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ABSTRACT—Cloud gaming is a novel service provisioning paradigm, which hosts video games in the cloud and transmits interactive
game streams to game players via the Internet. In such cloud gaming scenarios, the cloud is required to consume tremendous
resources for video rendering and streaming, especially when the number of concurrent players reaches a certain level. On the other
hand, different game players may have distinct requirements on Quality-of-Experience, such as high video quality, low delay, etc. Under
this circumstance, how to satisfy players of different interests by efficiently leveraging cloud resources becomes a major challenge to
existing cloud gaming services. In order to meet the overall requirements of players in a cost-effective manner, this work applies game
theory to cloud gaming scenarios. It proposes a distributed algorithm to optimize virtual machine (VM) placement in mobile cloud
gaming through resource competition. Further, by constructing a potential function, we prove that the resource competition game is a
potential game, and the proposed algorithm scales well as the player population increases. We prove theoretically and verify
experimentally that, with the proposed distributed VM placement algorithm, players can achieve a mutually satisfying state within a
finite number of iterations.

Index Terms—Mobile cloud gaming, game theory, resource optimization
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1 INTRODUCTION

Mobile gaming is becoming increasingly popular, and it is
reported that mobile revenues account for more than 50%
of the global gaming market as it reaches $137.9 billion in
2018 [1]. However, for sophisticated games with advanced
graphical effects and complicated scenes, state-of-the-art
mobile terminals still lack support for the increased storage
and computation requirements of contemporary games. To
this end, cloud gaming [2] [3] is proposed to help relieve the
burden on terminal devices by hosting the game engine in
the cloud.

There are two main cloud gaming paradigms [4]: 1)
Remote rendering, as shown in Fig. 1, i.e., executing source
code on a cloud gaming platform and delivering video
frames to devices of players; 2) Local rendering, i.e., the
rendering module is implemented in the devices of players
while the cloud gaming platform processes the gaming
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logics and sends a set of generated display instructions to
these devices. Specifically, local rendering consumes more
resources on the devices of players while remote rendering
depends more on Internet performance.

Since the upcoming 5th Generation (5G) mobile net-
works are aimed to provide high bandwidth and low-
latency communications [5], in this paper we focus on
the more promising remote rendering paradigm of cloud
gaming, rather than local rendering, due to the following
reasons. First, local rendering means that the source codes of
games themselves need to be modified, which is impractical
due to various copyright and cost limitations. Second, local
rendering is not feasible to support most of the AAA-level
games from other platforms since the graphics capabilities
of mobile devices are far from enough. Third, local render-
ing is designed to eliminate the high burden of real-time
video transmission on the network. Nonetheless, the high-
bandwidth transmission brought by 5G networks may make
local rendering less meaningful in this regard [6].

With respect to the remote rendering paradigm of cloud
gaming, commands of players are sent to the cloud while the
cloud renders gaming scenes accordingly and streams the
corresponding real-time video frames back to the players
[7] via backbone and wireless networks. Such a paradigm
is a promising solution for enabling players to experience
resource-hungry games on light-weight mobile devices such
as phones or tablets.

Commercial companies, e.g., OnLive1, Gaikai2, G-

1. http://www.onlive.com/
2. http://www.gaikai.com/
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cluster3, and Ubitus4, explored cloud gaming in late 2000’s.
Nvidia’s cloud gaming project GeForce Now is currently
in beta trial run in North America and Europe5. Moreover,
Microsoft launched a dedicated cloud-based gaming envi-
ronment and its Xbox gaming services with its powerful
public cloud, Azure6. Before 5G networks are fully com-
mercialized, by taking advantage of the nearest (relative to
the player) server among its numerous data centers across
the globe, Google unveils its cloud gaming solution, Stadia,
which is capable of streaming video games with up to 4K
resolution at 60 frames per second7.

To support elastic cloud computing, hardware virtualiza-
tion is widely employed to allows multiple virtual machines
(VMs) to share one physical machine [8]. Nevertheless, since
cloud gaming is resource-intensive and delay-sensitive, gen-
eral solutions for VM management in cloud computing can-
not be directly applied [9]. In particular, VM placement [9] in
cloud gaming scenarios are not addressed well. Specifically,
when a player requests a cloud game service from a service
provider, its cloud data center needs to allocate hardware
resources for this player, configure the VM, and select an
appropriate physical machine to place the VM. However,
for commercial scenes with massive players, if players with
various experience requirements and networking conditions
are not scheduled properly [10], the cloud resources cannot
be sufficiently utilized, and the Quality-of-Experience (QoE)
is downgraded as well. Therefore, it becomes a challenge to
schedule the VM placement while guaranteeing the overall
QoE of players with different interests.

In this paper, we employ game theory to solve this
challenge and to help service providers reduce maintenance
costs. The adoption of game theory is natural due to the de-
centralized [11] characteristic of the cloud gaming architec-
ture: players are competing for the limited cloud resources
and finally are self-organized into a mutually satisfactory
state. Moreover, optimization based on game theory can
help the cloud ease the burden of complex centralized man-
agement for resource allocation, such as collecting players’
network information and dealing with a large scale of data.
Besides, as players may want to play different games and

get a better experience in terms of QoE, game theory can be
utilized to analyze the resource competition among different
players with various targeting games.
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Fig. 1: Remote rendering for cloud gaming.

Hereinafter we formulate the multi-player mobile cloud
gaming problem as a distributed optimization problem with
respect to multi-player resource competition. The major
contributions of our work are summarized below:

3. http://www.gcluster.com/eng
4. http://www.ubitus.net/
5. https://www.nvidia.com/en-gb/geforce/products/geforce-

now/mac-pc/
6. https://azure.microsoft.com/en-us/solutions/gaming/
7. https://store.google.com/magazine/stadia

• We propose a mobile cloud gaming architecture
along with a resource optimization problem, i.e., VM
placement optimization, and show that it is NP-hard
to find optimal solutions for this problem.

• By leveraging potential game theory, we study the
intrinsic property of the resource competition game,
and show that this competition game always pos-
sesses a Nash Equilibrium (NE). Further, to solve
VM placement optimization, we design a distributed
algorithm with a complexity of O(M logM), where
M is the number of physical servers in the cloud.

• Besides, we quantify the efficiency ratio of our so-
lution compared to the optimal solution by both
theoretical analyses and experiments. Experimental
results corroborate that the proposed algorithm can
achieve efficient performance, 60%−75% better com-
pared with other strategies, and scales well with the
number of players.

The remainder of this paper is organized as follows.
Related works are discussed in Section 2 and Section 3
elaborates the proposed cloud gaming architecture. Then, a
multi-player resource competition problem is introduced in
Section 4. Performance analysis is derived in Section 5 along
with experiment results given in Section 6. Finally, Section 7
concludes the paper.

2 RELATED WORK

2.1 Cloud Gaming System
There have been several achievements for building cloud
gaming systems, especially in academia. Consisting of a
distributed service platform, a distributed rendering system,
and an encoding/streaming system, a cloud-based gaming
service platform [12] is presented to support isolated au-
dio/video capturing and multiple types of clients. Based on
the RemoteFX extension of Windows remote desktop pro-
tocol, Depasquale et al. [13] implements a cloud computing
platform for cloud gaming to service a number of players
through the use of virtualization. Later, C.-Y. Huang et al.
[7] propose an open-source, extensible, portable, and re-
configurable cloud gaming system, i.e., GamingAnywhere.
It is the first platform for researchers, game developers,
service providers, and gaming players to set up their own
cloud gaming testbeds. Based on GamingAnywhere, Q. Hou
et al. [14] further improve the encoding and the multi-
client concurrent access in the server of cloud gaming. They
build concurrent servers based on NVIDIA GRID GPU to
reduce the delay in bandwidth-limited scenarios and to
improve the efficiency of multi-client concurrent access. The
project AdaPtive HFR vIdeo Streaming (APHIS) [15] is a
novel transmission scheduling framework for mobile cloud
gaming applications. APHIS can dynamically optimize the
quality of game video streaming by adjusting its video
traffic load and forward error correction (FEC) coding.

2.2 Virtual Machine Placement
Using virtualization can reduce the cost of cloud service
providers [8]. From the VM placement perspective, re-
searchers of different interests are exploring how to effi-
ciently utilize the cloud architecture to facilitate better cloud
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gaming services. For example, the framework proposed in
[16] optimizes the interference between VMs (and gaming
players) by analyzing the limitation of application resource
requirements. Meanwhile, the results in [17] show that cloud
gaming can be optimized by achieving network awareness,
and it is possible to improve cloud gaming performance
while reducing costs through scheduling the most optimal
wireless link and cloud server for each game session. On
the other hand, H. Hong et al. propose a novel QoE-aware
VM placement strategy for cloud gaming [18] [19]. Further,
based on the prediction of the end times of game sessions, Y.
Li et al. propose an efficient request dispatching algorithm
to assign gaming requests to the cloud servers in a cloud
gaming system [20]. Compared to the conventional first-fit
and best-fit placement strategies, the strategy proposed in
[20] can better help service providers reduce the resource
waste of the cloud servers.

For scenarios involving multiple game players, M. Mar-
zolla et al. [21] improves the efficiency of resource provi-
sioning for massively multiplayer online games (MMOG),
by employing greedy heuristics to allocate the minimum
number of computing nodes required to meet the service
needs. Besides, to save the cost of the cloud, D. Finkel et
al. model the distribution of games to servers and players
requesting games by examining actual OnLive server logs,
and construct improved game distribution strategies based
on a hill-climbing algorithm [22].

3 SYSTEM MODEL

We list related symbols and their definitions in Table 1 for
the readability of the rest of the paper.

3.1 Architecture of Mobile Cloud Gaming

The proposed mobile cloud gaming architecture is pre-
sented in Fig. 2. First, each player chooses a game of interest
to play and sends the game requirements to the cloud.
Second, the available gaming resolutions of each player
is determined within the associated BS according to the
dynamic wireless environment. Then, the dispatcher server
at the cloud collects all game requests from all BSs at one
time, including the available gaming resolutions of each
player. For each player, based on the requirements, the dis-
patcher server allocates a specific physical server along with
a customized VM on it. Next, the dispatcher server admits
the request, and copies related files of the target game to the
corresponding VM. Finally, the dispatcher server exposes
the IP address of that VM to the player, while that VM is
determined as their dedicate VM for the game session.

In the mobile cloud gaming scenario, we assume that
there are N game playersN = {1, 2, ..., N} and M physical
servers M = {1, 2, ...,M} performing intensive computa-
tion in the cloud data center. The server ψ = 1 ∈ M is the
initial server. As we state in Section 3.5, which means that
the initial strategy of the dispatch server is first admitting
all requests from all players and associating them with the
initial server ψ. For mobile cloud gaming, the quality of
wireless environments determines the actual gaming reso-
lution players can choose. Thus, we take the competition
model of radio resources, commonly adopted in mobile
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Fig. 2: The proposed architecture for mobile cloud gaming.

edge computing scenarios [23], [24]. These models are built
for future 5G edge computing scenarios [25], [26] and they
fit in with our vision about mobile cloud gaming. Based
on these pioneer works, the available gaming resolutions
for each player can be determined within the associated BS
according to wireless environments.

We consider a comprehensive scenario including B Base
Stations (BSs) B = {1, 2, ..., B}, within which each player
can enjoy mobile gaming via a wireless link. The game
players within the coverage area of BS b is denoted as Nb
and the total number of players covered by all BSs is equal
to the number of players (i.e., N ) that need to be served by
the cloud, namely N = {Nb, b ∈ B}. In this case, players
of mobile cloud gaming are contenders competing for finite
wireless resources, and such a problem is well investigated
in [23], [24]. Specifically, we consider that BS b provisions
C interference-free wireless channels C = {1, 2, ..., C},
on which the gaming video streams are transmitted, for
Nb = |Nb| mobile devices (belonging to the players) and
each channel is allocated with ω Hz bandwidth.

For the wireless resource competition game, we denote
cb,n ∈ C as the allocated channel for the player n within BS
b. On the cloud side, an ∈ M is denoted as the associated
physical server, on which the VM for hosting the gaming
session of player n is created. Thus, given the decision
profiles c = {cb,n, b ∈ B, n ∈ N} for channel allocation and
the decision profiles a = (a1, a2, ..., aN ) for physical server
association of all players, the whole problem of optimizing
gaming experiences for all players is essentially a combina-
torial optimization problem.

3.2 Delay Model
Since game instances are created and destroyed dynamically
on top of the base VMs, before the game starts, there exists
a clone delay, which is a part of the service initialization
delay [27], for each player n to wait for copying related files.
Within the cloud data center, we denote the speed of the
hard disk for writing game files as W for simplicity. Note
that the clone delay introduced here can also be extended
to the whole service delay by incorporating the computing
delay and data transmission delay without violating the
general model. Therefore, if one player chooses to play a
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TABLE 1: Table of Notations

Param. Def. Param. Def. Param. Def.

An Available set of association strategies Fn Gaming FPS of player n Vn
Expected experience level of player n
with respect to gaming resolution

an
Associated physical server of player
n

I{·} Indicates whether the event in {·} is
true or not W Writing speed of hard disks

a Association decisions of all players Ln Gaming experience loss of player n Γ
Multi-player resource competition
game

a−n
Association decisions of other
players except player n m∗

The server hosting the most players
given by centralized optimum γ

The set of NE of the multi-player
resource competition game

a∗, a∗n
Centralized optimal solution that
maximizes the number of beneficial
offloading players

M Set of physical servers in the cloud κ Number of physical CPU cores

ã, ãn Arbitrary NE of the game M Number of physical servers µ Memory size of RAM

a, an
Centralized optimum that minimize
the overall gaming experience loss n Player n Φ Constructed potential function

a′n
Beneficial offloading server of player
n

N Set of players ψ Initial associated server

B Set of BSs Nb Set of Players within BS b ψ Servers except ψ

B Number of BSs P VM initialization time ω Bandwidth of each channel

βb,n
Transmission rate of the player n
within BS b pb,n

Transmitting power of the player n
communicating with BS b $0

Noise power in wireless
environments

C Set of interference-free wireless
channels Rn

Number of resource units to support
perfect gaming

ω1, ω2,
ω3

Parameters for modeling the gaming
FPS

C Number of wireless channels Sn
File size of the game player n
requests ∆n Beneficial server set of player n

cb,n
Allocated channel for the player n
within BS b Tn

Threshold for player n choosing
beneficial offloading

λ1, λ2,
λ3

Impact factors effecting the gaming
experience

c Decision profiles of all players V′n
Actual experience level of player n
with respect to gaming resolution ρm Workload on server m

Dn Total delay of initialization

game with file size Sn, considering the VM initialization
time P in [28], the total delay can be represented by

Dn =
Sn
W

+ P. (1)

3.3 Gaming Resolution Model
As shown in Fig. 1, game video streams generated by the
cloud is first transmitted to mobile network operators via
the core network, and then delivered to mobile devices of
players via respective mobile networks. In addition, each BS
admits the request of each player and determines available
gaming resolutions, according to the results of the wireless
channel assignment. We denote V ′n and Vn as the quantified
experience level of the actual and the requested (expected)
gaming resolution of player n, respectively. In general, af-
fected by imperfect wireless environments, the requested
gaming resolution cannot always be satisfied due to the
fluctuating transmission rate βb,n in the wireless network
[29] given by

βb,n(c) = ωlog2(1 +
pb,n

$0 +
∑

i∈Nb\{n}:cb,i=cb,n
pb,i

), (2)

where pb,n is the transmitting power of player n communi-
cating with BS b and $0 is the background noise. Besides,
the actual gaming resolution, indicated by the experience
level V ′n with respect to gaming resolution, also relates to
the gaming FPS (Frame Per Second). Since 30 FPS is the
minimum requirement for smooth gaming, we set 30 as the

base FPS requirement, while the actual gaming FPS may be
higher to deliver a better gaming experience. In addition,
the actual gaming resolution of player n is bounded by
the available wireless transmission rate, as given in Table
2. For example, if a player requests 1080p gaming while the
wireless network environment can only provide them with a
5, 000 Kbps transmission rate, the actual gaming resolution
for them is 720p. Note that the data presented in Table
2 were obtained from our testbed using H.264 encoding,
while the data evaluated with other customized platforms
and settings may differ. Nonetheless, this does not affect the
applicability of our proposed algorithm in Section 4.4.

TABLE 2: Minimum Transmission Rates for Different Gam-
ing Resolutions at 30 FPS

Resolutions 720p 1080p 1440p 2160p
Experience Level 1 2 3 4
Bitrates/Kbps ≥4,500 ≥9,500 ≥17,300 ≥33,000

Considering that the transmission rate on backbone net-
works is much better than the wireless transmission rate,
the available resolution of mobile cloud gaming is mainly
affected by the latter one. Therefore, at each BS (e.g., BS
b), player n is always willing to compete for a higher
transmission rate βb,n. Under the circumstances, such a
competition game for transmission rate can be solved by the
proposed Gauss-Seidel-like method in [23], and it is proved
to have a pure NE. After that, by considering both the
expectation of players and the transmission rate in practical
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wireless environments, the gaming resolution of each player
is determined and then sent to the cloud as the actual
gaming resolution.

3.4 Experienced FPS Model
The gaming FPS experienced by players is also a pivotal
experience metric. In the proposed architecture, all physical
servers in the cloud are equipped with the same configu-
ration, i.e., CPU with κ cores, graphics cards with µ GB
memory in total, and ϕ GB RAM. The gaming FPS is deter-
mined mainly by the comprehensive CPU, GPU, and RAM
usages in each physical server. When the server is dedicated
to only one player, this player can certainly acquire powerful
capabilities of game rendering and hence experience fluent
gaming. However, in general, each physical server hosting
multiple VMs is serving multiple players at the same time,
which may cause resource contentions. In particular, if there
are too many players associated with the same physical
server, the gaming experiences of all these players will drop
dramatically. Hereinafter, we take the CPU usage as a com-
mon impact factor for illustrating the resource competition
within one physical server.

For a physical server, specific interference and perfor-
mance degradation occur when the number of CPU cores al-
located to all VMs exceeds its resource limit [19]. It is similar
to the concept of parallel execution of multiple threads in the
operating system. Specifically, when the number of created
threads is far more than the number of threads that the
CPU can offer, the competition for resources and the switch-
ing of CPU contexts may lead to worse overall efficiency.
Back to cloud gaming, in [19], the relationship between the
number of VMs and the gaming FPS is investigated. The
experimental results show that such a relationship can be
approximated by a Sigmoid function (having domain of all
real numbers, with return value monotonically increasing)
[30] in the form of s (x) = δ1/

(
1 + e−δ2x+δ3

)
, where δ1, δ2

and δ3 are parameters to model the relationship between the
variable x and the dependent variable s.

Similarly, if we deem each VM as a resource unit al-
located with only one virtual CPU core, the relationship
between the available resource units and the gaming FPS
can also be naturally established as done in [19]. Therefore,
with denoting Rn as the number of CPU cores required for
player n to experience perfect gaming, the gaming FPS can
be quantified as

Fn (a) =
ω1

1 + e
ω2(

∑
i∈N\{n}:ai=an

Ri+Rn)/κ+ω3
Rn, (3)

where ω1, ω2 and ω3 are parameters for modeling the rela-
tionship between the gaming FPS and the resource require-
ments of all players within the same physical server. For
each game used to evaluate the performance of our method,
we run it 30 times for each VM configuration, record all
data of gaming FPS, and based on (3), perform regression
analysis on these data to acquire the specific values of ω1,
ω2 and ω3.

3.5 Quantifying Gaming Experience Loss
For clear description, the initial associated server and the
other available servers are represented by ψ = 1 and ψ =

{2, ...,M}, respectively. The initial strategy is first admitting
all requests from all players and associating them with an
initial server ψ = 1. Notice that associating with ψ is only
for quantifying the gaming experience of players rather than
to directly start gaming sessions on it.

TABLE 3: Default Impact Factors for Gaming Experience

Game (File Size) Type λ1 λ2 λ3

Need For Speed: Rivals (14.2 GB) RAC 0.3 0.5 0.2

Fallout 4 (25.8 GB) ARPG 0.2 0.5 0.3

The Witcher 3: Wild Hunt (38.9 GB) ARPG 0.2 0.3 0.5

Dragon Quest XI (13.9 GB) RPG 0.5 0.2 0.3

World of Warcraft (79 GB) MMORPG 0.5 0.3 0.2

Civilization VI (12.6 GB) SLG 0.1 0.1 0.8

Total War: Rome II (23.9 GB) SLG/RTS 0.1 0.4 0.5

StarCraft II (23.2 GB) RTS 0.4 0.3 0.3

The Sims 4 (15.3 GB) SIM 0.4 0.4 0.2

Minecraft (1.89 GB) SIM 0.3 0.5 0.2

COD 14: WWII (68.8 GB) FPS 0.3 0.4 0.3

NBA 2K19 (67.56 GB) SPG 0.5 0.3 0.2

FIFA 19 (32.83 GB) SPG 0.5 0.2 0.3

Street Fighter 5 (17.2 GB) FTG 0.4 0.4 0.2

GTA 5 (74.2 GB) RPG/FPS/RAC 0.3 0.4 0.3

By combining the delay in (1), the actual gaming resolu-
tion V ′n and the FPS in (3), we evaluate the overall gaming
experience of player n in terms of the gaming experience
loss Ln (a). Each player’s objective is to minimize their
gaming experience loss {Ln (a), n ∈ N}.

Ln(a) = λ1Dn − λ2Fn(a)− λ3V ′n (4)

Herein, {λi, i = 1, 2, 3}, satisfying 0 ≤ λi ≤ 1 and∑3
i=1 λi = 1, are impact factors affecting the comprehensive

gaming experience of players and are mainly depended on
the game type. For our game library, as presented in Table
3, we determine default values, inspired by [28], for these
impact factors. For instance, with respect to Civilization
VI, players usually do not need very high gaming FPS
and ultra-low delays but want a finer gaming resolution
to improve the sense of substitution. Accordingly, we set
λ1 = 0.1, λ2 = 0.1 and λ3 = 0.8. Note that these settings
are for general use, while practical values can be customized
for each player. It can be inferred that the experience
loss Ln (a), conceived by player n, is affected by factors
including the hardware requirement of the chosen game,
the hardware burden of the associated physical server, the
wireless environments and the features of this game.

4 MULTI-PLAYER COMPETITION GAME

4.1 Solving Optimization Problems is NP-Hard

We first consider an optimization problem in terms of the
number of beneficial offloading players. Another important
metric, the overall experience loss of players, will be dis-
cussed later. Maximizing the number of beneficial offloading
players is the optimization objective of the dispatch server,
i.e., achieving better load balancing for physical servers
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in the cloud. Therefore, the problem can be formulated
mathematically as follows.

max
a

∑
n∈N

I{an∈ψ}

s.t. Ln (ψ,a−n) ≥ Ln
(
ψ,a−n

)
,∀n ∈ N ,

an ∈ {1, . . . ,M},∀n ∈ N .

(5)

In (5), a−n = (a1, . . . , an−1, an+1, . . . , aN ) represents
the association decisions by all other players except player
n. Ln (ψ,a−n) or Ln

(
ψ,a−n

)
correspond to the gaming

experience loss when the player n is associated with the
initial server ψ or associated with one of the other servers ψ
(i.e., an ∈ ψ), respectively. I{·} ∈ {0, 1} indicates whether
the event in {·} is true (I = 1) or not (I = 0). Unfortunately,
solving the problem of maximizing the number of beneficial
offloading players can be extremely challenging.

Theorem 1. The problem in (5) that finds the solution, i.e.,
arg max

a

∑
n∈N I{an∈ψ}, to maximize the number of beneficial

offloading players is NP-hard.

Proof. First, we introduce the maximum cardinality bin
packing problem [31] as formulated in (6): given N items
with each bi is one size for i ∈ N and M bins of identical
capacity T , the objective is to assign a maximum number
of items to the fixed number of bins without violating the
capacity constraint T .

max
N∑
i=1

M∑
j=1

yij

s.t.
N∑
i=1

biyij ≤ T ,∀j ∈M,

M∑
j=1

ynj ∈ {0, 1},∀i ∈ N ,

yij ∈ {0, 1},∀i ∈ N , j ∈M.

(6)

For our problem (5), we can infer that a player can
achieve beneficial offloading only if their associated physical
server is not overloaded, i.e.,

∑
i∈N \{n}: ai=an Ri ≤ Tn,

where Tn is the overload threshold with respect to CPU
cores. In view of this fact, a special case of problem (5)
can be transformed to the maximum cardinality bin packing
problem as follows. Specifically, the game players and the
available physical servers in our problem can be regarded
as the items and the bins in the maximum cardinality bin
packing problem, respectively. After that, the size of an item
n and the capacity constraint of each bin can be given as
bn = Rn and T = Tn + Rn, respectively. By this means,
as long as a player n on their associated physical server an
achieves the beneficial offloading, for an item n, the total
sizes of the items on its assigned bin an shall not violate
the constraint T , since

∑
i∈N \{n}: ai=an Ri ≤ Tn implies∑N

i=1 bixi,an =
∑
i∈N \{n}: ai=an Ri +Rn ≤ T .

Therefore, the algorithm capable of finding the maxi-
mum number of beneficial offloading players can address
the maximum cardinality bin packing problem as well. Since
the maximum cardinality bin packing problem is proved
NP-hard [31], the problem in (5) is also NP-hard.

Besides the number of beneficial offloading players,
another important metric in multi-player cloud gaming
is the overall experience loss of all players, aimed to be
minimized, i.e.,

min
a

N∑
n=1

Ln(a)

s.t. an ∈ {1, ...,M},∀n ∈ N .
(7)

Theorem 2. The problem in (7) that finds the optimum, i.e.,
arg min

a

∑N
n=1 Ln(a), to minimize the overall experience loss of

players is NP-hard.

Proof. Consider a special case where game players only
care about the gaming delay and FPS, the Uncapacitated
Facility Location (UFL) problem [32] can be transformed
to the problem in (7). Specifically, N players and available
M servers are mapped to clients and potential sites for
locating facilities, respectively. The UFL problem considers
the placement of multiple facilities to minimize opening and
transportation costs for a set of sites. The UFL problem can
be reduced to the set cover problem, which is NP-complete,
and is hence NP-hard [33]. Thus, as an extension of the UFL
problem, the player-server association problem (7) in our
case is also NP-hard.

Note that the centralized optimization problem of mini-
mizing the overall experience loss of players involves a com-
binatorial optimization over the multi-dimensional discrete
space {1, . . . ,M}N . Particularly, for large-scale cloud gam-
ing scenarios, if the optimization algorithm possesses high
time complexity, it is impractical to be employed. Therefore,
in the following, a potential game-based algorithm is pro-
posed for optimizing the two objectives mentioned above.

4.2 Game Formulation
When acknowledging load conditions of all physical
servers, player n starts to find the best association server. In
other words, in order to ease the burden on the initial server
while improving the cloud gaming experience, player n can
keep associating with the initial server ψ, or choose to of-
fload to another server out of ψ. Note that the initialization
server ψ can be dynamically changed instead of fixed. In
our experiments, we periodically select the server with the
heaviest load as the initial server.

According to the experience loss model in Section 3,
it can be found that decisions on associating appropriate
servers, taken by players, are tightly coupled. If too many
players choose to associate with the same physical server at
one time, the interference among VMs on it will bring about
significant experience losses

∑N
i=1 Li (a) in total.

The dispatch server should be capable of offloading the
burden from the initial server ψ to other servers ψ. There-
fore, the concept of beneficial offloading, indicating that a
player chooses a server out of ψ and hence experiences
better gaming than associating with ψ, is introduced as

Ln (ψ,a−n) ≥ Ln
(
ψ,a−n

)
. (8)

Consequently, each player would like to minimize the expe-
rience loss, i.e.,

min
an∈An

Ln (an,a−n) ,∀n ∈ N , (9)
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where An ⊂ M is the available set of association strategies
for player n. Hence, the competition game above can be
formulated as

Γ =
(
N , {An}n∈N , {Ln}n∈N

)
, (10)

where N is the set of players, An is the set of strategies for
player n, experience loss Ln is the target to be minimized
by player n, and Γ represents the strategic game, called
multi-player resource competition game in the sequel. Next,
we introduce the concept of NE to address this resource
competition problem.

Definition 1. A strategy profile a∗ = (a∗1, ..., a
∗
n) for the multi-

player resource competition game is a NE if at the equilibrium a∗,
no players can further reduce their experience loss by changing
their associated server unilaterally, i.e.,

Ln
(
a∗n,a

∗
−n
)
≤ Ln

(
an,a

∗
−n
)
, ∀an ∈ An, n ∈ N . (11)

With the concept of NE, a corollary can be deduced:

Corollary 1. If player n at a NE chooses to associate with a server
in ψ (i.e., a∗n ∈ {2, ...,M}), then player n must be a beneficial
offloading player.

Proof. It can be proved by contradiction as follows. If player
n at a NE chooses a server in ψ and this server is not a
beneficial offloading server, according to the definition of
beneficial offloading, player n can easily keep associating
with ψ to reduce their experience loss and reach a new
NE. Obviously, such new equilibrium strategy a∗n = 1
contradicts with the fact that a∗n ∈ {2, ...,M}.

4.3 Discussions on Potential Game-based Optimiza-
tion
To proceed, we introduce potential game [34] to study and
to prove the presence of NE in the multi-player resource
competition game.

Definition 2. If there exists a potential function Φ(a), for every
n ∈ N , a−n ∈

∏
i6=nAi, and an, a′n ∈ An, when

Ln(a′n,a−n) ≤ Ln(an,a−n) (12)

holds, we can always have

Φ(a′n,a−n) ≤ Φ(an,a−n). (13)

Then, the corresponding game is called a potential game and can
always reach a NE. Moreover, it possesses the finite improvement
property, i.e., any asynchronous process towards a better strategy
must be finite and leads to a NE [34].

That is, in the process of the potential game, no more
than one player updates the strategy of server association to
reduce experience loss Ln at any given time, until a NE is
reached. We next show the multi-player competition game
is a potential game.

Lemma 1. Given a server association profile a, if the load on a
server (in ψ) selected by player n satisfies θn(an ∈ ψ,a−n) =∑
i∈N\{n}:ai=an Ri ≤ Tn, player n achieves beneficial offload-

ing, with the threshold

Tn =
∑

i∈N\{n}:ai=ψ

Ri . (14)

Proof. For player n, the file size Sn and the hardware re-
quirement Rn of the chosen game will not change within a
certain game session. According to the definition of benefi-
cial offloading, we have Ln (ψ,a−n) ≥ Ln

(
ψ,a−n

)
, which

means that∑
i∈N\{n}:ai=an

Ri +Rn ≤
∑

i∈N\{n}:ai=ψ

Ri +Rn,∀an ∈ ψ.

(15)
This implies that the threshold Tn for player n choosing
beneficial offloading from ψ to ψ should meet∑
i∈N\{n}:ai=an

Ri ≤
∑

i∈N\{n}:ai=ψ

Ri = Tn,∀an ∈ ψ. (16)

According to Lemma 1, it is beneficial for a player to
offload the resource burden from server ψ to a server in ψ,
when the workloads of some servers ψ, represented by Tn,
are not as high as that of the initial ψ. Specifically, if there are
already numerous players occupying the initial server ψ, the
player n can seek for better gaming experience and offload
the gaming request to another server in ψ. In this way, the
burden on the initial server ψ is alleviated while the good
gaming experiences of related players are maintained. Based
on Lemma 1, we show that the multi-player resource game
is a potential game by constructing a potential function as

Φ (a) =
1

2

N∑
i=1

∑
j 6=i
RiRjI{ai=aj}I{ai∈ψ}

+
N∑
i=1

RiTiI{ai=ψ} .

(17)

Theorem 3. The competition game Γ =(
N , {An}n∈N , {Ln}n∈N

)
with the potential function Φ

given in (17) in cloud gaming is indeed a potential game
possessing the finite improvement property, and it can always
converge to a NE in a limited number of iterations.

Proof. We assume that the game is a potential game and
its potential function is Φ(a). Player n ∈ N updates their
decision from an to a′n and obtains less experience loss, i.e.,
Ln(an,a−n) > Ln(a′n,a−n). According to definition 2, we
will show that this will also lead to a decrease in potential
function Φ(a), i.e., Φ(an,a−n) > Φ(a′n,a−n). There are four
cases in total: 1) an ∈ ψ, a′n ∈ ψ and an 6= a′n; 2) an ∈ ψ
and a′n = ψ; 3) an = ψ and a′n ∈ ψ; 4) an = ψ and a′n = ψ.

1) an ∈ ψ, a′n ∈ ψ and an 6= a′n means that player n has
changed the association strategy from one beneficial
server to another. According to (4), because the hard-
ware requirement of each player is fixed within one
game session and the function β1/

(
1 + e−β2x+β3

)
increases monotonically with x, we know that the
condition Ln(an,a−n) > Ln(a′n,a−n) implies that∑

i∈N\{k}:ai=an

Ri >
∑

i∈N\{n}:ai=a′n

Ri . (18)
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Since an 6= ψ and a′n 6= ψ, according (17) and (18),
there exists

Φ (an,a−n)− Φ (a′n,a−n)

=
1

2
Rn

∑
i6=n
RiI{ai=an} +

1

2

∑
n6=i
RiI{an=ai}Rn

− 1

2
Rn

∑
i6=n
RiI{ai=a′n} −

1

2

∑
n6=i
RiI{a′n=ai}Rn

=Rn
∑
i6=n
RiI{ai=an} −Rn

∑
i6=n
RiI{ai=a′n} > 0 .

(19)

2) an ∈ ψ and a′n = ψ means that player n associates
with the initial server ψ once again. After a number
of iterations in the competition game, the load of
server ψ has been offloaded to other servers ψ,
which results in that its own load is lower than
that of others. Under this circumstance, it might
be beneficial for player n to improve the gaming
experience if associating back with the initial server
ψ. The reason player n deciding to offload is that the
workload on each server of ψ is over its limit Tn, i.e.,∑
i∈N\{n}:ai=an Ri > Tn. This implies that

Φ (an,a−n)− Φ (a′n,a−n)

=
1

2
Rn

∑
i6=n
RiI{ai=an}

+
1

2

∑
n6=i
RiI{an=ai}Rn −RnTn′

=Rn
∑
i6=n
RiI{ai=an} −RnTn > 0.

(20)

3) an = ψ and a′n ∈ ψ means that player n may
encounter more gaming experience loss if they keep
associating with the initial server ψ. Instead, player
n can choose a beneficial offloading server in ψ to
achieve a better gaming experience. According to the
definition of beneficial offloading server, we know
that

∑
i∈N\{n}:ai=a′n Ri < Tn. In this case,

Φ (an,a−n)− Φ (a′n,a−n)

=RnTn −
1

2
Ri
∑
i6=n
RiI{ai=a′n}

− 1

2

∑
n6=i
RiI{a′k=ai}Rn

=RnTn −Rn
∑
i6=n
RiI{ai=a′n} > 0.

(21)

4) an = ψ and a′n = ψ means that player n remains
associated with the initial server ψ. Since player n
does not change their decision, hence the NE is not
affected.

Combining the results in the four cases above, we can con-
clude that the formulated multi-player competition game is
a potential game with potential function (17) and can always
reach a NE after a finite number of iterations.

The key idea of the proof is to show that when the player
updates the current decision to a better decision, the reduc-
tion of the experience loss function results in a reduction

in the potential function of the multi-player competition
game as well. Theorem 3 implies that any asynchronous
process towards a better strategy must be finite and leads
to a NE. In the next section, we take advantage of the finite
improvement property to design a distributed algorithm.

4.4 Algorithm Design
In this section, for the multi-player resource competition
game, we present a distributed VM placement algorithm
to lead it to reach a NE. The motivation for designing a
distributed algorithm is enabling players to make mutually
satisfactory decisions before associating with servers. The
key idea of this algorithm is to improve the VM placement
strategy by using the finite improvement property of the
potential game and to let one player improve their server
association decision at a time. We consider a slotted time
structure for the decision updates of players. In that manner,
each decision slot t includes the following two phases:

Algorithm 1 Distributed VM Placement Algorithm

Initialization:
1: Each player associates with ψ, i.e., an(0) = ψ,∀n ∈ N .

Iteration:
2: repeat
3: The cloud pushes {ρm(a(t)),m ∈M}), i.e., the load

information of all servers, to each player.
4: Each player computes their beneficial server set ∆n(t)

based on (23).
5: if ∆n(t) 6= ∅ then
6: Each player sends their request for a target physical

server to the cloud to contend for the decision
update opportunity.

7: if player n receives the update acknowledgement
from the dispatch server then

8: Player n chooses a′n ∈ ∆n(t) and the cloud
records the server association an(t+ 1) = a′n.

9: else
10: Keep original decision an(t+ 1) = an(t).
11: end if
12: else
13: Keep original decision an(t+ 1) = an(t).
14: end if
15: until END message is received from the cloud

1) Server Workload Perception: At this phase, we measure
the workload on all physical serversM = {1, ...,M}
in terms of CPU, GPU, RAM, etc. Taking CPU cores
for illustration, the workload on each server m ∈ M
can be denoted as ρm (a(t)) ,

∑
i∈N :ai(t)=m

Ri.
The cloud periodically pushes the load information
{ρm(a(t)),m ∈M}) of servers to the players. By
this means, each player n can obtain the resource oc-
cupancy {θn (m,a−n(t)) ,m ∈M} of other players
on each server m ∈M, where

θn (m,a−n(t)) =

{
ρm(a(t))−Rn, if an(t) = m,
ρm(a(t)), otherwise.

(22)
2) Association Decision Update: At this stage, we exploit

the finite improvement property of the multi-player
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competition game by having one player process a
decision update. Based on the resource occupancy
{θn (m,a−n(t)) ,m ∈M} of other players on each
server, each player first computes their set of best
response update as

∆n(t) , {ã : ã = arg min
a∈An

Ln (a,a−n(t)) and

Ln (ã,a−n(t)) < Ln (an(t),a−n(t))} .
(23)

Consequently, if player n can find a better association
decision at decision slot t, i.e., ∆n(t) 6= ∅, player n
will send a decision update request to the cloud. In
turn, upon receiving this request, the cloud will deem
the player n willing to contend for the decision up-
date opportunity. Otherwise, player n maintains the
current decision. For multiple players who request
for decision updating, the cloud randomly selects
one player out of them and acknowledges their up-
date at the next decision slot, i.e., an(t+ 1) ∈ ∆n(t).
When no more player has the incentive to deviate
from the achieved decisions, the cloud broadcasts an
END message to all players and proceeds with the
VM placement strategy according to the decisions
of all players at the final decision slot. Algorithm 1
illustrates the flow of the entire competition game.

We next analyze the computational complexity of this
algorithm. After the initialization, all players in parallel pro-
ceed with the operations in Lines 3-14 of Algorithm 1 in each
decision slot t. Since most of the operations in the algorithm
are basic arithmetical calculations, the dominating part is
the process of each player computing their beneficial server
set ∆n(t), which involves the sorting operation over M
servers with a typical complexity of O(M logM). Hence,
the computational complexity in each decision slot t is
O(M logM). We have proved that the formulated game
possesses the finite improvement property in Definition
3, i.e., it can converge to a NE within a finite number
of decision slots. Thus, for a certain number of players,
if we suppose that the algorithm can terminate within a
bounded number of decision slots, we can deduce that
the total computational complexity of the distributed VM
placement algorithm is O(M logM) for the cloud, where
M is the number of physical servers. To derive the number
of decision slots for convergence, viz., K, we define that

Tmax , max
n∈N
{Tn} , Tmin , min

n∈N
{Tn} , (24)

Rmax , max
n∈N
{Rn}, Rmin , min

n∈N
{Rn}. (25)

Theorem 4. When Tn and Rn are non-negative integers for
any n ∈ N , the distributed VM placement algorithm terminates
within at mostR2

maxN
2/2Rmin + TmaxRmaxN/Rmin decision

slots, i.e., K ≤ R2
maxN

2/2Rmin + TmaxRmaxN/Rmin.

Proof. First, according to (17), we can directly obtain that

0 ≤ Φ(a) ≤ 1

2

N∑
i=1

N∑
j=1

R2
max +

N∑
i=1

RmaxTmax

=
1

2
R2

maxN
2 +RmaxTmaxN.

(26)

During a decision slot, suppose that a player n ∈ N
updates their current decision an to the decision a′n and
can obtain better gaming experience, i.e., Ln(an,a−n) >
Ln(a′n,a−n), we will show that this also leads to the decre-
ment of the potential function Φ by at least Rmin, i.e.,

Φ (an,a−n) ≥ Φ (a′n,a−n) +Rmin . (27)

We consider three cases in the following: 1) an ∈ ψ, a′n ∈ ψ
and an 6= a′n; 2) an = ψ and a′n ∈ ψ; 3) an ∈ ψ and a′n = ψ.

For case 1, according to (19) in the proof of Theorem 3,
we know that

Φ (an,a−n)− Φ (a′n,a−n)

= Rn(
∑
i6=n
RiI{ai=an} −

∑
i6=n
RiI{ai=a′n}) > 0 . (28)

Since Ri are integers for any i ∈ N , we know that∑
i6=n
RiI{ai=an} ≥

∑
i6=n
RiI{ai=a′n} + 1 . (29)

Thus, according to (28) and (29), we have that

Φ (an,a−n)− Φ (a′n,a−n) ≥ Rn ≥ Rmin . (30)

For case 2, according to (21) in the proof of Theorem 2,
we know that

Φ (an,a−n)− Φ (a′n,a−n)

= Rn(Tn −
∑
i6=n
RiI{ai=a′n}) > 0 . (31)

By the similar argument in case 1, we can have (30) as well.
For case 3, Φ (an,a−n) ≥ Φ (a′n,a−n) + Rmin can be

deduced similar to the proof of case 2.
Therefore, according to (26) and (27), along with driv-

ing the potential function Φ(a) to the minimum, we
know that the algorithm 1 can terminate within at most
R2

maxN
2/2Rmin + TmaxRmaxN/Rmin decision slots.

5 PERFORMANCE ANALYSIS

There are two important metrics: the number of beneficial
offloading players and the overall gaming experience loss.
To analyze the performance of the distributed algorithm, we
follow the definition of Price of Anarchy (PoA) [35] in game
theory, and then quantify the efficiency ratio of the worst
NE in terms of the above two metrics over the centralized
optimal solutions.

5.1 Number of Beneficial Offloading Players
The number of beneficial offloading players reflects the
efficiency of VM placement since too many players as-
sociating with the initial server ψ implies an imbalance
workload among other servers ψ. We denote γ as the set
of NE of the multi-player resource competition game and
a∗ = (a∗1, a

∗
2, ..., a

∗
N ) as the centralized optimal solution

that maximizes the number of beneficial offloading players.
The PoA for the number of beneficial offloading players is
defined as

PoA =

min
a∈γ

∑
n∈N

I{an∈ψ}∑
n∈N

I{a∗n∈ψ}
. (32)
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As this PoA quantifies the efficiency of beneficial offloading,
a larger PoA implies a better performance of the multi-
player resource competition game solution.

Theorem 5. Consider the multi-player resource competition
game Γ, where Tn ≥ 0 for each player n ∈ N . The PoA for
the metric of the number of beneficial offloading players in (32)
satisfies ⌊

Tmin

Rmax

⌋
⌊
Tmax

Rmin

⌋
+ 1
≤ PoA ≤ 1. (33)

Proof. Let ã ∈ γ be an arbitrary NE of the game. Since
the centralized optimum a∗ maximizes the number of
beneficial offloading players, we have

∑
n∈N I{ãn∈ψ} ≤∑

n∈N I{a∗n∈ψ}
. When all players choose to associate with

servers of ψ, we can get the maximum PoA as (34). In the
following, the case that

∑
n∈N I{ãn∈ψ} < N is addressed.

PoA =

min
a∈γ

∑
n∈N

I{ãn∈ψ}∑
n∈N

I{a∗n∈ψ}
≤

∑
n∈N

I{ãn∈ψ}∑
n∈N

I{a∗n∈ψ}
≤ N

N
= 1 (34)

To proceed, we define the number of players associ-
ating with server m as Nm(a)

∆
=

∑N
i=1 I{ai=m} for a

given decision profile a. Because Tn ≥ 0, we have the
case Ln(ψ,a−n) ≤ Ln

(
an ∈ ψ,a−n

)
(∀i 6= n, ai = ψ),

i.e., at least one player can achieve beneficial offloading
by associating with a server in ψ while the others asso-
ciates with the initial server ψ. This means that for the
centralized optimum a∗, we have

∑
n∈N I{a∗n∈ψ}

≥ 1. Let
Nm∗(a

∗) = maxm∈M{Nm(a∗)} be the number of players
on the server m∗ hosting most players given by centralized
optimum, i.e., server m∗ is the one with the most players.
Assuming that player n chooses server m∗, we can get

(Nm∗(a
∗)− 1)Rmin ≤

∑
i∈N\{n}:ai=m∗

Ri ≤ Tn ≤ Tmax .

(35)

By rewriting (35), we can obtain thatNm∗(a∗) should satisfy
the following condition,

Nm∗(a
∗) ≤

⌊ Tmax

Rmin

⌋
+ 1. (36)

Based on (36), we can further derive

N∑
n=1

I{a∗n∈ψ}
=

M∑
m=2

Nm(a∗)

≤ (M − 1)Nm∗(a
∗) ≤ (M − 1)(

⌊ Tmax

Rmin

⌋
+ 1) . (37)

Next, since
∑
n∈N I{añ∈ψ} < N , for an arbitrary NE ã,

at least one player ñ chooses the initial server ψ, namely
añ = 1. Considering ã is a NE, with the definition of
NE, player ñ will not improve their gaming experience by
associating with other servers, and we can get∑

i∈N\{ñ}:ãi=m

Ri ≥ Tñ,∀m ∈ ψ , (38)

which implies that

Nm∗(ã) Rmax ≥
∑

i∈N\{ñ}:ãi=m

Ri ≥ Tñ ≥ Tmin . (39)

Through basic operations, (39) can also be written in the
following form

Nm∗(ã) ≥ Tmin

Rmax
≥
⌊ Tmin

Rmax

⌋
. (40)

Therefore, we have

N∑
n=1

I{ãn∈ψ} =
M∑
m=2

Nm(ã) ≥ (M − 1)

⌊ Tmin

Rmax

⌋
. (41)

According to (34), (37) and (41), we can obtain (33), which
completes the proof.

The PoA, concerning the number of beneficial offloading
players, quantifies the gap between the worst-case perfor-
mance of the NE and the centralized optimum. Theorem 5
points out that the effectiveness of the proposed distributed
algorithm is close to that of the centralized optimum when
the gap between players in terms of gaming requirements
Rn and the overload threshold Tn for achieving beneficial
offloading is not large.

5.2 Overall Gaming Experience Loss

In addition to the number of beneficial offloading players,
the overall gaming experience loss

∑
n∈N Ln(a) is another

important metric. We denote ā as the centralized optimum
that minimizes the overall gaming experience loss, i.e., ā =
arg mina∈

∏N
n=1An

∑
n∈N Ln(a) and the PoA with respect to

the overall experience loss as

PoA =

max
a∈γ

∑
n∈N
Ln(a)∑

n∈N
Ln(ā)

. (42)

Note that a smaller overall gaming experience loss is more
desirable. Hence, for the overall experience loss, the smaller
the PoA is, the better performance the distributed algorithm
possesses. Before presenting Theorem 6, we first introduce

Ln,min , λ1(
Sn
W

+ P )− λ2ω1Rn
1 + eω2Rn/κ+ω3

− λ3V ′n , (43)

Ln,max , λ1(
Sn
W

+P )− λ2ω1Rn

1 + e

ω2
κ (Rn+

∑
i∈N\{n}

Ri
M )+ω3

−λ3V ′n .

(44)

Theorem 6. For the multi-player resource competition game Γ,
the PoA for the overall gaming experience loss in (42) satisfies

1 ≤ PoA ≤

N∑
n=1

min{Ln (ψ, â−n) ,Ln,max}

N∑
n=1

min{Ln (ψ,a−n) ,Ln,min}
. (45)

Proof. Since the optimal solution ā is certainly better than
any other solutions, PoA ≥ 1 naturally holds.

For a NE â ∈ γ, if ān 6= ψ, we conclude that for player n
the resource occupation of other players on server ân can at
most be 1

M

∑
i∈N\{n}Ri. This conclusion can be proved by

contradiction. Suppose that a player n at the NE â finds that
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there is a server in which the resource occupation of other
players is greater than 1

M

∑
i∈N\{n}Ri, we have that∑

i∈N\{n}:âi=ân

Ri >
1

M

∑
i∈N\{n}

Ri . (46)

Since players at a NE have no incentives to change the
decision unilaterally, there also exists∑

i∈N\{n}:âi=ân

Ri ≤
∑

i∈N\{n}:âi=m

Ri, ∀m ∈M . (47)

From (47), we can get that

M
∑

i∈N\{n}:âi=ân

Ri ≤
∑
m∈M

∑
i∈N\{n}:âi=m

Ri . (48)

According to (46) and (48), a contradiction is reached, i.e.,∑
i∈N\{n}

Ri < M
∑

i∈N\{n}:âi=ân

Ri

≤
∑
m∈M

∑
i∈N\{n}:âi=m

Ri ≤
∑

i∈N\{n}

Ri .
(49)

This contradiction means that the resource occupation
received by player n must be less than or equal to∑
i∈N\{n}Ri/M . Combining this fact with (3), if ân ∈ ψ,

we can have

Fn (â) ≥ ω1Rn

1 + e

ω2
κ (Rn+

∑
i∈N\{n}

Ri
M )+ω3

= F ′n(â) . (50)

By combining (4), the experience loss of player n associated
with a server in ψ satisfies

Ln
(
ψ, â−n

)
≤ λ1Dn − λ2F ′n(â)− λ3V ′n = Ln,max . (51)

In addition, if Ln (ψ, â−n) < Ln,max and ân ∈ ψ, player
n can further choose the initial server ψ to achieve lower
experience loss, i.e., ân = ψ. Thus, we get

Ln(â) = min{Ln (ψ, â−n) ,Ln
(
ψ, â−n

)
}

≤ min{Ln (ψ, â−n) ,Ln,max} .
(52)

Besides, for the centralized optimum a, if an ∈ ψ, we have

Fn (a) ≤ ω1Rn
1 + eω2Rn/κ+ω3

. (53)

Then, we can infer that

Ln(ψ,a−n) ≥ λ1Dn −
λ2ω1Rn

1 + eω2Rn/κ+ω3
− λ3V ′n = Ln,min .

(54)
Moreover, if Ln (ψ,a−n) < Ln,min and an ∈ ψ, the total
experience loss can be further reduced by letting player n
choose the initial server ψ, i.e., an = ψ. The reason is that
the decision of player n to change to ψ does not cause extra
resource competition of other players associating with ψ. In
this case, we get

Ln(a) = min{Ln (ψ,a−n) ,Ln(ψ,a−n)}
≥ min{Ln (ψ,a−n) ,Ln,min} .

(55)

According to (52) and (55), we can obtain (45) and conclude
the proof.

From Theorem 6, we can intuitively infer that when the
number of available servers increases, the performance of

the worst-case NE can be improved. Specifically, the larger
the number of servers (i.e., M ) is, the smaller Ln,max is.
In addition, when players are able to have good gaming
experience by associating with the initial server ψ, viz.,
Ln (ψ,a−n) is smaller, the worst-case NE is closer to the
centralized optimum ā, i.e., a lower PoA is achieved.

6 EXPERIMENTAL RESULTS

In our experiments, we first simulate a wireless environment
with 4 BSs and multiple game players and their respective
mobile devices. Each BS supports 5 wireless channels with
channel bandwidth of 10 MHz, as commonly used in LTE
system [36]. By adopting the wireless settings and the pro-
posed algorithm used in [23] to perform simulations, i.e.,
letting mobile devices to compete for their wireless trans-
mission rates, we can obtain the actual gaming resolution of
each gaming request of players.

Then, for these gaming requests, we employ the dis-
tribution of player interval times and the distribution of
game session lengths in [37], derived from OnLive logs
[38] consisting of 1.6 million player sessions, to further
synthesize a sequence of cloud gaming requests. Next, we
send these gaming requests to a cloud datacenter with 10
physical servers, each of which is equipped with AMD
Ryzen Threadripper 1950X (a CPU with 18 physical cores),
4 GTX 1080 graphics card, and 128 GB RAM. Each physical
server hosts multiple VMs, while each VM is allocated with
128 GB disk (enough for all games adopted) and created
based on Win10 1703 with all common software depen-
dencies of games installed, including the GamingAnywhere
server program. Note that pre-copying game files to VMs
based on the prediction of the distribution of player re-
quests, which is complementary to our work, can further
optimize the efficiency of resource utilization. Finally, once
the server association decisions of players are determined
by the proposed algorithm, the cloud will copy game files
for each player to a VM in the chosen server, and then start
the game session. Parameter-related experiment settings are
given in Table 4.

TABLE 4: Symbol-related Experiment Settings

Parameter Value

Number of BSs (B) 4

Sub-channels / BS (C) 5

Channel bandwidth (ω) 10 MHz

Number of physical servers (M ) 10

Number of physical CPU cores (κ) / server 18

Memory size of RAM (µ) / server 128 GB

By analyzing the game popularities in various categories
on Steam and Epic Games, we select 40 games, some of
which have been given in Table 3, with various hardware
requirements and types, for available cloud gaming. Based
on the modeling of the above player activities and the 40
chosen games, we can simulate the cloud gaming requests
of players, and hence use them throughout the experiments
to verify the performance of the proposed distributed al-
gorithm. Since the final reached NE of the multi-player
resource competition game is not constant, we perform 100
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times for each type of experiment and average all related
metrics, in order to evaluate the performance of the algo-
rithm more accurately.

Fig. 3: Players chosen at random finally reach a NE.

Experience Loss 
Beneficial Number

Fig. 4: Variation and convergence of two important metrics.

6.1 Convergence of the Resource Competition Game
For portraying the convergence of the multi-player resource
competition game, we collect all the statics in experiments
and present the experience variation of 30 players chosen at
random. During the competition process, as shown in Fig.
3, the experience loss of each player is high at the beginning
when all players are associating with the initial server ψ.
Nonetheless, with the proposed algorithm, there is one
player updating their strategy at each iteration. By virtue of
this, the holistic gaming experience of players is improving
over the iterations. It demonstrates that the algorithm can
keep improving the gaming experiences of players and
eventually lead the competition game to converge to an
equilibrium.

Further, in order to corroborate the overall performance
of the proposed algorithm, two metrics in terms of the
overall experience loss and the number of beneficial of-
floading players are investigated. As shown in Fig. 4, both
metrics can finally reach a steady state, which demonstrates
the effectiveness of the proposed algorithm, especially on
improving the gaming experience of players. In addition,
with 100 experiments performed, the blue and green shaded

areas in Fig. 4 represent the variation range of 1) the total
experience loss and 2) the number of beneficial offloading
players, respectively. We can intuitively observe that the per-
formance of the proposed distributed algorithm is relatively
stable and can satisfy most scenarios.

6.2 Performance Comparison with Other Strategies

In order to evaluate the performance of our algorithm, we
compare the distributed VM placement algorithm, i.e., the
potential game strategy, with three heuristic solutions:

1) Polling Placement Strategy: The dispatch server
numbers all servers and uses them in a cyclical or-
der. Whenever there is a gaming request, the server,
represented by the polling number, is assigned to the
requesting player, that is, the placement strategy is
{1, 2, ...,M, 1, 2, ...}.

2) Random Greedy Placement Strategy: When the
server is initialized, all players queue to wait for
the placement of VMs. At every decision slot, the
dispatch server randomly chooses a player (and then
dequeues it) and assigns a server that can provide
the best gaming experience for their specific require-
ments, until the queue is empty.

3) Sorted Greedy Placement Strategy: This strategy
is similar to the random greedy placement strategy,
except that this strategy dequeues the player, who
can have the best gaming experience (rather than
at random), at every decision slot according to the
present workloads of all servers.

Fig. 5: Performance comparison on experience losses.

Comparison results of different algorithms are given in
Fig. 5. For the metric of the overall experience loss, when
there are more than 60 players, the proposed algorithm can
achieve up to 75%, 54%, and 66% improvement compared
with the polling placement strategy, the random greedy
placement strategy, and the sorted greedy placement strat-
egy, respectively. Besides, if the algorithm is not performed
in a distributed manner, complete information is required
for the cloud, i.e., all players need to report all their local
parameters to the cloud. This will result in a high system
overhead for large amounts of information collection and
may also cause privacy issues. In addition, since different
players may pursue different interests, players may not have
the motivation to follow a centralized solution. It is worth
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noting that when the resource usages of servers increase
gradually, i.e., with more players, our distributed algorithm
can still achieve better overall performance improvement
than other strategies. Meanwhile, service providers gener-
ally expect to maximize their server efficiencies to reduce
their expenditures, which fits well with the proposed algo-
rithm.

Fig. 6: Iteration times for convergence.

Fig. 7: Experience loss after adding 20 more players.

6.3 Additional Investigation
Next, we study the relationship between the number of
players and the number of iterations required for the multi-
player resource competition game. The results in Fig. 6 show
that as the number of players increases, the average number
of decision slots for convergence increases almost linearly. It
can be seen that our algorithm scales well with the number
of players. Further, for a certain number of players, cloud
gaming service providers can use our algorithm to quickly
determine VM placement strategies for a large number of
servers with the time complexity O(M logM), instead of
getting stuck in solving NP-hard problems with centralized
optimization algorithms.

Different from Fig. 3, as in Fig. 7, we simulate a practical
scenarios in which players dynamically request cloud gam-
ing services. Specifically, we first bring 80 players to a stable
state (NE) by using the proposed distributed algorithm.
After this stable state is established as in Fig. 7, we add
another 20 gaming requests from new players. From Fig.
7, we can observe that the overall 100 players requires 38
decision slots to reach a stable state again, which is of the

same order of magnitude as the number of new players,
i.e., 20, instead of 100, the total number of players. This
means that when the stable state of the players has been
established, if new players join, the number of decision slots,
required for all players including new players to reach a
stable state, is only related to the number of players arriving
later, which also corroborates that our algorithm scales well
with the number of players.

7 CONCLUSION

In this paper, we have presented a distributed algorithm
based on the potential game theory. We have proved that op-
timization problems in multi-player cloud gaming scenarios
are NP-hard. By constructing a potential function, we have
proved the presence of Nash Equilibrium in the multi-player
competition game. We have quantified the performance of
the algorithm in terms of PoA, and demonstrated the con-
vergence of our algorithm. We have presented experimental
results to demonstrate that the proposed algorithm achieves
superior performance than other strategies and scales well
with the increasing number of players.

In the future, a more appropriate fit function to quantify
the parameters will be constructed for the cloud game scene.
Moreover, the constraints of multidimensional parameters
in cloud gaming will be taken into account simultaneously
to achieve further optimization.
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