explored
resource allocation and task scheduling in MEC, most treat tasks as monolithic entities, overlooking the nuanced subtasks/components
that often make up mobile applications. This paper endeavors to bridge the gap between the need for incentive mechanisms and the
offloading of dependent computation tasks in MEC. Drawing inspiration from auction theory, we introduce a novel multi-stage iterative
combinatorial double auction (MICDA) mechanism, specifically tailored for dependent tasks in a cloud-edge-end cooperative
computing scenario. Through theoretical analysis, the MICDA mechanisms demonstrate truthfulness, individual rationality, budget
balance, and computational efficiency. Comprehensive experiment results further confirm its superior performance in improving
application makespan and social welfare compared to other existing offloading strategies. This work validates the effective integration
of dependency-aware computation offloading and auction mechanisms in overcoming economic and computational challenges in MEC
systems, thereby paving the way for their potential application in broader real-world scenarios.
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1 INTRODUCTION

W ITH the escalating demand for computation-intensive
mobile applications, including autonomous driving

[2], virtual and augmented reality [3], [4], and advanced
mobile gaming [5]—the constraints imposed by the inherent
physical properties of mobile devices, particularly in terms
of computing resources and battery capacity, critically im-
pinge on users experience. Mobile Edge Computing (MEC)
emerges as a pivotal solution poised to surmount the afore-
mentioned challenges, thereby enhancing the users’ Quality
of Experience (QoE) [6]–[9]. Numerous prior studies [10]–
[12] have delved into the efficient allocation of resources
and task scheduling within MEC systems. However, a com-
monality among these studies is the treatment of tasks
as indivisible units, either offloaded to edge servers or
executed locally. This oversimplification often neglects the
fact that mobile applications frequently comprise a series of
interdependent fine-grained subtasks.

For tasks that are dependent, a subtask must wait for
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all of its predecessors to complete before it can be exe-
cuted. Any delay in a subtask may result in an extended
makespan for the entire application [13]–[16]. For users,
longer execution times lead to greater energy consumption
as the device continues to consume CPU cycles and memory
while waiting for results. This increased waiting time and
energy usage, in turn, can adversely affect the user’s QoE
[7]–[9]. Recent studies have shifted their focus towards the
offloading of such dependent tasks. This approach seeks to
harness the innate parallelism within applications, thereby
further attenuating the operational overhead borne by mo-
bile devices. For instance, Ding et al. [14] proposed an of-
floading method for resource-limited multi-user and multi-
edge settings to minimize execution overhead. Chen et al.
[15] approached dependent task offloading as a Markov
Decision Process, introducing an Actor-Critic method for
DAG-based tasks. In a similar vein, an offloading scheme
for dependent IoT applications, CODIA [16], combined
prioritized scheduling with a reinforcement learning ap-
proach. Notwithstanding their merits, a critical assumption
underpinning these studies is the benevolent participation
of edge servers without any remuneration—an assumption
that borders on impracticality. Consequently, there is an
impending need for an incentive mechanism to galvanize
MEC servers into facilitating offloading services, especially
for tasks exhibiting dependent relationships.

Auction theory [17] is an economic field studying the
distribution of services or goods via bidding processes. Its
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relevance has grown considerably in spectrum allocation,
online advertising, or cloud computing resources, as auc-
tions have become more central in resource allocation within
these areas [18]. There are a few reasons auction theory
holds significant value in computer science. Initially, auc-
tions can distribute resources in a manner that’s equitable
and effective. This is critical in computer science because
resources like bandwidth, storage space, and computational
power are often limited. Secondly, auctions can assist in de-
signing incentive-compatible mechanisms. In other words,
participants are motivated to bid truthfully for items, which
can yield best or at least not worse utilities.

While prior research has made significant strides in
computation offloading and dependent tasks, a conspicuous
gap remains: the integration of incentive mechanisms with
dependent computation offloading in MEC systems. To
bridge this gap, we introduce a novel combinatorial auction-
enabled computing service trading mechanism tailored
specifically for dependent tasks in MEC environments. This
endeavor is underpinned by several intricate challenges
that our proposed framework seeks to address: a) While
auction theory’s benefits in edge computing are recognized
[19], [20], it’s unclear how to combine this with offloading
and scheduling of dependent tasks. Specifically, how do
task dependencies affect the pricing and bidding stages in
auctions? b) We need a reliable auction mechanism that
promotes long-term and fair interactions between mobile
devices and MEC servers, preventing negative effects from
dishonest bidding. c) The mechanism should benefit both
sides: it should reduce the time taken by mobile applications
and ensure that MEC servers also gain from the process.

Distinct from single-item auction mechanisms, combina-
torial auctions enable bidders to place bids on a combina-
tion of items, often referred to as a ‘bundle’ [21]. Such an
approach is particularly appropriate when the valuation of
products by buyers is non-additive, known as complemen-
tarity and substitutability [21]. To incorporate dependency
considerations into the pricing mechanism, we model the
mobile application as a Directed Acyclic Graph (DAG), rep-
resenting the complementarity and substitutability of sub-
tasks based on their parameters and topological relation-
ships. A multi-stage iterative combinatorial double auction
(MICDA) mechanism is proposed to address the issue of
component scheduling and resource allocation under the
Cloud-Edge-End cooperative computing scenario, with a
focus on dependency-aware offloading. This can be viewed
as a multi-seller multi-buyer procurement auction, where
edge/cloud servers act as service providers (sellers) and
users’ mobile devices function as service requesters (buyers)
for offloading services, extending the scope of our previous
work [1]. Network service operators could potentially serve
as auctioneers, motivated by the desire to improve the
overall benefit of their network service.

The MICDA mechanism is comprised of two stages that
are integrated with a concurrent provider and consumer
(CPC) model [13] to address the dependency relationships
among the subtasks of mobile applications. The mechanism
employs value query and demand query to discover values,
assign components, and facilitate convergence in iterative
auctions. In the first stage, a winner determination algo-
rithm inspired by [22] is utilized to determine the winners,

and the market clearing bid density is computed to cal-
culate the payments for mobile devices and the revenues
for service providers. The second stage involves computing
the fractional optimal solution using linear relaxation and
the ellipsoid method [23]. A hypergraphs-based proxy cost
model is employed to enable the demand oracle, used in
the ellipsoid method, to efficiently query the cost of ser-
vice providers. This ensures that the winner determination
problem in the second stage of MICDA can be solved in
polynomial time. The Lavi-Swamy [24] decomposition tech-
nique is applied to transform the optimal solution obtained
from the linear programming relaxation into a probability
distribution over a polynomial-sized support set. Based on
this probability distribution, an integer solution is randomly
selected. Furthermore, the Vickrey–Clarke–Groves (VCG)
payment rule [25]–[27] is adopted in the second stage to
calculate the revenue of service providers. Theoretical anal-
ysis has demonstrated that the MICDA mechanism achieves
individual rationality, truthfulness, and weakly budget bal-
anced. Moreover, the mechanism operates efficiently within
polynomial time, reduce the overhead concern.

The main contribution can be concluded below:

1) We propose a multi-stage iterative combinatorial
double auction (MICDA) mechanism. This novel ap-
proach integrates dependency-aware task offload-
ing with a combinatorial auction mechanism in
Cloud-Edge-End cooperation.

2) The proposed mechanism is subjected to thor-
ough theoretical analysis to establish its compliance
with essential economic properties. These properties
comprise truthfulness, individual rationality, weak
budget balance, and polynomial time complexity.

3) We conducted comprehensive experiments to eval-
uate the effectiveness and performance of the
MICDA mechanism. The proposed mechanism
demonstrates significant superiority compared to
offloading strategies that do not consider the depen-
dency within mobile applications. It also exhibits
certain advantages over other dependency-aware
algorithms in performance and efficiency.

The remainder of the thesis is organized as follows:
Section 2 provides an overview of the relevant literature
and highlights the existing gaps. In Section 3, we introduce
the associated system architecture and modeling. Section 4
delves into problem formulation. Section 5 presents a de-
tailed overview of the proposed mechanism, along with
specifics of each component. Section 6 theoretically validates
the anticipated properties of the mechanism. Through sim-
ulation experiments, Section 7 validates the performance of
the mechanism, comparing it with existing methods. Finally,
Section 8 concludes this work.

2 RELATED WORK

This section delves into two primary facets of the field:
Dependency-aware Task offloading and Incentive Mecha-
nisms for Mobile Edge Computing.
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TABLE 1
Summary of Symbols

Symbol Description

MD Set of mobile devices
SP Set of service providers
G Set of application DAGs
Gi Specific application DAG on mdi
Vi Component/subtask set for application Gi

vi,k Component/subtask in Gi

σi,k Data size of component vi,k
ωi,k Workload of component vi,k
Θi,k Returned data size for component vi,k
E Set of DAG edges
ι∗i Critical path in application DAG Gi

Φ∗
i Set of provider components

Φi Set of consumer components
Ri,j Data rate from mdi to spj
Bi, Bj Bandwidths for mobile devices and edge servers
ρi, hi,j Communication power, channel gain
di,j Distance between mdi and spj
a,N0 Path loss factor and AWGN
Rc Rate between cloud server and relay edge servers
T̂ j
i,k Earliest start time of component vi,k

T̃ j
i,k Finish time of component vi,k on spj

tj,ei,k Execution time of vi,k on spj

tj,j
′

i,k Return Data transmission time of vi,k from spj to sp′j
t̃j,tri,k Transmission time of vi,k itself from spj to sp′j
Ej,e

i,k Execution Energy cost of vi,k on spj

Ej,j′

i,k Transmission Energy cost of vi,k from spj to sp′j
Ej

i,k Total energy for vi,k on spj
ηi Service ratio of mdi
ϑi Valuation of mobile devices
cji Cost function of service providers
Ui User utility in the offloading scheme
Uj Utility for service providers
SW Social welfare
vdi Valuation density of mobile device mdi
cdji Cost density for mdi provided by spj
xi
j,k Decision variable for offloading vi,k of mdi to spj

y
j,S

j
i

Decision variable for offloading set Sj
i to spj

Bj Bid of service provide spj in an auction round
Ω the total workload of a selected components set

2.1 Dependency-aware Task offloading

The importance of dependency-aware task offloading strate-
gies in mobile edge computing has been increasingly ac-
knowledged by the research community. Noteworthy con-
tributions in this realm include: Cloud Gaming Platforms:
A decomposed cloud gaming platform was introduced
by Cai et al. [28], which supports flexible migrations of
gaming components, aiming at cognitive resource man-
agement. Hardware Parameters Optimization: Ding et al.
[14] proposed an offloading strategy to optimize several
hardware parameters of user equipment, aiming to mini-
mize execution overheads. MDP-based Approaches: Chen
et al. [15] modeled the dependent task offloading challenge
as a Markov decision process (MDP). They subsequently
designed an Actor-Critic mechanism tailored for DAG-
based multiple dependent tasks computation offloading.
IoT Applications: Xiao et al. [16] formulated an intelligent
computational offloading scheme for dependent IoT appli-
cations (CODIA) with a prioritized scheduling strategy and
an AI-based offloading mechanism. Multi-tier Frameworks:

Shen et al. [29] proposed EdgeMatrix, a multi-tier edge-
cloud computing framework. This framework leverages a
Networked Multi-agent Actor-Critic algorithm and a multi-
task mechanism to efficiently address resource heterogene-
ity and service orchestration. Mobility-aware Offloading:
Zhao et al. [30] introduced a vehicular edge computing
model to optimize task offloading, reducing response times
and energy consumption. Their approach, using deep rein-
forcement learning and task prioritization, shows improved
efficiency and success rates over existing methods.

Despite these advancements, there remains a gap in the
literature pertaining to the integration of effective incentive
mechanisms in dependency-aware task offloading. The pre-
vailing assumption is that all offloading service providers
operate altruistically, which diverges from practical scenar-
ios. Thus, the union of dependency relationships within
application components and a fitting incentive mechanism
remains an area ripe for exploration.

2.2 Incentive Mechanisms for Mobile Edge Computing

The design of incentive mechanisms for mobile edge com-
puting scenarios, aiming to galvanize edge nodes to deliver
superior services, has been extensively studied. Notable
methodologies encompass game theory, auction theory, and
other mechanisms that facilitate efficient resource allocation
and augment social welfare. Key contributions in this do-
main include: Game-Theoretic Solutions: He et al. [31] pre-
sented a game-theoretic solution to the edge user allocation
problem, emphasizing the Nash equilibrium to optimize
system costs and improve performance metrics. Sun et
al. [32] developed a hierarchical framework for vehicular
edge computing that enhances server resource utilization
and vehicle service satisfaction. Their solution, BARGAIN-
MATCH, combines bargaining for resource allocation and
matching for task offloading, achieving optimal system
utility and efficiency, particularly under heavy workloads.
Reinforcement Learning: A decentralized algorithm for
computation offloading, which marries game theory and
deep reinforcement learning, was proposed in [33]. This ap-
proach has demonstrated superiority over existing method-
ologies. Risk-Aware Policies: Bai et al. [34] introduced
a Risk-aware Computation Offloading policy, utilizing a
Bayesian Stackelberg game to balance service delays and
manage risks. Auction Mechanisms: Ma et al. [35] proposed
an auction mechanism tailored for industrial IoT in mo-
bile edge computing. Similarly, Zhou et al. [36] presented
RACORAM, a reverse auction mechanism for computation
offloading. Chen et al. [37] introduced COMSA, which in-
tegrates auction mechanisms with network resource alloca-
tion to incentivize resource contribution. Contract Theoretic
Approaches: Diamanti et al. [38] utilized multi-dimensional
contract theory for incentive mechanisms, guiding user
preferences towards fog layers according to delay tolerance.
They utilize Stackelberg game for task offloading and power
allocation emphasizes the need to account for user hetero-
geneity and applications’ varied delay sensitivities.

A glaring omission in the aforementioned studies is the
consideration of task divisibility and the inherent topolog-
ical relationships between components. Recognizing and
capitalizing on these relationships can significantly enhance
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Fig. 1. Framework of the MICDA offloading system for Cloud-Edge-End
collaboration, including mobile devices, edge servers, and cloud server.

application execution and overall system efficiency. This un-
derscores the pressing need to devise incentive mechanisms
tailored for dependency-aware offloading within the mobile
edge computing framework.

3 SYSTEM MODEL

3.1 System Framework for Cloud-Edge-End Scenario

As illustrated in Fig, 1, the system comprises three enti-
ties: mobile devices, edge servers, and cloud servers, each
situated at different tiers within the system. The lowest
tier comprises users’ mobile devices, denoted as MD =
{md0,md1, ...,mdm}. These devices are required to run var-
ious applications for different scenarios. Due to their physi-
cal limitations and computational capabilities, it is necessary
to offload computations to higher-tier devices (edge/cloud
servers) to enhance user experience. Depending on the
complexity of user scenarios, the modeling of applications is
detailed in the following section. The middle tier represents
edge servers, and the top tier is cloud servers, which are
concluded as Service Providers SP = {sp0, sp1, ...spn}. The
edge servers are strategically positioned in proximity to the
network edges of base stations, facilitating direct wireless
communication with mobile devices. Additionally, the cloud
server, referred to as sp0 in our model, operates as a higher-
tier entity characterized by its superior computational capa-
bilities. Considering the heterogeneity among different tiers
and devices, each entity in the system has distinct positions,
communication bandwidth, communication power, CPU
frequency, and the number of CPU cores.

3.2 Application Dependency Model

Consider a system of m mobile devices, each hosting ap-
plications with diverse configurations and computational
requirements. Each application is represented by a DAG
G = {G0,G1, ...,Gm}, derived from its inherent character-
istics and topology. For any application, Gi = {Vi, Ei},
where Vi is the set of components, considering their depen-
dencies. vi,k is defined by {σi,k, ωi,k,Θi,k}, with σi,k and
ωi,k signifying the data size and computational workload,
respectively. Θi,k represents the data size to be relayed
to associated components. If there exists a directed edge

Fig. 2. Indication for Concurrent Provider and Consumer model

e(vi,k, vi,k′) ∈ Ei between components vi,k and vi,k′ , then
vi,k′ is dependent on vi,k and can only commence post
the completion of vi,k. This relationship is denoted as
pred(vi,k′) = {vi,k ∈ Vi|e(vi,k, vi,k′) ∈ Ei} and succ(vi,k) =
{vi,k′ ∈ Vi|e(vi,k, vi,k′) ∈ Ei}. Each vi,k is executed once,
either locally or on a remote server. A path of a DAG
(Gi) contains a sequence of interdependent components
(e(vi,k, vi,k+1) ∈ E), written as λ = {vi,a, vi,b, ..., v1,z}. The
longest path in a DAG is defined as ι∗i , also nominated as the
critical path [13], which contains the largest workload. In the
ideal parallelism maximization condition, the application’s
overall execution time should be the execution time of
subtasks on the critical path (ι∗i ). Non-critical components
(vi,k /∈ ι∗i ) can take advantage of gaps in the execution of
critical components and execute in parallel on other places.

Acknowledging the inherent complexity of managing
these dependencies within MEC environments, our study
leverages the Concurrent Provider and Consumer (CPC)
model, as introduced by [13]. The visualization indication
is shown in Fig. 2. The critical components are identified as
providers (Φ∗

i ), who offer the time capacity that non-critical
components specified as consumers (Φi) can utilize to exe-
cute concurrently on other MEC servers. The providers are
constructed by assembling components in λ∗ sequentially
until non-critical components cause potential inferences re-
lated to precedence limitations. Based on the generated
providers, the corresponding consumers for each provider is
assigned by two principles. First, the associated consumers
(Φi,l) of a provider (Φ∗

i,l) must execute simultaneously with
it, which means there is no topological dependency (ances-
tors or descendants) between components in Φi,l and Φ∗

i,l

[39]. Second, the consumer’s execution may postpone the
next provider’s earliest start time and finish time of the
whole application.

By leveraging the CPC model [13], it provides a compre-
hensive framework to represent the dependency relation-
ships among DAG components, offering detailed insights
into both direct and indirect impacts of non-critical nodes
on critical path components. This granular understanding
is essential for tailoring our offloading mechanisms to ac-
commodate the complex dependency dynamics inherent
in mobile applications. Secondly, utilizing the CPC model
allows us to elucidate how different offloading strategies in-
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fluence the overall application makespan and user utility. By
considering the interplay between critical and non-critical
components, the model guides the formulation of offloading
decisions of different entities in the mechanism.

3.3 Communication Model

In this work, the transmission channel is modeled based on
the Rayleigh fading channel [40], considering the densely
populated urban areas’ effect on radio signals. The band-
width of orthogonal channels allocated to mobile devices is
Bi, and Bj to the edge servers. The data transmission rate
from the mobile device mdi for the edge server spj is

Ri,j = Bi log2

(
1 +

ρihi,j

dai,jN0

)
, (1)

where ρi represents the transmission power of the mobile
device mdi. The parameters hi,j and di,j are the channel
gain of the wireless channel as well as the distance between
mdi and spj , respectively. The exponent a is a path loss
factor, and N0 shows the additive white Gaussian noise
(AWGN). The communication model between MEC servers
can be referred to as Eq. (1). We disregard the download
time, which is negligible compared to the upload time.

Additionally, mobile devices are required to transfer data
to their nearest edge servers (base station), which then for-
ward the data to the cloud through a fiber communication
link. The transmission rate between the cloud server and the
relay edge servers is assumed to be the same, denoted as Rc.

3.4 Computation model

Because of the dependency among components in the appli-
cation Gi, all of the immediate predecessors must be finished
before the execution of component vj . Thus, the earliest start
time of component vj ’s execution be formulated as

T̂ j
i,k = max

vi,k′∈pred(vi,k)

(
max

{
T̃ j
i,k′ , T̃

i
i,k′

})
+ t̃j,tri,k , (2)

where vi,k′ is one of the predecessor of vi,k. T̃ j
i,k′ and

T̃ i
i,k′ indicate the finish time of the component vi,k′ executed

on the service provider spj or the mobile device locally.
Besides, t̃j,tri,k is the completion time of component vi,k
transmitted from the mobile device to the service provider
spj , which is

t̃j,tri,k =


0, if spj = mdi
σk

Ri,j′
+ σk

Rc
, if spj = sp0

σk

Ri,j
, otherwise.

(3)

When the component vi,k is executed locally, the transmis-
sion time of vi,k itself is eliminated. If the component is
executed on the cloud, the transmission delay of component
vi,k consists of wireless transmission delay between mdi
and the earliest edge server spj′ and the fiber transmission
delay from spj′ to the cloud.

The CPU frequency of the service provider spj is fj
(cycles/second), and the execution time of the component
vi,k is

tj,ei,k =
ωi,k

fj
. (4)

As for the local execution, the fj can be replaced by the
CPU frequency (fi) of mdi. After the component vi,k is
completed, the results should transmit to the position (spj′ )
where its successors are processed. Based on the communi-
cation model in Eq. (1), we have

tj,j
′

i,k =

{
0, if j′ = j∑

vi,k′∈succ(vi,k)
θkk′
Rj,j′

, otherwise
(5)

If both the vi,k and its successors are executed on the same
entity, the transmission delay tj,j

′

i,k of vi,k’s execution result
is zero. Otherwise, the result transmission delay is set to the
returned data size divided by the transmission rate. Hence,
the finish time of the component vi,k on spj is concluded as

T̃ j
i,k = T̂ j

i,k + tj,ei,k + tj,j
′

i,k . (6)

Regarding energy consumption, the execution energy cost
of component vi,k performed on a service provider spj is

Ej,e
i,k = ωi,kκjf

2
j , (7)

where κj [41] is the chip architecture’s coefficient factor.
After that, the transmission energy cost is calculated as

Ej,j′

i,k = ρj · tj,j
′

i,k , (8)

where ρj is the transmission power of the service provider.
So far, we conclude the total energy consumed for compo-
nent vi,k finished on the service provider spj is

Ej
i,k = Ej,e

i,k + Ej,j′

i,k . (9)

Similarly, for mobile devices, energy consumption can be
referred to the equation mentioned above by substituting
the configurations (κj , ρj) with the attributes related to
mobile devices.

Fig. 3. Sequence diagram of the proposed auction mechanism
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4 PROBLEM FORMULATION

The utility functions for both entities are formulated ini-
tially. The Satisfaction level [42], [43] of mobile devices is
defined as the overall service time ratio. Let vi,k′ be the
sink component of Gi. The overall service ratio ηi of mdi
is calculated by:

ηi =
T̃ i
i,k′

T̃ ∗
i,k′

, (10)

where T̃ i
i,k′ and T̃ ∗

i,k′ represent the overall makespan of Gi

executed locally and the value attained by the proposed
mechanism, respectively. Furthermore, the valuation of mo-
bile devices is related to their satisfaction level and the
energy cost to execute the application locally.

ϑi = ηi ·
∑

vi,k∈Vi

Ei
i,k (11)

Hence, the utility of the user by participating in the
offloading scheme is defined as the differences between
their valuation and the payment made for the service:

Ui =
n∑

j=0

|Vi|∑
k=0

(ϑj
i,k − pji,k)x

i
j,k, (12)

where xi
j,k indicates the decision or allocation status

of whether the component vi,k of mdi is offloaded to the
service provider spj . In addition, pji,k represents the de-
termined payment value the mobile device pays to service
provider spj from mdi for processing the component vi,k.

As for offloading services providers, including the mo-
bile edge servers and the cloud servers, their utility is
directly correlated to the profit made through the proposed
mechanism, which can be defined as the revenue they re-
ceived from the mobile devices minus the cost of providing
offloading services.

Uj =
m∑
i=0

|Vi|∑
k=0

(rji,k − cji,k)x
i
j,k (13)

Here, the cost (cji,k) is equivalent to the energy expendi-
ture Ej

i,k. So far, we can conclude the objective of this model
is to maximize social welfare (SW) by taking into account
the utilities of both parties in the auction.

SW :
m∑
i=0

Ui +
n∑

j=0

Uj (14)

By substituting Eq. (13) and Eq. (12), we can derive the
objective function with decision at component level:

max
n∑

j=0

m∑
i=0

|Vi|∑
k=0

(ϑj
i,k + rji,k − pji,k − cji,k)x

i
j,k

s.t. C1 : T̃ j
i,k ≤ T̂ j

i,k′ ,∀e(vi,k, vi,k′) ∈ Ei,
C2 : T̃ j

i,k · xi
j,k ≤ T̃ l

i,k,∀mdi ∈ MD,∀vi,k ∈ Vi,

C3 :
n∑

j=0

|Vi|∑
k=0

xi
j,k ≤ 1,∀mdi ∈ MD,

C4 :
n∑

j=0

m∑
j=0

xi
j,k ≤ |Vi|,∀mdi ∈ MD,

C5 : xi
j,k ∈ {0, 1},∀mdi ∈ MD,∀vi,k ∈ Vi.

(15)

Here, C1 exhibits the dependency among application
components, asserting that every component vi,k only be-
gins its execution when predecessors are finished. C2 is a
time constraint ensuring that the edge execution time of
the component matches or surpasses the local execution of
mdi, which allows mobile devices to keep the computation
locally. Constraints C3, C4 and C5 ensure a component vi,k
is offloaded to only one service provider or executed locally.

Algorithm 1: MICDA Mechanism Overview
Input: Set of mobile devices MD, set of service

providers SP , Set of mobile applications G
Output: Allocation y, Payment pi, Revenue rj

1 Initialization:
2 Broadcast requests to SP
3 Public DAG information
4 while Not all components auctioned do
5 if Initial Round then

// Stage I:
6 MDs send value queries for components in all

provider groups Φ∗

7 Auctioneer broadcasts value queries to SPs
8 SPs respond with bids Bj(Si)
9 Auctioneer runs χ1 to determine winner

10 Auctioneer calculates payment by
Algorithm 4

11 else
// Stage II:

12 while ∃mdi ∈ MD,Mi ̸= ∅ do
13 MDs send demand queries for Mi to the

auctioneer
14 Auctioneer broadcasts to SPs
15 SPs construct bundles Sj

i and submit their
bids by Algorithm 2

16 Auctioneer runs χ2 to determine winner
17 Auctioneer calculates payments and

revenues by Algorithm 4
18 end
19 end
20 end

5 AUCTION MECHANISM

5.1 The Framework of MICDA
The proposed MICDA mechanism consists of two stages,
the sequence diagram of the whole process of the mech-
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anism is shown in Fig. 3. Iterative combinatorial auctions
utilize two types of queries to reveal the values and prefer-
ences of bidders, namely demand queries and value queries
[18]. Both of them will be detailed later, and different query
methods will be used at different stages of MICDA.

Within the proposed mechanism, network service oper-
ators act as auctioneers, aiming to enhance the overall ben-
efit of their network service. They orchestrate the auction,
starting with the preparation phase where mobile devices
submit offloading requests, including information about the
applications to be offloaded and geographical location. The
auctioneer then auctioneer collects all requests from mobile
devices and broadcasts them to edge or cloud servers. As
auctioneers, they are pivotal in aggregating demand and
supply, thereby optimizing the outcome of the mechanism.

In the initial auction round (Stage I), mobile devices
send value queries about all components in providers to
the auctioneer. These components are the path with the
maximum workload in the mobile application and represent
the theoretically shortest execution time of the application.
Therefore, these components have the highest priority to
be determined for mobile users and will also contribute
to the advancement of subsequent auctions. It is worth
noting that to ensure the properties of individual rational-
ity (non-negative profits) and convergence, mobile devices
are allowed to participate in bidding (dummy bids) and
become winners. The auctioneer collects all mobile device
value queries and sends a summary to service providers.
Service providers send bids to the auctioneer based on the
components in the query. The auctioneer selects the winner
based on the received bids and determines the payment
price, broadcasting the auction results to all participants.

After the initial round, the auction enters the second
stage. At this stage, mobile devices send demand queries to
the auctioneer at the beginning of the round, i.e., all remain-
ing nodes that have not been auctioned off temporarily and
their estimated values for these components. The auctioneer
sends these demand queries to service providers. When ser-
vice providers receive these queries, they construct a bundle
with the maximum value under the constraints according to
the bidding strategy and send the proxy valuation for these
components. After receiving all bids, the auctioneer selects
the winner and calculates the price based on payment rules.

The termination condition of the auction is that all
components of all mobile devices have been auctioned off,
regardless of whether the winner is the mobile device itself
or a cloud or edge server. The specific bidding strategy,
winner determination, payment rule, and other steps in the
mechanism will be introduced later.

5.2 Desired Property

MICDA is desired the following economic properties:

• Individual Rationality: For all entities participating
in the proposed mechanism, their utility should be
non-negative, representing Ui, Uj ≥ 0.

• Truthfulness (Truthful in expectation) A mecha-
nism is truthful in expectation if each agent maxi-
mizes their expected benefit by reporting their true
value/cost, regardless of other agents’ report.

• (Weak) Budget Balance: The payments from all buy-
ers (MD) are greater than or equal to the returns of
all sellers (SP), meaning the auctioneer does not need
to subsidize the operation of the mechanism with
additional funds. This Weak Budget Balance ensures
the sustainability of MICDA.

• Computation Efficiency: The proposed mechanism
can be completed in polynomial time.

5.3 Query

In this section, the two ways of queries [18] used in the
MICDA mechanism are shown:

5.3.1 Value query

A value query asks a service provider spj to report its
cost for providing a specific bundle of items or services. In
mathematical terms, the bundle of components that a mobile
device mdi desires to offload are Si with local computation
cost (cji (Si)) and makespan (T̃i(Si)). Then a value query to
the spj is asking for the value of cji (Si) and T̃ j

i (Si).

5.3.2 Demand query

A general demand query asks a service provider spj to
report the bundle of items or services they are willing to
provide given a certain price vector. A price vector assigns
a price to each item in the auction. In mathematical terms,
the price vector pi represents the valuation of the mobile
device mdi on each component in a ground set Mi. Then
a demanding query to spj is asking for the set Sj

i that
maximizes pi(S

j
i ) − cji (S

j
i ), which is the revenue from the

bundle Sj
i at prices pi(S

j
i ). Considering the characteristics

of our problem, a completion time constraint is adopted to
regulate the finish time of each component in the bundle can
not exceed the finish time of its’ corresponding providers.

5.4 Hypergraph-based proxy cost model

Recalling the definition of complementarity between items
in combinatorial auction [1], [18], the complementarity be-
tween subtasks of a DAG can be concluded. If a subtask and
its predecessor are handled by the same service provider,
the communication cost can be eliminated. Therefore, the
total benefit of the service provider handling the component
will increase, which is greater than handling either of the
two components separately. A cost function based on hyper-
graphs [23] is used to model the complementarity between
components.

Assume that in each round, the set of sub-
tasks/components in the demand query initiated by the
mobile device mdi is Mi. A service provider spj constructs
a bundle of components Sj

i ∈ Mi following the time-
constrained demand query detailed in Section 5.5.1. The
service provider spj can use a hypergraph-r cost model
Hj

i = (Sj
i , Ē

j
i ) to represent the cost of any subset of

components from Sj
i . Besides, ē ⊆ Ēj

i contains most r
components, which are independent of each other. The
weight we represents the communication cost to deliver
their execution result. What’s more. a component vi,k in Sj

i
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has a corresponding execution cost wk. Then, for a subset of
goods s ⊆ Sj

i , the cost is derived by

cji (s) =
∑

vi,k∈s

wk +
∑
ē:ē⊆s

wē. (16)

This function represents the total cost (including execution
cost and communication cost) if he wins all components in
s. The parameter r limits the maximum number of vertices
each edge in Ēj

i can contain. In this way, the cost can be
described with O(mr) parameters.

The reason for using a hypergraph-based proxy cost
model in this scenario is that the complementarity between
components can be represented by the weight of the edges
(i.e., communication cost is 0), and the number and size of
the edges can be limited by the parameter r. In this way, a
concise model can be used to describe limited complemen-
tarity without considering all possible combinations of ap-
plication components of mobile devices. It can also support
efficient queries, which are beneficial for both auctioneers
and bidders. Using the hypergraph cost model, auctioneers
can obtain the cost information of SP by directly interacting
with this proxy model without busy querying with the
bidders. This can reduce the number and complexity of
information exchanges.

5.5 Bidding Strategy
5.5.1 Bundle Construction
In the initial round of the auction, we elaborated that the
execution time of components on the critical path (ι∗i ), also
known as providers (Φ∗

i ) in the CPC model, representing the
ideal makespan of the whole application. Therefore, com-
ponents in providers have the highest priority for mobile
devices being auctioned. Also, the service providers adopt
a myopic best-response bidding strategy for the whole
mechanism, which means they will not be willing to allow
themselves to be idle. So they should bid for a bundle of
components with the highest workload, which is exactly the
providers. By valuation analysis from both entities, we con-
clude that the service providers should bid for bundles of
all critical components (providers) in the first round. At this
juncture, the interaction between mobile devices and service
providers can be conducted in the form of a value query, as
the demand and supply are aligned. Furthermore, there is
no need to consider the internal topological relationships
and latency of the components.

After the initial round, due to the heterogeneity and
limited resources of service provider devices, the bundles in
the service provider’s bid cannot encompass all components
within the entire consumer set (components in providers are
auctioned in the first round). Additionally, the submitted
bundles must take into account the dependency nature
of different components and meet latency constraints. As
a result, we employ a ’demand query’ to represent the
auction interaction in the second phase. The selection and
construction of the bundle are formulated as a 0-1 knap-
sack problem for each consumer set Φi,l. Concurrently, the
corresponding cost is calculated and incorporated into the
Hypergraph-based proxy cost model Hj

i = (Sj
i , Ē

j
i ) which

is then submitted to the auctioneer. The specific bundle
construction process is as follows:

Algorithm 2: Bidding Strategy
Input : Demand query Mi from MD
Output: Bid Bj

1 Initialize Bj = ∅;
2 if auction round == 0 then
3 for each mdi ∈ MD do
4 Sj

i = Φ∗
i , the critical path providers;

5 Bj = Bj ⊕ (Sj
i , c

j
i (S

j
i ));

6 end
7 else
8 if Additional case then
9 Sj

i = max{ωi,k|vi,k ∈ Si} ;
10 Bj = Bj ⊕ (Sj

i , c
j
i (S

j
i ));

11 else
12 for each mdi ∈ MD do
13 foreach Φi,l in Φi (reverse order) do
14 foreach component vi,k ∈ Φi,l do
15 Calculate value density

Ej
i,k

t̃j,tri,k +tj,ei,k+tj,j
′

i,k

;

16 end
17 Sort components by value density in

descending order;
18 Initialize empty bundle sji,l;
19 foreach component vi,k in sorted order

do
20 if adding vi,k to sji,l does not exceed

τi,l then
21 Add vi,k to sji,l;
22 end
23 end
24 Concatenate sji,l to Sj

i ;
25 end
26 Construct Hj

i = (Sj
i , Ē

j
i );

27 Bj = Bj ⊕Hj
i ;

28 end

In each Φi,l, components could concurrently execute
with corresponding providers. Besides, components in each
consumer set do not cause a potential delay to the corre-
sponding provider directly by definition of the CPC model,
but it affects the start time of the components in the follow-
ing provider and the makespan of the application.

Hence, we should limit the total execution time of
the selected components in each Φi,l within the execu-
tion time (τ̃wi,l) of all components of its provider, indi-
cated in constraint (C6). After denoting the winner of
the first round of mdi’s service request as spw, we have
τ̃wi,l =

∑
vi,k∈Φ∗

i,l
t̃w,tr
i,k ++tw,e

i,k + tw,w′

i,k . Then, the bundle
construction in Φk can be represented as:

max
∑

vi,k∈Φi,l

cji,k · xi
j,k

s.t. C6 :
∑

vi,k∈sji,l

(t̃j,tri,k ++tj,ei,k + tj,j
′

i,k )xi
j,k ≤ τ̃wi,l,

C7 : xi
j,k ∈ {0, 1},∀vi,k ∈ Φi,l,∀mdi ∈ MD

(17)

Due to the NP-hardness of the problem mentioned
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above, we use a greedy algorithm for handling it in polyno-
mial time. The components in consumer Φi,l are sorted by

their value density
Ej

i,k

t̃j,tri,k ++tj,ei,k+tj,j
′

i,k

. The components with

higher value density have higher priority to add to the
bundle until the total time exceeds τi,l.

The whole process of bundle construction starts with
the last set of consumers since it is possible to incorporate
considerations for the complementarity of different compo-
nents. The set of components selected in the lth consumer
set of service provider spj is sji,l, and the corresponding
service cost is written as cji (s

j
i,l). Additionally, the complete

bundle submitted by spj in the current auction round is the
concatenation of the results from all consumer sets:

Sj
i = sji,1 ∪ sji,2 ∪ ... ∪ sji,l (18)

After obtaining the complete bundle and its corresponding
cost, the service provider spj can proceed to construct
the hypergraph-based proxy cost model Hj

i = (Sj
i , Ē

j
i ) as

illustrated in Section 5.4.

5.5.2 Bidding language
To enhance the efficiency and flexibility of combinatorial
auctions, bidding languages can be employed [17], [18].
In terms of efficiency, bidding languages can help buyers
express their valuations for different combinations of goods
more accurately, thereby improving social welfare and the
quality of resource allocation. In terms of flexibility, bidding
languages can make it easier for buyers to handle complex
constraints and preferences. Therefore, service providers can
simultaneously use exclusive-OR (XOR) bidding language
to express bids Bj for different mobile devices.

Bj = (Sj
1, Ē

j
1)⊕ ...⊕ (Sj

i , Ē
j
i ) (19)

XOR (⊕) bids allow bidders to offer different prices for
different combinations of components from different mobile
devices and are required to get one of them.

5.5.3 Additional case
Considering that if the computation resources in the whole
network are under demand, constraint C6 in Eq. (17) is
not met, which leads to the collection of bids from service
providers becoming an empty set. To ensure the conver-
gence of the mechanism, the auctioneer calls a single-item
bid that can ignore constraint C6. According to the myopic
best-response bidding strategy, the services provider will
bid for the most valuable components Sj

i = max{ωi,k|vi,k ∈
Si} in the remaining consumer nodes of a mobile device.

5.6 Winner Determination
5.6.1 Winner Determination for Stage I
The winner determination algorithm (χ) in the MICDA
mechanism can be divided into two categories, shown as
Algorithm 3. In the first category (χ1), which is applied
for the initial stage of the auction and the additional case
introduced in Section 5.5.3. In the former case, the valuation
query requires SP to return their bid prices for all subtasks
in providers of each mobile device. Therefore, all bundles
from each SP are identical, so we can treat them as a single-
item auction. In the latter case, all SP is required to submit a

Algorithm 3: Winner Determination Algorithms
Input : Bids from MD and SP
Output: Allocation y

1 if χ1 then
2 Calculate vdi for each mdi ∈ MD by Eq. 20 ;
3 Calculate cdji for each spj by Eq21 ;
4 Sort vdi in decreasing order;
5 Sort cdji in increasing order;
6 Accept pairs until vd(k′) ≥ cd(k′) · η(k′);
7 else if χ2 then
8 Calculate vdi by Eq. 20;
9 Rank vdi in descending order by Eq. 22;

10 for each mdi do
11 Linear relaxation and formulate primal

problem by Eq. 23;
12 Define dual problem by Eq. 24;
13 Solve dual problem by Ellipsoid method y∗ ;
14 Decompose fractional solution ;
15 Random rounding to get y;
16 end

single-item bid in order to overcome the convergence prob-
lem when the computation resources are under demand.
Thus, they can be tackled in a same way.

In this section, the winner determination problem (χ1)
of the initial stage and the additional case is elaborated and
solved. The current active mobile devices set is denoted as
MD∗. After receiving bids containing the bundle Si from
the mobile devices, the valuation density of active mobile
devices vdi is calculated firstly by

vdi =
ϑi(Si)√

Ωi

, (20)

where Ωi =
∑

vi,k∈Si
ωk. As for the service provider spj ,

the cost density for mdi is defined as:

cdji =
cji (Si)√

Ωi

· 1

ηi
. (21)

The effective cost density of spj is defined as cdji =
max{ cdji | mdi ∈ MD∗ } After that, the auctioneer sorts
the valuation density of MD∗ in decreasing order and the
effective cost density of SP in an increasing order, accepting
the pair of buyer and seller in sequence until the last pair
(vd(k′), cd(k′)) has vd(k′) ≥ cd(k′) · ηk′ . It should be noted
that the k’ is the rank, not the actual id. All mobile devices
that are rejected by χ1 keep the components (Si) locally.

5.6.2 Winner Determination for Stage II
In this section, the winner determination algorithm (χ2) for
the second stage of the MICDA mechanism is illustrated.
After collecting the demand query from MD and receiving
the bids of each SP , the auctioneer calculates the total
valuation density (vdi) of the demand query from each
mobile device by Eq. (20). Subsequently, the auctioneer will
rank the total valuation density (vdi) of all mobile devices
in descending order, from the highest to the lowest.

ϑ1(M1)√
Ω1

≥ ϑ2(M2)√
Ω2

≥ ... ≥ ϑn(Mn)√
Ωn

(22)
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Then, a greedy approach is employed to select the
highest-ranking candidate as the recipient for choosing
a service provider. Based on the aforementioned bidding
strategy of service providers, each service provider will bid
to multiple mobile devices. And since the components of
each mobile device are heterogeneous and unrelated, win-
ners will be selected for them in sequence. Due to the XOR
bidding strategy, none of their other bids will be accepted
once a spj becomes a provisional winner in a auction round.

5.6.3 Linear Relaxation

An allocation rule called Maximal-In-Distributional-Range
(MIDR) [44] is implemented for the second winner deter-
mination algorithm (χ2) of the proposed mechanism. The
idea behind this rule is to pre-determine a distribution of
feasible allocations before receiving the reported valuations
from players. Then, based on the reported valuations, the
distribution with the maximum expected social welfare is
selected. Finally, a feasible allocation is randomly drawn
from the selected distribution. This rule can induce players
to report their valuations truthfully. It can form a truthful
expectation mechanism if combined with a VCG [25]–[27]
type of payment.

As for a DAG-based application, the overall makespan
depends on the longest path’s finish time. Considering
that all bundles submitted through the time-constrained
demand query ellaborated in Section 5.5.1 will not cause
extra makespan of the application. Therefore, the valuation
of the mobile device in stage II can be regarded as a
constant, the social welfare problem is about minimizing
the cost of the offloading services of the mobile devices.
We transition from a component-level analysis to a bundle-
level abstraction. This shift aligns with the combinatorial
auction setting. By applying linear relaxation to the social
welfare maximization objective function shown in Eq. (15),
we achieve a streamlined formulation. Consequently, the
winner determination linear programming (LP) problem for
a mobile device mdi with remaining unallocated compo-
nents Mi in an auction round can be formulated as:

min
∑
j,Sj

i

yj,Sj
i
(cji (S

j
i ))

s.t. C8 :
∑
j

∑
vi,k∈Sj

i

yj,Sj
i
≤ 1, ∀Sj

i ⊆ Mi

C9 :
∑
Sj
i

yj,Sj
i
≤ 1, ∀spj ∈ SP

C10 : yj,Sj
i
≥ 0, ∀spj ∈ SP, Sj

i ⊆ Mi

(23)

The dual linear program of the primary problem can be
defined, acknowledging that the primary linear program is
a relaxation from constraint C10. However, there’s an issue:
the linear program has an exponential number of variables,
making it impossible to solve in polynomial time. On the
other hand, the constraints are relatively few, hinting that
its dual problem has fewer variables but exponentially many
constraints. This setup suggests that the dual problem might
be more manageable despite its complexity. The formulation
of the dual problem is as follows:

max
∑
j

uj +
∑
k

pk

s.t. C11 :
∑

vi,k∈Sj
i

pk − cji (S
j
i ) ≥ uj , ∀j, Sj

i

C12 : uj , pk ≥ 0

(24)

Recognizing that the dual problem possesses exactly
n +m variables, but an exponential number of constraints.
A potential approach to solve this problem could involve
the ellipsoid method, which can solve this problem in poly-
nomial time. Nevertheless, this doth rely upon a separation
oracle capable of operating within polynomial time. Here a
demand oracle is played as the separation oracle for a cost
cji (S

j
i ): given a price pk for each subtask vi,k ∈ Mi, compute

a bundle Sj
i by

Sj
i ∈ argmax


∑

vi,k∈Sj
i

pk − cji (S
j
i )

 . (25)

The auctioneer can calculate such operation in polyno-
mial time by the hypergraph-based proxy cost model intro-
duced in section 5.4 [23]. After solving the dual problem, the
solution of the primal problem(Eq. (23)) can be calculated by
making use of the complementary slackness [45].

5.6.4 Decomposing the fractional solution

By the dualization and the ellipsoid algorithm with the
given demand oracle, the fractional solution of Eq. (23)
can be resolved. To achieve a MIDR mechanism, we use a
technique called Lavi-Swarmy reduction [24]. This approach
allows for the computation of distribution over integer
solutions with the support of polynomial size, achievable in
polynomial time. By obtaining the optimal fractional solu-
tion y∗, we can execute a decomposition of the vector y∗

α into
a convex combination of feasible integral solutions. This can
be represented as y∗

α =
∑

l∈I λlyℓ, where the sum is over
a polynomial number of feasible integral solutions. After
getting the probability λl, a random rounding procedure is
taken to get the integral solution (y) of Eq. (23). The solution
(y) is the result of the selected winners and allocation results
of χ2 in each auction round.

5.7 Payment Rule

5.7.1 Payment Rule for Stage I

As for the winner determination rule (χ1) in Section 5.6.1,
the final pair of vd(k′) ≥ cd(k′) is accepted. Additionally, the
clearing price density inspired from [22] is defined as

pd =
vd(k′+1) + η(k′+1) · cd(k′+1)

2
(26)

Thus, for an accepted pair of mdi and spj . The payment
of mdi should be made is calculated as

pi =

{
pd ·

√
Ωi, if vd(k) ≥ pd ≥ cd(k) · η(k)

vd(k) ·
√
Ωi, otherwise

(27)
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Algorithm 4: Payment Rules
Input : Allocation y, bids Bj

Output: Payments pi, rj
1 if Stage I then
2 Calculate pd by Eq. 26;
3 for each accepted MD i, SP j pair do
4 Calculate pi by Eq. 27;
5 Calculate rj by Eq. 28;
6 end
7 else if Stage II then
8 for each winner SP j do
9 Calculate fractional payment r∗j by Eq. 31;

10 Decompose r∗j to get rj
11 end
12 for each winner MD i do
13 Calculate pi by Eq. 34;
14 end

The revenue of spj is also derived based on the clearing
price density by

rj =

{
pd ·

√
Ωi, if vd(k) ≥ pd ≥ cd(k) · η(k)

cd(k) ·
√
Ωi · ηi, otherwise

(28)

For other entities who participate but not be accepted by the
winner determination rule have zero revenue or payment.

5.7.2 Payment rule for Stage II
In the second stage of the proposed MICDA mechanism,
VCG payment rule [25]–[27] is utilized to calculate the rev-
enue of SP . Consider a scenario where the service provider,
denoted as spj , does not participate in Stage II of MICDA
mechanism. In such a case, SW achieved in each auction
round depends on the total cost of winning SP , which is
formulated as:

min
Sj′
i ⊆Mi

∑
j′ ̸=j

cj
′

i (S
j′

i ). (29)

When spj is included in the auction, the social welfare
generated by the set of service providers excluding spj may
decrease compared to the case when spj was absent. The
total cost in this situation is given by:

Sj∗
i ∈ argmin

Sj
i⊆Mi

∑
j

cji (S
j
i ). (30)

The disparity in social welfare generated for the other ser-
vice providers when spj is absent versus present is:

r∗j = min
Sj′
i ⊆Mi

∑
j′ ̸=j

cj
′

i (S
j′

i )−
∑
j′ ̸=j

cji (S
j∗
i ), (31)

where the valuation ϑi(S
j
i ) of mdi is constant and can-

celed by subtraction. This amount is precisely the payment
that the VCG mechanism (procurement version) paid for
spj . Thus, one can interpret the spj ’s revenue as the collec-
tive externality they impose on the other bidders.

Additionally, the payment rule for the linear relaxation
and decomposition-based winner determination requires
additional procedures to ensure truthfulness. Suppose the
optimal fractional solution of Eq. (23) is y∗. By the VCG

payment rule we elaborated above, we can calculate a
fractional payment r∗j . The final payment is obtained by
dividing the integrality gap α of the decomposition:

rj =
r∗j
α

(32)

When it comes to the payment for mobile devices (MDs),
we adopt the concept of critical payment as outlined in [21].
The current provisional candidate (md∗i ), which also repre-
sents the MD with the highest rank according to Eq. (22),
is denoted as having a value density of vd∗i . The MD with
the second-highest rank, excluding md∗i , is labeled as md∗i− .
With this in mind, the critical payment (p∗i ) for md∗i can be
calculated as follows:

p∗i = vd∗i− ·
√
Ωi (33)

Furthermore, taking into account the dummy bids of the
mobile devices and the budget balance of MICDA, the final
payment for each mdi can be derived by

pi = max(p∗i , rj). (34)

6 THEORICAL ANALYSIS OF MICDA MECHANISM

6.1 Truthfulness

Lemma 1. Stage I of MICDA mechanism is truthful.

Proof. The truthfulness of mobile devices is established first.
Let mdi denote a mobile device with a set of components
Mi. The true value of mdi is denoted by ϑi(Mi) and the
corresponding value density by vdi. The untruthful bid
price of mdi is denoted as bi(Mi) and the bid density bdi.

Untruthful bidding does not yield additional utility to
mobile devices in two distinct scenarios:

Case 1: bdi < vd(k): Here, mdi is not accepted by the
auctioneer, resulting in a utility Ui = 0. If vdi ≤ vd(k),
then the truthful bid also results in zero utility. However, if
vdi > vd(k), the utility of truthful bidding is ui = ϑi(Mi)−
min(pd, vd(k)) ·

√
Ω ≥ 0. Hence, untruthful bidding reduces

the utility of mdi.
Case 2: bdi ≥ vd(k): In this case, mdi is accepted for

trade, and the utility is Ui = ϑi(Mi)−min(pd, vd(k)) ·
√
Ω.

If vdi ≥ vd(k), untruthful bidding achieves the same utility
as truthful bidding. However, if vdi < vd(k), then Ui < 0
and untruthful bidding reduces the utility of mdi.

From these cases, it is concluded that untruthful bidding
does not provide additional utility for mobile devices, and
truthful valuation is the dominant strategy.

Next, the truthfulness of service providers in Stage I
of the MICDA mechanism is proven. Let spj be a service
provider with a bundle of components Si ⊆ Mi. The true
cost for a mobile device mdi is cij(Si). The untruthful ask
price for mdi for Si is denoted as aji , and the untruthful ask
price density as adji . Truthfulness is proven for each case of
auction results:

Case 1: adji > cd(k): In this case, spj is not accepted by
the auctioneer, so Uj = 0. If cdji > cd(k), truthful bidding
is still not accepted. However, if cdji ≤ cd(k), then Uj =

[max(pd, vd(k))−cdji ]·
√
Ω·ηi ≥ 0. Hence, untruthful bidding

reduces the utility of spj .
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Case 2: adji ≤ cd(k): Here, spj is accepted by the
auctioneer and provides service. If cdji ≤ cd(k), then
spj is still accepted when bidding truthfully. However,
if cdji > cd(k), then the utility of untruthful bidding is
Uj = [max(pd, vd(k))− cdji ] ·

√
Ω · ηi < 0. Hence, untruthful

bidding reduces the utility of spj .
From these cases, it is concluded that untruthful bidding

does not provide additional utility for the service provider
in Stage I of MICDA. In conclusion, it is proven that both
entities, the mobile devices, and the service providers, are
incentivized to report truthful valuation or cost in Stage I of
the MICDA mechanism.

Lemma 2. Stage II of MICDA mechanism is truthful.

Proof. Consider a mobile device, denoted as mdi, with a
true valuation of the remaining components set mdi as
ϑi(Mi). If mdi bid as ϑi′(Mi′) ≤ ϑi(Mi), then the calculated
value density vdi′ ≤ vdi, which leads to a lower rank in
the sorted list (Eq. (22)). Hence, the ranking algorithm for
mobile devices in the winner determination χ2 of Stage
II is monotone. Additionally, the critical payment rule, as
introduced in Section 5.7.2, is adopted. Therefore, the Stage
II of MICDA is proven to be truthful for mobile devices [21].

For the service providers, the expected revenue of spj is
given by Eλl

[r∗j ] =
r∗j
α . This can be expanded as:

E{λl}l∈I

[
r∗j
]
=
∑
l∈I

λl ·
[
cji

(
zl
)
/cji (y

∗)
]
· r∗j

=
[
r∗j /c

j
i (y

∗)
]
·
∑
l∈I

λl · cji
(
zl
)

=
[
r∗j /c

j
i (y

∗)
]
· cji (x

∗/α) = r∗j /α

(35)

Suppose spj reports an untruthful cost cji , resulting in
the allocation in LP 23 as y∗. Given that the VCG payment
is applied and the fractional revenue is truthful [18], it
follows that:

r∗j (c
j
i , c

−j
i )− cji (y

∗) ≥ r∗j ( cji , c
−j
i )− cji ( y∗) (36)

Combining Equations 35 and 36, it is obtained that:

[∑
l∈I

λl · cji (y
∗)

]
− E{λl}l∈I

[
r∗j (c

j
i , c

−j
i )
]
≥[∑

l∈I
λl · cji ( y∗)

]
− E{λl}l∈I

[
r∗j ( cji , c

−j
i )
] (37)

The left side represents the utility obtained by spj when
a truthful cost is reported, while the right side represents
the utility of untruthful bidding. Thus, the truthfulness of
service providers is proven, and the lemma follows.

Theorem 1. The proposed MICDA mechanism is truthful.

Proof. By invoking Lemma 1 and Lemma 2, the truthfulness
of the proposed MICDA mechanism in Stage I and Stage
II has been established respectively. Therefore, it can be
concluded that the MICDA mechanism is truthful.

6.2 Individual Rational

Lemma 3. Stage I of MICDA mechanism is Individual Rational.

Proof. For any participant not accepted by the MICDA
mechanism, no payment or return is required, and therefore,
their utility is 0. For participants who are accepted by the
mechanism, the utility of mdi is given by the payment
function of mobile devices in Eq. (27):

Ui =

{
(vdi − pd) ·

√
Ωi, if vd(k) ≥ pd ≥ cd(k) · η(k)

(vdi − vd(k)) ·
√
Ωi, otherwise

(38)
In the first case of Eq. (38), vdi ≥ vd(k), so the utility

Ui ≥ 0. In the second case, vd(k) ≥ pd and vdi ≥ pd, so
Ui ≥ 0 also holds.

The utility of spj is given by the revenue function of
service providers in Eq. (28):

Uj =


(pd− cdji · ηi) ·

√
Ωi, if vd(k) ≥ pd

and pd ≥ cd(k) · η(k)
(cd(k) − cdji ) ·

√
Ωi, ·ηi otherwise

(39)

In the first case, cd(k) ≥ cdji , so the utility of spj is non-
negative. In the second case, pd ≥ cdji · ηi is obtained by the
ranking algorithm, hence Uj ≥ 0. Therefore, the individual
rationality of the MICDA mechanism in Stage I is proven.

Lemma 4. Stage II of MICDA mechanism is Individual Rational.

Proof. For the mobile devices in Stage II, the dummy bid
with a reserve price and the threshold payment ensures
the utility of the mobile device Ui ≥ 0, which means their
participant will not bring negative utility. So, the individual
rationality of mobile devices is ensured.

For the service providers, the VCG payment rule is
applied to calculate the revenue of spj , which is:

rj = cji (S
j∗

i )−

∑
j′ ̸=j

cji (S
j∗
i )− min

Sj′
i ⊆Mi

∑
j′ ̸=j

cj
′

i (Sj′)

 (40)

By the truthfulness of MICDA Stage II of Lemma 2,
it follows that

∑
j′ ̸=j c

j
i (S

j∗
i ) ≥ min

Sj′
i ⊆Mi

∑
j′ ̸=j c

j′

i (S
j′

i ).

Hence, rj ≥ cji (S
j∗
i ), proving the individual rationality of

service providers.

Theorem 2. The MICDA mechanism is Individually rational.

Proof. By invoking Lemma 3 and Lemma 4, the individual
rationality of the MICDA mechanism is established.

6.3 (Weak) Budget Balance

Theorem 3. The MICDA mechanism is Weak Budget Balance.

Proof. In Stage I of the MICDA mechanism, for each ac-
cepted mobile device and service provider pair (mdi, spj),
the net of payment and revenue is:
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(a)

(b)

Fig. 4. Eventplots of (a) MICDA and (b) KM matching (m = 5 and n = 3).

neti,j =


0, if vd(k) ≥ pd

and pd ≥ cd(k) · η(k)
(vd(k) − cd(k) · ηi) ·

√
Ωi, otherwise

(41)

By the ranking criteria in Section 5.6.1, ηk ≥ ηi. Hence,
vd(k) ≥ cd(k) · ηi, which supports neti,j ≥ 0 in MICDA
Stage I. In the second stage of MICDA, utilizing the critical
payment described in Eq. (34), we can establish that pi ≥ rj .
Consequently, neti,j = pi − rj ≥ 0.

Hence, the net value neti,j ≥ 0 in the Stage II of the
MICDA mechanism. In conclusion, neti,j = pi − rj ≥ 0 in
both stages of the proposed MICDA mechanism. Hence, a
weak budget balance is established.

6.4 Computation Efficiency
Theorem 4. The MICDA mechanism is Computation Efficiency.

Proof. In the initialization phase, building the CPC model
has a time complexity of O((|Vi|+ |Ei|)) for each Gi. In Stage
I of the MICDA mechanism, the value query for each SP
operates in O(|Φ|), where |Φ| is the size of the longest path
in Gi. The winner determination in Stage I is completed in
O(m log(m + n log(n)). Therefore, Stage I is calculated in
polynomial time.

The total auction round of MICDA is smaller than m|Vi|.
In Stage II, the bundle construction time complexity is
O(m2L|Vi|2(log|Vi|), where L is the number of consumers
in Φi. The demand oracle used in the Ellipsoid method
on the hypergraph-based cost proxy model operates in
polynomial time [23]. Then, the dual problem of winner
determination Eq. (23) can be solved in polynomial time

with an efficient demand oracle [46]. Therefore, all parts of
Stage II are proven to finish in polynomial time.

Hence, both stages in MICDA run in polynomial time,
which proves the computational efficiency of the proposed
MICDA mechanism.

7 EVALUATIONS

This section is dedicated to a comprehensive evaluation of
the proposed MICDA algorithm through numerous simula-
tions. The description commences with an introduction to
the experimental parameters and the algorithms employed
for comparison. Subsequently, simulation outcomes are pre-
sented, followed by an analysis aiming to demonstrate the
performance attributes of the proposed mechanism.

7.1 Experimental Settings
7.1.1 Parameter Setting
This evaluation involves a network topology within a
60m×60m area, featuring randomly dispersed MEC servers.
The communication parameters for these servers include a
bandwidth of Bi = 20 MHz, path loss exponent of a = 2.5,
noise power spectral density of N0 = 10−9, transmission
power of ρi = 3 W, and channel gain of hi = 10−3, as
suggested by [14]. The transmission rate between the edge
server and the cloud is 10MB/s. Furthermore, the CPU
frequency, fi, ranges between 3 GHz and 3.5 GHz, and
the effective switched capacitance, κi, lies between 10−27

and 10−26.5. The number of CPUs is 2 for edge servers.
As for the cloud, the CPU frequency is set to 5 GHz and
the CPU number is set to 4. As for the mobile device, the
bandwidth is set at Bl = 20 MHz, there is only one CPU
and the frequency is ranged between 1 GHz and 2 GHz.
The effective switched capacitance is set to κl = 10−26.

The DAG utilized for the evaluation are generated ran-
domly by maintaining the level of parallelism constant
while gradually modifying the depth. The generation algo-
rithm is modified from Dai [47]. The average input data
size, σj , is 100 KB, the number of CPU cycles required to
process a unit bit, ωj , is 80 M cycles/bit, and the local
output data size, Θj , is 8 KB. To simulate the diversity
of actual demands, the components of mobile application
range from 10 to 50. During the simulation, each mobile
device is equipped randomly with several subtasks in their
DAG configuration.

7.1.2 Comparsion Methods
To evaluate the feasibility and performance of MICDA
mechanism, we set two categories of the algorithm as com-
parisons, dependency-aware and holistic methods, respec-
tively. Below is the explanation of each offloading algorithm.

• RandomD: The component is randomly offloaded to
a service provider or the mobile device itself.

• GreedyD: Topological sorting the DAG first, then
sorting the request of mobile devices by their valua-
tions in decreased order. For each mobile device fol-
lowing the sorted sequence, offload the components
of each mobile device greedily to the most time-
saving entities without considering any monetary
cost or social welfare.
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Fig. 5. Comparison of average makespan for different edge and mobile device numbers

• DSA: Topological sorting of the DAG firstly, then
applying a second-price double sequential auction
(DSA) to assign the components of mobile devices.

• AU-PCP: The AU-PCP algorithm employs an on-
line auction-based approach for offloading depen-
dent tasks in MEC environments. It utilizes a greedy
winner selection to maximize user valuation and in-
corporates a heuristic for task assignment, enhancing
offloading efficiency.

For the holistic type of offloading algorithm, the applica-
tion is regarded as an entire computation task to offload:

• AONEC: For any mobile device, the whole applica-
tion is offloaded to the nearest services provider.

• RandomM: The application is offloaded randomly to
an Edge/Cloud server for any mobile device.

• GreedyM: The mobile devices are sorted by the total
workload and sequentially allocate the correspond-
ing component to the most time-saving SP.

• KM: Utilizing the Kuhn-Munkres [48], [49] algo-
rithm for maximum weight matching, similar to the
methodology by Yao et al. [50]. Edge weights are
adapted from network potential to social welfare of
pairing mobile devices with service providers.

7.2 Experimental results
7.2.1 Overview
The importance of dependency in computation offloading
tasks in mobile edge computing scenarios is illustrated from
three aspects (application makespan, active ratio of the
system, average workload) through Fig. 4. We specifically
compare the MICDA mechanism proposed by us and the
matching mechanism of the KM algorithm as dependency-
aware and holistic offloading algorithms, respectively.

Firstly, under the same experimental conditions, the
dependency-aware MICDA mechanism achieves a smaller

Fig. 6. Boxplot comparison of makespan by five dependency-aware
offloading algorithms

makespan than the KM mechanism, with the former being
less than half of the latter in terms of makespan. Moreover,
through the spike raster plot, it can be seen that MICDA
fully utilizes the topological relationships in mobile applica-
tion subtasks and the parallel computing capabilities.

Secondly, it can be seen that the proportion of active
entities in the entire system under the MICDA mechanism
is much higher than that under the KM mechanism. This
means that more entities can participate in offloading ser-
vices without idling and wasting computational resources.
The active ratio of the MICDA mechanism remains at a
high level, exceeding 75 percent at its peak and maintaining
above 50 percent for the majority of the time. In contrast, the
KM algorithm only reaches a maximum of 30 percent and is
continuously decreasing.

Lastly, for MICDA mechanism, the workload of the en-
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tire system is borne by more entities, rather than being con-
centrated on a few service providers as in the KM algorithm.
Considering the above three points, the dependency-aware
mechanism is superior to the direct offloading mechanism,
as the makespan of the application program is reduced by
more than half. For service providers, their computational
capabilities and resources are more effectively allocated,
reducing their idle time. Empirically, the dependency-aware
MICDA mechanism improves the benefits of both parties
involved, contributing to better social welfare. This will also
be confirmed in the subsequent experimental analysis.

7.2.2 Makespan
In this section, we compare the performance of all offloading
algorithms based on dependency and blindness in terms of
the average makespan of all mobile applications. Fig 5 indi-
cates that the methods based on dependency awareness are
significantly superior to the holistic methods. Although the
disparity diminishes as the number of mobile edge servers
increases and the overall computational resources of the sys-
tem become more abundant, this trend still underscores the
significance of incorporating dependency awareness into
MEC offloading. For each algorithm, increasing the number
of edge servers will help the average makespan of mobile
devices. For the AONEC algorithm, mobile devices always
offload their computation to the nearest edge device. How-
ever, in densely populated areas, this approach can lead to a
workload imbalance, with some edge devices being heavily
utilized while others remain idle, thus underutilizing sys-
tem resources. Interestingly, for the two variants of the ran-
dom algorithm, incorporating dependency awareness did
not yield an improvement in makespan performance. This
observation emphasizes the importance of well-designed
offloading strategies. Compared to the GreedyM algorithm,
the KM algorithm demonstrates weaker makespan perfor-
mance, primarily because it focuses on maximizing the
social welfare of the matching rather than solely considering
makespan. For each subplot, we fixed the number of edge
nodes and changed the number of mobile devices. The AU-

Fig. 7. Comparison of social welfare achieved by different offloading
mechanisms

PCP algorithm achieves an impressive average makespan
when the network has abundant overall offloading compu-
tational resources. Although this advantage diminishes as
the overall network workload increases, it remains compet-
itive with any holistic offloading strategy. This reflects the
effectiveness of its dependency-aware heuristic assignment
algorithm. The GreedyD algorithm and the MICDA mecha-
nism achieved similar and the best results. However, we can
see that as the number of mobile devices increases (the total
computing demand increases) under multiple edge number
settings, the MICDA algorithm will have a more obvious
advantage. This proves that in situations where the supply-
demand relationship of computing resources is more tense,
the MICDA mechanism can better utilize the topological
structure of DAG and achieve a more effective components
assignment.

In addition, we specifically compare five dependency-
aware algorithms in Fig. 6. When the workload is rela-
tively small (MD number = 5), the average effect of dif-
ferent algorithms under different numbers of edges will
be close. This gap becomes more and more obvious as the
workload of the entire system increases. This reflects that
even for dependency-aware algorithms, different offloading
strategies can have a significant impact. While the AU-
PCP algorithm demonstrates superior average makespan
performance under conditions of lower overall network
workload compared to the DSA algorithm, it tends to be
outperformed by DSA as the workload increases. This oc-
curs because both algorithms operate online offloading auc-
tion mechanisms; however, AU-PCP prioritizes processing
all DAG components of a single user first. DSA, on the
other hand, operates on a finer granularity, focusing on the
most critical DAG component for all users at the current
moment. This allows for a more effective exploitation of
the dependencies between different components and the
computational resources of the service providers. In the
case of the DSA algorithm, its performance is inferior to
the GreedyD method, which might be attributed to its
consideration of offloading cost. The DSA algorithm tends
to prioritize offloading to service providers with the lowest
cost that still satisfies the constraints. While this approach
takes into account cost-effectiveness, it might not yield the
best makespan performance, leading to a lower overall
efficiency compared to the GreedyD algorithm. Moreover,
the MICDA mechanism has proven the effectiveness of its
offloading strategy under different parameters.

7.2.3 Social Welfare
Fig. 7 illustrates the social welfare achieved by the KM,
MICDA, and DSA mechanisms. The social welfare of the
KM mechanism under different numbers of mobile devices
and MEC servers is lower than the other mechanisms that
consider dependency awareness. The MICDA achieves the
highest social welfare compared to the DSA and AU-PCP
mechanism because its offloading strategy better utilizes
the topological structure of the DAG and the computing
resources of the entire system. By comparison, the AU-PCP
mechanism, while being an innovative approach, operates
on a one-sided mechanism that, despite taking user valu-
ation into consideration, fails to account for the cost and
preferences of service providers. This limitation hinders its
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Fig. 8. The contour plot of social welfare achieved by different offloading mechanisms

ability to achieve higher levels of social welfare. As for the
DSA algorithm, which primarily focuses more on costs in
user’s valuation, whereas the MICDA and AU-PCP mech-
anisms comprehensively consider both factors related to
makespan and cost. This also leads to lower social welfare.

Fig. 8 presents a comparative contour plot that maps
social welfare achieved by different offloading mechanisms
to the number of mobile devices against the number of
edge/cloud servers. The KM mechanism shows a rela-
tively gradual increase in social welfare as the number of
edge/cloud servers increases. This suggests that while the
KM algorithm does benefit from additional computational
resources, the improvement in social welfare is not as sub-
stantial when the number of mobile devices is high. This
again reflects the weakness of the holistic strategy with
the workload increase. In contrast, the MICDA mechanism
exhibits a more pronounced increase in social welfare with
the increase in both mobile devices and edge/cloud servers.
This indicates a robust scalability of the MICDA mecha-
nism, demonstrating significant improvement in managing
higher workloads and efficiently utilizing the computation
resources of service providers. Both the DSA and AU-PCP
mechanisms exhibit sensitivity to the allocation of compu-
tational resources, as indicated by the closeness of contour
lines for DSA and the steep gradient for AU-PCP. This im-
plies that while both mechanisms are capable of achieving
high social welfare, their performance is particularly sensi-
tive to the balance between the DAG workloads and com-
putation resource supply. Specifically, they seem to thrive
under conditions of abundant resource availability, but may

Fig. 9. Comparison of auction rounds of different mechanisms

not scale as efficiently with an increase in demand without a
corresponding increase in resources. This demonstrates that
the proposed MICDA mechanism achieves higher resource
utilization efficiency due to its better exploitation of task
dependencies. It can realize greater social welfare even
when computational resources are relatively scarce.

7.2.4 Efficiency
Auction round is defined as the process in that bidders
submit a bid until he/she receives an allocation result or
one mutual interaction between bidders and auctioneer.
Fig. 9 shows the number of auction rounds required for
the DSA, MICDA and AU-PCP mechanisms to complete
under different numbers of mobile devices (which also
represent the number of components). MICDA is more
efficient than DSA. As the number of items increases, the
efficiency difference between MICDA and DSA becomes
more apparent. This is because the MICDA mechanism
not only uses combinatorial auctions but also uses bidding
language, leveraging the XOR bidding language to allow
service providers bid across multiple mobile devices in
each auction round. The proposed method breaks through
the limitation of single-minded service providers. What’s
more, the number of auction rounds required by the AU-
PCP mechanism grows linearly with the number of mobile
devices because it processes user requests iteratively, one
round at a time. This approach yields higher efficiency
compared to the MICDA mechanism when the number of
users is relatively low. However, as the number of mobile
devices increases, the required auction rounds for AU-PCP
exceed those of the MICDA mechanism.

8 CONCLUSION

In summary, we addressed a pressing gap in the realm of
computation offloading in MEC systems: the integration of
incentive mechanisms with dependent computation offload-
ing. Recognizing the interconnection of subtasks in mobile
applications, we introduced the multi-stage iterative com-
binatorial double auction (MICDA) mechanism—a pioneer-
ing approach that melds dependency-aware task offloading
with combinatorial auction mechanisms. Our rigorous theo-
retical analysis validated the mechanism’s adherence to piv-
otal economic properties, including truthfulness, individual
rationality, weak budget balance, and polynomial time com-
plexity. Simulation experiments further highlighted its su-
periority in enhancing application makespan and improving
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social welfare, outperforming baseline algorithms. Regard-
ing future directions, we envision deploying our mechanism
on real testbeds to tackle the challenges associated with
implementing system practices. This step will enable us to
further refine and validate the feasibility and performance
of our proposed mechanism.
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