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Abstract—In a blockchain-driven metaverse, user-generated
content (UGC) is the core power for building the metaverse, so an
easy-to-use UGC editor is imperative. Specifically, using artificial
intelligence (AI) to simplify the UGC creation procedure is
promising, e.g., generating images from sketches using generative
adversarial networks (GANs). However, the simplicity of these
UGC creation methods would lead to weak distinctions between
the generated UGC, since the users’ created drafts may be very
similar. In this paper, we propose Crypto-dropout, a specially
designed dropout used in the generative neural networks, which
could cause pseudo-random disturbance based on the hash value
of user information to generate unique results. With a pilot
study, the experimental results demonstrate that the participants
have different preferences for the generated images when setting
Crypto-dropout in the different layers. Accordingly, we imple-
ment a practical profile pictures (PFPs) creation prototype. The
proposed Crypto-dropout can provide a novel and general insight
for creating unique UGC using generative neural networks.

Index Terms—User-Generated Content, Metaverse, Dropout,
Human-centered Computing, Non-fungible Token

I. INTRODUCTION

With the development of blockchain-related technologies,
digital assets can be transformed to non-fungible tokens
(NFTs) based on ERC-721 Standard1 on Ethereum2. After
that, the digital assets are given a public, unique, and non-
interchangeable proof of ownership based on blockchain tech-
nology. Therefore, images, videos, 3D models, and other
types of digital files can be stored as NFTs to confirm their
ownership [1]. In the blockchain-driven metaverse, which will
be the next generation social network, the digital assets that
reflect the innovation, imagination, and creativity of users can
truly belong to the users, which motivates more participants
to join in the construction of the metaverse [2], [3]. As a
promising trend, user-generated content (UGC) will play a
necessary role in the metaverse [4].

To this end, most metaverse projects provide UGC edi-
tors for their users, e.g., Cryptovoxels3, Decentraland4, The
Sandbox5, etc. However, most normal users of the metaverse

*Wei Cai is the corresponding author (caiwei@cuhk.edu.cn).
1https://eips.ethereum.org/EIPS/eip-721
2https://ethereum.org/en/
3https://www.cryptovoxels.com/
4https://decentraland.org/
5https://www.sandbox.game/en/

are not experts in drawing or 3D modeling, which influences
their confidence and enthusiasm to participate in the building
of metaverse, so the metaverse-equipped editors should be
easy-to-use for amateurs. With the development of artificial
intelligence (AI), especially deep learning [5], many generative
models (like variational auto-encoder (VAE) [6] and generative
adversarial network (GAN) [7]) showed very impressive and
powerful performance, e.g., pix2pix [8], CycleGAN [9], Gau-
GAN [10], SketchyGAN [11], etc., which could be utilized to
assist the UGC creation of metaverse users [4].

In our prototype The Chinese University of Hong Kong,
Shenzhen (CUHKSZ) Metaverse [2], we provide an AI-assisted
editor to help users in creation profile pictures (PFPs). Using
this editor, the users only need to draw some simple sketches,
and the editor could generate a colorful PFP based on pix2pix
[8], which effectively reduces the threshold of PFP creation.
In fact, the PFPs are the most straightforward and intuitive
reflection of users’ personal lifestyle, community, and expe-
rience, so the users always think highly of the uniqueness
of their PFPs [12], [13]. However, the simplicity of the AI-
assisted UGC creation method would lead to weak distinctions
between the generated UGC. For example, many amateurs may
use a stroke to draw the face, a stroke to be the nose, a stroke
to denote the mouse, and two circles to represent the eyes,
etc., and the layout of these sketches would be very similar,
which makes the generated PFPs are hard to distinguish and
lack of uniqueness and personality. Therefore, it is imperative
to design a mechanism that could guarantee the uniqueness of
the UGC generated by AI-assisted editors.

In the crypto community, the hash function can convert
any digital information to a pseudo-random code with a fixed
length [14], a key technique in the proof of work (PoW)
consensus model [15], so-called crypto information. Motivated
by the feature of the hash function, we consider the crypto in-
formation of users can be utilized to control generative models
individually. Therefore, we counter-intuitively apply dropout
[16] in the generation of the generative neural network, named
Crypto-dropout, which is controlled by the crypto information
to provide pseudo-random disturbance. Compared with pure
random disturbance, the Crypto-dropout can easily reproduce
the generated results based on the identical user information
and generative model. Specifically, this is a general idea that
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can be applied in most neural networks.
After designing the Crypto-dropout, we conduct a pilot

study with 11 participants to evaluate the human sense of
generated results. The participants are asked to raise their
preference when showing multiple image pairs generated by
setting Crypto-dropout in different neural network layers,
which can provide some insights for the system design of
related studies. Moreover, we design and implement a prac-
tical PFP creation prototype based on the Crypto-dropout in
CUHKSZ Metaverse, which can help users to generate unique
anime PFPs using only simple sketches.

Our contributions can be concluded as follows:

• We propose a specially designed dropout technique used
in the neural networks, named Crypto-dropout, for caus-
ing pseudo-random disturbance based on the hash value
of user information to generate unique UGC.

• We conduct a pilot study on DCGAN [17] to evaluate
the human sense of the Crypto-dropout. The experimental
results can reflect the participants’ preference for setting
Crypto-dropout in different layers.

• We design and implement a PFP editor based on Crypto-
dropout, which could generate unique PFPs for different
users based on their crypto information and sketches.

II. RELATED WORK

A. Non-Fungible Token-Based Content Creation

Based on ERC-721 Standard, NFT-based user-generated
content (UGC) has attracted enormous industry attention, and
lots of UGC platforms are springing up. For example, Art
Blocks6 is a platform focused on programmable generative
content that is stored immutably on Ethereum. Moreover, Art-
nome7 and Kate Vass Gallery8 are similar to the galleries in the
physical world, where artists can communicate their generative
digital art. In these platforms, many artworks are generated us-
ing generative HTML Canvas script, like p5js. However, using
scripts/codes to generate UGC in metaverse has higher barriers
for normal users due to the basic requirement of programming,
while applying generative models to generate content requires
fewer fundamentals, so there are many notable projects created
by generative models that have been known to the public. For
example, Gan Chans9 is a collection of 256 manual selected
anime avatar NFTs generated by GAN. On Artnome, there are
also many artworks created by generative models, like style
transfer auto-encoder and GAN. In Omniverse3, a metaverse
for 3D design collaboration, NVIDIA also introduces GAN to
transfer photos to 3D models. However, if using the same
generative model and input, different users might generate
identical results. Therefore, in this paper, we intend to apply
crypto information of users to make the generated results
unique and keep digital scarcity.

6https://www.artblocks.io/project/207
7https://www.artnome.com/news/2018/3/29/ai-art-just-got-awesome
8https://www.katevassgalerie.com/
9https://nftganchan.github.io/home/

B. Crypto Thinking in Neural Networks

In the deep learning area, most works considering crypto
information are to solve problems about security and privacy.
For example, Xie et al. [18] proposed Crypto-nets to promise
the privacy requirement when a third party uses private
user information in neural network prediction, which applied
homomorphic encryption and modifications to the activation
functions and training algorithms of neural networks. Hajjaji
et al. [19] proposed a medical image crypto-compression
algorithm based on the neural network and the chaotic system.
Shafran et al. [20] optimized the design of crypto-oriented
neural architectures to address the privacy issue of sending
private data to neural network applications. Nandakumar et al.
[21] evaluates the feasibility of training a neural network in a
non-interactive way on data after fully homomorphic encryp-
tion. Our proposed Crypto-dropout shows a totally different
perspective compared with the fore-mentioned works. We do
not pay attention to security and privacy but apply the crypto
information in the generation process of the generative neural
network models to cause the pseudo-random disturbance of
the generated results.

III. METHODOLOGY

A. Background of Dropout

Dropout is a technique proposed by G. E. Hinton et al. [16],
which is utilized in fully-connected layers to prevent the over-
fitting problem during the training process of neural network
models. During the model training, the dropout technique can
randomly select some neurons and remove the neurons, which
means the weights connected to the dropout neurons will not
affect the forward propagation and will not be updated. So,
applying dropout to a neural network intends to sample a
“thinned” neural network during the training process. After
that, the complete neural network without dropout will be
utilized in the prediction process.

B. Crypto-Switches Generation

In this paper, our motivation is to use a hash function to
encrypt the user information as switches (so-called Crypto-
switches) to control the dropout of neurons. We first select
a layer as the Crypto-dropout layer and then number the
neurons of this layer. According to the feature of the hash
function, input with any length will output a hash value with
a fixed size, so the users can customize the information for
generating Crypto-switches. Supposing there are n neurons
and the applied hash function is SHA-256 [22], the Crypto-
switches can be generated as shown in Algorithm 1. The
algorithm will generate a number that has n bits, and each
bit matches a neuron of the Crypto-dropout layer in sequence.
In general, the input information can be any length or any
type of digital content that can be encoded by a hash function.
The most important feature of this methodology is that, using
the Crypto-dropout, the user information can pseudo-randomly
impact the generated results rather than a fixed one or a purely
random one that cannot be controlled and reproduced. On the
other hand, theoretically, the difficulty of generating identical



Algorithm 1: Crypto-switches Generation
Input: Number of Neurons n, User Information I
Output: Crypto-switches S

1 Init: Crypto-switches S = 0
2 for i = 0 to i = n//256 + 1 do
3 if n <= 256 then
4 S = S << n;
5 temp = SHA-256(Timestamp, I , ...) ;
6 S = S OR (temp >> (256− n))
7 end
8 else
9 S = S << 256;

10 S = S OR SHA-256(Timestamp, I , ...);
11 end
12 n = n− 256;
13 end
14 return S;

results is almost equal to the possibility of hash collision,
which could guarantee the uniqueness of the generated results.
In fact, due to the characteristics of neural networks, there
are some neurons that have less influence on the output [23]
(also named redundant neurons), so removing these neurons
may not effectively impact the generated results, which will
be discussed in Sec. VI.

C. Crypto-Dropout in Neural Networks

Due to the length limit, we will only discuss the most
commonly used layers of generative neural network models,
including the fully-connected and convolutional layers.

1) Crypto-Dropout in Fully-connected Layer: In deep
learning, Fully-connected layer denotes the neuron has full
connections with every neuron in the previous and subsequent
layers, which is a basic structure of most neural network
models. An example of Crypto-dropout in a fully-connected
layer is shown in Figure 1, where a three-layer basic neural
network model is illustrated, which has 4 neurons in each
fully-connected layer. In this example, we select the middle

Fig. 1. Illustration of Crypto-dropout in fully-connected layer. (1) Number
the neurons of the Crypto-dropout layer; (2) Calculate the hash value using
provided information (e.g. 0101); (3) Dropout the corresponding neurons
according to the hash value (0: dropout, 1:retain).

layer as the Crypto-dropout layer and number the neurons
from 0 to 3. Then we calculate the hash value as Crypto-
switches according to the user information, where we assume
the Crypto-switches is 0101, which corresponds to the 0th -
3rd neurons. As a result, the 0th and 2nd neurons will be
removed in the generation.

2) Crypto-Dropout in Convolutional Layer: The convolu-
tional layer applies a convolution operation to the input to
obtain the information from a 2-dimensional view, typically
a dot product of the convolution kernel with the input ma-
trix. Convolutional neural network (CNN) has achieved great
performance in computer vision tasks [5], and the content
generation tasks are also benefited a lot. The study about
dropout in a convolutional layer was deeply discussed by
previous works [24], [25], which mentioned various methods
of dropout in a convolutional layer, including drop-neuron,
drop-channel, drop-path, and so on. In this paper, we only
illustrate the drop-channel method, as shown in Figure 2, due
to the length limit. In this example, Figure 2 illustrates a kernel
of a convolutional layer, which totally has 8 channels and
is selected as the Crypto-dropout layer, and the channels are
numbered from 0 to 7. Then we assume the Crypto-switches is
10011010 obtained by a hash function, which means the 1st,
2nd, 5th, and 7th channel in the kernel of the convolutional
layer will be removed in the generation process of the neural
network model. In general, the same methodology could also
adapt the drop-neuron, drop-path, etc., during the practice.

Fig. 2. Illustration of Crypto-dropout in convolutional layer. We use drop-
channel as an example. (1) Number the channels of convolutional kernel of the
Crypto-dropout layer; (2) Calculate the hash value using provided information
(e.g. 10011010); (3) Dropout the corresponding channels according to the hash
value (0: dropout, 1:retain).

IV. PILOT STUDY

A. Experimental Settings

To evaluate the performance of the proposed Crypto-
dropout, we conduct experiments on the classical generative
neural network model DCGAN [17]. In the generation, we
use different Ethereum addresses of the authors as the user
information to generate multiple image pairs. During the
generation, we maintain the neural network model, input
parameter, and timestamp not change while only changing the
position for setting the Crypto-dropout layer. As expected, the
generated image pairs should be different, as discussed in Sec.
III-B. In fact, the difference can be simply proved by numerical



comparison using mean square error (MSE). However, we in-
tend to study the users’ perception of different Crypto-dropout
settings from a human-centered perspective. Therefore, we
conduct a pilot user study to invite the participants to select the
results of different Crypto-dropout layers that they consider to
have a better visual experience. The experimental results can
be a reference in the design of practical applications.

B. Generative Neural Network Implementation

In most novel GANs, the convolutional layer plays a
significant role, so we want to study the effectiveness of
Crypto-dropout in a convolutional layer. We construct a simple
DCGAN model [17], as shown in Figure 3, which includes
both discriminator and generator. In this experiment, we
will apply Crypto-dropout in the generator, and the dropout
method is drop-channel, as shown in Figure 2. Note that,
in this experiment, the Crypto-dropout is actually applied
on a transposed convolutional layer rather than the standard
convolutional layer, which also illustrates the generalization
ability of the proposed Crypto-dropout. In the generation, we
set Crypto-dropout in ConvTr1, ConvTr2, and ConvTr3 to
compare the difference between the generated images.

The training dataset we utilized is CIFAR-10 [26], which
consists of 32×32 colored scenery images. The training and
testing set of CIFAR-10 contain 50,000 and 10,000 images,
which are classified into 10 classes. The neural network model
is implemented by PyTorch [27] and trained on NVIDIA RTX
3090 GPU. Adam [28] is used as the optimizer, and the
learning rate is selected as 6 × 10−6 with beta of 0.5 and
0.999. Totally 100 epochs are conducted in training.

Fig. 3. The experimental structure of a simple DCGAN, including both dis-
criminator and generator. In this figure, “Conv” denotes the 2D convolutional
layer and “ConvTr” means the 2D transposed convolutional layer, with “k”
as kernel size, “s” as stride, and “p” as padding. And the channel numbers
are marked on each layer.

C. Experimental Results

We randomly select and keep a set of input parameters
to generate 40 pairs of images by setting Crypto-dropout on
ConvTr1, ConvTr2, ConvTr3, and ConvTr4 for DCGAN, a
total of 40 images. Some sample results are shown in Figure

Fig. 4. Statistical results of user study. The subfigure (a) is the experimental
results of VAE, and the subfigure (b) is DCGAN. In these figures, the marked
numbers are the average proportion of the selections by all participants.

4, where each block denotes generated results using the same
neural network, input parameter, and timestamp, but different
user information. Note that, the MSE values of all image pairs
are higher than 0, which guarantees their numerical difference.

The sample results in Figure 4 illustrate the same conclu-
sion, where the images of setting Crypto-dropout in ConvTr1
have apparent differences in pixel distribution while the images
of ConvTr4 seem to be different only in color selection. This
result is in accord with the characteristics of convolutional
neural networks that features in the higher layers control the
semantic information, and the lower layers adjust the texture.
Regarding the user preference, most of them selected ConvTr4,
which is close to the output of DCGAN. We also conducted a
brief discussion about their preference. Most participants pre-
fer strong color contrast because, compared with the dissimilar
structure generated by ConvTr1, the different color distribution
can give them a more intuitive perception of dissimilarity,
which inspires us to pay more attention to the color distribution
when producing unique PFPs in practice.

V. PROFILE PICTURE CREATION PROTOTYPE

In this paper, we design a web-based user-friendly PFP
creation prototype as a demo application of the proposed
Crypto-dropout, which is to generate anime PFP from simple
sketches driven by GAN. The graphic user interface (GUI)
of the prototype is shown in Figure 6, named Crypto Profile
Picture Canvas. In this demo, the left side canvas allows the
users to draw sketches arbitrarily, and there is a toolbar upon
the canvas that provides multiple helpful functions like do,
undo, shapes, eraser, bucket, etc., which is modified from an
open-source jQuery paint plugin wPaint.js10. Users can link
their Ethereum wallet (e.g., MetaMask11) to connect with our
prototype, and their Ethereum address will be recorded as in-
put information. After drawing and providing the information,
the users can click the “Generate Profile Picture” button, and
an anime PFP will appear on the right side canvas, which is
generated by a GAN model with Crypto-dropout based on the
provided Ethereum address and the timestamp.

10https://github.com/websanova/wPaint
11https://metamask.io/



Fig. 5. Some Sample Images Generated from the Same Sketches by Inputting Different User Information

Fig. 6. Crypto Profile Picture Canvas Prototype

The GAN model we applied is pix2pix [8], a classic
image-to-image translation method with an input and output
resolution of 256 × 256. An open-source anime face dataset
from Kaggle12 is used for the model training, which con-
tains 63,632 anime faces. Firstly, all images are resized to
256 × 256. The edges are detected using Holistically-nested
edge detection (HED) [29], and then the OTSU adaptive
binarization algorithm [30] is applied to the output images.
To clean the redundant edges and enhance the sketches, we
apply morphology thin, removing small objects, and dilation
using scikit-image [31]. The model training utilizes the same
experimental platform in Sec. IV-B. We used the Adam [28]
optimizer, and the learning rate is 2 × 10−4 with the beta of
0.5 and 0.999, and it cost 200 epochs for model training.

According to the experimental results of the pilot study
discussed in Sec. IV-C, we select the convolutional layer
closing to the output (the “OutConv” layer in pix2pix [8]) as

12https://www.kaggle.com/splcher/animefacedataset

the Crypto-dropout layer. Figure 5 shows some sample images
generated from the same sketches by different timestamps. We
can find that, although the generated results using different
crypto information have similar structures, their color distri-
butions show significant differences, which is in accord with
the conclusions of the pilot study as discussed in Sec. IV-C.

VI. LIMITATIONS AND FUTURE WORK

According to the feature of the neural network, the func-
tions of neurons are highly different. Some neurons have
less influence on the output (so-called redundancy of neural
networks), while some neurons store the critical information
for constructing meaningful results [23]. Although the Crypto-
switches have base information, the generated Crypto-switches
could be regarded as pseudo-random due to the characteristics
of the hash function, so the randomness makes the generated
content hard to be controlled. On the one hand, if the dropped
layers contain vital information for semantic construction, the
model might generate weird results. On the other hand, if the
dropped layers are redundant, the generated results may not
present noticeable visual differences.

Therefore, the proposed Crypto-dropout may not be the best
solution. However, the motivation of this paper is to “throw
a sprat to catch a whale” and attract more attention to the
uniqueness and digital scarcity of UGC in the metaverse. In the
future, the weakness of the current Crypto-dropout needs to be
addressed. For example, there are many researchers who study
neural network pruning [32]–[34] and compression [23], [35]–
[37], where the retained neurons after compression usually
show a significant impact on the generated results. Thus, a
possible solution is to combine neural network compression
and feature visualization [38] to select neurons that control
the artistic style rather than the semantics of images. Last
but not least, the results shown in Figure 5 indeed lose some
details of the anime faces, which means the direct dropout
may cause a loss of information. Therefore, methods like the
average of channel values can be utilized to replace the direct



dropout of the neurons or layers, which might be smoother
when impacting the generated results.

VII. CONCLUSION

This paper proposes Crypto-dropout, a specially designed
dropout that can take user information into account using
a hash function to cause pseudo-random in UGC creation.
We conduct a pilot study to evaluate the human reaction
to the generated results of Crypto-dropout, then we design
and implement a practical prototype to create unique PFPs
according to the experimental results. We believe this idea
is a novel and insightful solution for keeping the digital
scarcity of UGC creation using generative neural networks
in the metaverse, which has considerable potential for further
improvement and wider application scenarios, e.g., inspiring
the editor design of 3D modeling and digital twin.
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