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Abstract—Cloud gaming is a novel service provisioning
paradigm, which hosts video games in the cloud and transmits
interactive game streaming to players via the Internet. In this
model, the cloud is required to consume tremendous resources
for video rendering and streaming, especially when the number
of concurrent players reaches a certain level. On the other hand,
different players may have distinct requirements on Quality-of-
Experience, such as high video quality, low delay, etc. Under this
circumstance, to ensure an overall satisfaction for all players
with finite cloud resources becomes a major challenge to existing
cloud services. This paper employs game theory to the cloud
gaming scenario and proposes a model to meet players’ overall
requirements with low cost. This game is proved to be a
potential game with determining a devised potential function.
Our experiment has shown that, with our algorithm, players can
achieve a mutually satisfactory steady state, and the system will
reduce the overhead up to 50% within the time complexity of
O(M logM), where M is the number of physical servers.

Index Terms—Mobile Cloud Gaming, Potential Game, Re-
source Optimization

I. INTRODUCTION

The market for mobile gaming is becoming increasingly
popular, and it is reported that mobile revenues account for
more than 50% of the global gaming market as it reaches
$137.9 billion in 2018 [1]. However, state-of-the-art mobile
terminals are still lack of support in increasing needs in gaming
storage and computational power. To this end, cloud gaming
[2] has been proposed to help relieve the burden on terminal
devices by hosting game engine in the cloud. In cloud gaming
paradigm, players’ commands are sent to a remote server,
while the server renders gaming scenes and streams the real-
time video frames back to the players [3]. Such architectures
can help players experience resource-hungry video games on
their light-weight devices such as phones or tablets.

Nevertheless, there are many remaining issues for cloud
gaming industrialization, since cloud gaming is resource-
intensive and delay-sensitive. Virtualization, which allows
multiple players to share one physical machine, is an essential
technique in supporting the elastic feature of cloud. However,
with respect to commercial scenes with massive players, if
players with different requirements and networking conditions
are not scheduled properly [4], cloud resources will be not
sufficiently utilized, and the players’ Quality-of-Experience
(QoE) will be downgraded. Therefore, with different interests

of players, how to meet each gaming session while guarantee-
ing the overall good quality of gaming becomes a challenge.

In this paper, we employ game theory to solve this challenge
and to help service providers reduce maintenance costs. The
adoption of game theory is natural due to the decentralized
[5] characteristic of the system: players are competing for the
limited cloud resources, thus, they are self-organized into a
mutually satisfactory state. Moreover, optimization based on
game theory can help data center ease the burden of complex
centralized management such as collecting players’ network
information and dealing with large scale of data for resource
allocation. Furthermore, as players may want to play different
games and get a better experience in terms of QoE, game
theory can be utilized to analyze the resource competition
among different players with diverse targeting games.
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Fig. 1. Mobile cloud gaming architecture

The major contributions of our work are summarized below:

• We propose a mobile cloud gaming architecture along
with resource optimization and show it is NP-hard to find
optimal solutions for the resource allocation problem.

• We study the inner property of the resource competing
game, and show that the game always possesses a Nash
Equilibrium (NE) and give the solution coupled with the
distributed algorithm brought by potential game theory.

• Besides, the efficiency ratio of our solution with respect
to the optimal solution is quantified. Results show that the
proposed algorithm can achieve efficient performance and
scales well with the number of players.

The remainder of paper is organized as follows. Related
works are discussed in Sec. II and Sec. III elaborate the pro-
posed cloud gaming architecture. Then, multi-player resource
competing problem is introduced in Sec. IV. Performance
analysis is derived in Sec. V along with experiment results
given in Sec. VI. Finally, Sec. VII concludes the paper.
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II. RELATED WORK

A previous literature survey [6] investigated the develop-
ment and challenges of cloud gaming and particularly men-
tioned that using virtualization can reduce the cost of service
providers. A number of studies [7] [8] used Virtual Machines
(VMs) to support cloud gaming, and they proposed specific
algorithms to optimize the interference between VMs. Besides,
some research groups [9] [10] proposed optimization methods
to improve cloud gaming performance, focusing on the pre-
diction of the game session end time and dynamic wireless
network conditions. A game theory based algorithm [11],
[12] addressed the problem of resource management, however,
concerning the geography distributed cloud computing.

III. SYSTEM MODEL

A. Architecture of Cloud Gaming

Generally, in mobile cloud gaming architecture, we assume
that there are players N = {1, 2, ..., N} and physical servers
M = {1, 2, ...,M} performing intensive computation in
the data center. With respect to the wireless communication
supporting such architecture, we consider a comprehensive
scenario including B Base Stations (BSs). Within each BS,
each player can enjoy mobile gaming via the wireless link.
Following the conventional settings, one VM will host only
one game in our architecture. Specifically, for each player, the
data center will create a corresponding VM allocated with the
devised configuration and files of the requested game.
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Fig. 2. Processes on the perspective of Data Center

B. Resource Allocation Modeling

Players of mobile cloud gaming are actually contenders
competing for finite wireless resources and such completion
game are well investigated in previous study [15]. Specif-
ically, the authors formulate that within each BS there are
interference-free wireless channels C = {1, 2, ..., C} support-
ing H mobile devices denoted by H and each channel is
allocated with ω Hz bandwidth.

For the wireless resource competition game, we denote cn
as the allocated channel for the player n, and on the data
center side, an is denoted as the associated physical server
that shall create VM for the gaming session of player n. Thus,
for different decision profiles c = (c1, c2, ..., cH) of players
associated with the same BS and a = (a1, a2, ..., aN ) of all
cloud gaming players, i.e., with different resource allocation
strategies, introduced gaming experiences may be quite dif-
ferent. In particular, three representative metrics of gaming
experience are taken for analysis in our proposed architecture.

Nonetheless, the proposed algorithm could incorporate more
customized metrics.

1) Quality of Gaming Video: Video resolution Vn is one
important metric to judge the quality of cloud gaming. As
shown in Fig. 1, for the same BS, it will admit the player’s
gaming request and assign a channel according to the resolu-
tion of gaming request. We denote Vn as the actual gaming
resolution player n brought by imperfect wireless transmission
and Vn as its required resolution. In general, Vn is proportional
to the transmission rate in the wireless network [14], i.e., the
transmission rate bn = µVn, and then we can compute the
actual resolution of player n as

Vn(c) =
ω

µ
log2(1 +

µVn
ϖ0 +

∑
i∈H\{n}:ci=cn

µVn
). (1)

Herein, ϖ0 is the background noise and µ is the proportional
constant. Since the transmission rate on backbone network
is much better than the wireless transmission, the resolution
of mobile cloud gaming is determined by the transmission
rate of wireless communication. Therefore, on the side of BS,
players are competing for higher bn = µVn and finally reach
a satisfying NE, which are proved in [15].

2) Delay Model in Data Center: The proposed cloud
gaming architecture is presented in Fig. 2. First, the player
chooses one game to play. Then, the dispatcher server will
take all requests of players into consideration and allocate an
appropriate physical server along with creating a customized
VM for each of them. Next, the dispatcher server will admit
the request and copy files of the target game to this VM.
Finally, the dispatcher server returns the IP address of the
created VM to the player for a gaming session.

Since the VMs with game instances are created and de-
stroyed dynamically, there shall exist a clone delay for each
player n, which represents the service initialization delay the
player must wait for [13]. In the game storage of the data
center, the writing speed of the hard disk is denoted as W for
simplicity. Note that the clone delay introduced here can also
be extended to the whole gaming delay by incorporating the
computing delay and data transmission delay without violating
the general model. Therefore, if one player chooses to play a
game with the file size Sn, the total delay can be represented
by (2) concerning the VM initialization time P in work [16].

Dn =
Sn
W

+ P (2)

3) Experienced FPS: Frame per Second (FPS) experienced
by cloud gaming players is also a pivotal experience metric.
In the scenario of cloud gaming, FPS is determined mainly by
the CPU, GPU and RAM usage in the physical server.

Our cloud gaming architecture adopts virtualization tech-
niques. When the sum of resources allocated for all VMs
exceeds the resource limit of the physical machine, certain in-
terference and performance degradation will occur. [7] makes
great efforts to investigate the relationship between the number
of VMs and the gaming FPS, and the experimental results
show that it can be approximated by a Sigmoid function.



Similarly, if each VM as a unit is allocated with only
a unit of virtualized resource, the relationship between the
gaming performance provided by this unit and the FPS can
be also be naturally established as well as in [7]. Therefore,
the number of resource units that the player n requires to
support perfect gaming is denoted as Rn. On condition that
all physical servers in the data center are equipped with the
same configuration, i.e., κ units of comprehensive hardware
resources (related to CPU cores, memories of GPU and RAM),
the FPS of gaming can be quantified as

Fn (a) =
ω1

1 + eω2[
1
κ (

∑
i∈N\{n}:ai=an

Ri+Rn)]+ω3
Rn, (3)

where ω1, ω2 and ω3 are parameters for approximation.

C. Quantified Experience of Players
By comprehensively combining delay, FPS and resolution,

the gaming experience loss Ln (a) of player n is introduced
as (4), which is the target optimization goal of each player.

Ln(a) = λ1Dn − λ2Fn(a)− λ3Vn (4)

Herein, λ1, λ2 and λ3 are control parameters catering for
different requirement of players. It can be directly inferred
that the experience loss Ln (a) conceived by player n relates
to the size of the playing game, the hardware burden of the
associated server and the target game hardware requirement.

IV. POTENTIAL GAME-BASED RESOURCE COMPETITION

In this section, how to achieve a lower experience loss
among all players is investigated. According to Sec. III, it
can be found that players’ decisions on associating appropriate
servers are tightly coupled. If too many players associate with
the same physical server, the interference among VMs shall
lead to much more experience loss than

∑N
i=1 Ln (a) in total.

For clear description, the initial associated server and the
other server are represented by ψ ∈ {1} and ψ ∈ {2, ...,M},
respectively. Thus, the initialization strategy adopted in this
architecture is first admitting all requests from players and
associating them with an initialization server ψ, noted that
associating with ψ is only for quantifying the experience of
players rather than actually start gaming session on it.

Obviously, the dispatch server should offload the burden
from ψ to ψ. Therefore, the concept of beneficial offloading,
indicating that a player chooses associating ψ rather ψ and
achieves better gaming experience, is introduced as

Lψn (1,a−n) > Lψn (an,a−n) , an ∈ {2, ...,M} , (5)

where a−n = (a1, . . . , an−1, an+1, . . . , aN ) is the association
choice of players except player n.

A. Centralized Optimization Objective
Maximizing the number of beneficial offloading players is

one optimization objectives, and it can be formulated as

max
a

∑
n∈N

I{an=ψ}

s.t. Lψn (1,a−n) > Lψn (an,a−n) ,∀an = ψ, n ∈ N ,

an ∈ {0, 1, . . . ,M} , ∀n ∈ N

(6)

where I{·} ∈ {0, 1} indicates whether the formula in {·} is
true (I = 1) or not (I = 0). Nonetheless, the optimization
problem in (6) can be converted into the maximum cardinality
bin packing problem [17], and thus proved to be NP-hard.

Another important optimization objective is the overall ex-
perience loss of players, i.e., min

a

∑N
n=1 Ln(a). This optimiza-

tion problem is also NP-hard, because it is naturally a com-
binatorial optimization over the dimensional discrete space.
Particularly, in the scenario of multi-player cloud gaming, if
the time complexity of optimization algorithms is too high, it
will be impractical to be employed in large-scale scenarios.
Therefore, a potential game based optimization algorithm is
proposed for optimizing the aforementioned two objectives.

B. Game Formulation

With perceiving association strategies a−n of other players,
player n can thus associate with a new server an by consider-
ing the load of all servers. In other words, player n can keep
associating with the original initialization server ψ, or choose
to migrate to another server ψ to ease the burden on the initial
server while improving their cloud gaming experience.

Consequently, the optimization goal of each player is to
lower its own experience loss, i.e.,

min
an∈An

∆
={0,1,...,M}

Ln (an,a−n) , ∀n ∈ N . (7)

According to (5), the experience loss function Ln of player n
can be further denoted as (8), where Lψn(a) represents player
n associates with the initial server ψ, and Lψn(a) means that
it associates with other servers ψ.

Ln (an,a−n) =

{
Lψn(a), if an = ψ

Lψn(a), if an = ψ
(8)

Hence, the competition game above can be formulated as

Γ =
(
N , {An}n∈N , {Ln}n∈N

)
, (9)

where N is the set of players, An is the available set of
association strategies for player n. Experience loss Ln is the
target to be minimized by player n and Γ represents the whole
game process. Next, the concept of Nash Equilibrium (NE) is
introduced to address this resource optimization problem.

Definition 1. The NE for multi-player resource competition
game is defined as a∗ = (a∗1, ..., a

∗
n) which is also a given

profile of player strategies. If the game has reached NE a∗,
it signifies no players can further reduce their experience loss
by changing their associated server unilaterally, i.e.,

Ln
(
a∗n,a

∗
−n

)
≤ Ln

(
an,a

∗
−n

)
, ∀an ∈ An, n ∈ N . (10)

With the concept of NE, a corollary can be deduced:

Corollary 1. If the player n at NE choose to associate with
ψ (i.e., a∗n ∈ {2, 3, ...,M}), then the player n must be a
beneficial offloading player.

This can be proved by contradiction as follows. If a player
at NE chooses a server in ψ and the server is not a beneficial
offloading server, according to the definition of a beneficial



offloading, the player can easily keep associating with ψ to
reduce its experience loss and get into a new NE. And such
new equilibrium strategy a∗n = 1 obviously contradicts with
the fact that a∗n ∈ {2, 3, ...,M}.

C. Discussions On Potential Game-based Optimization

Potential game [19] is introduced in our model to prove the
presence of NE in resource competition game.

Definition 2. If player n select an and then choose a′n, i.e.,

Ln(a′n,a−n) ≤ Ln(an,a−n),a−n ∈
∏

i̸=n
Ai . (11)

There exists a global function Φ(a) called potential function
and (12) holds, the NE of the competition game can be proved
and reached within a finite number of iterations.

Φ(a′n,a−n) ≤ Φ(an,a−n) (12)

That is if one player reduces its Ln by changing strategy,
the update in potential function will be finite and contribute
to a NE. This implies the threshold Tn for player n choosing
beneficial offloading association from ψ to ψ shall meet

Tn =
∑

i∈N\{n}:ai=ψ

Ri ≤
∑

i∈N\{n}:ai=ψ

Ri . (13)

In the following, a potential function (14) is devised to show
that the proposed multi-player resource competing game is
potential game.

Φ(a) =
1

2

N∑
i=1

∑
j ̸=i

RiRjI{ai=aj}I{ai=ψ} +

N∑
i=1

RiTiI{ai=ψ}

(14)

Theorem 1. The proposed competition game in cloud gaming
is a potential game, and it will converge to a NE in limited
times with finite experience improvement of players.

Proof: We assume that multi-player resource competing
game is a potential game with the potential function Φ(a).
The player n updates its strategy from an to a′n and reduce its
experience loss, i.e., Ln(an,a−n) > Ln(a′n,a−n). According
to Definition 2, this will lead to the decrease of potential
function Φ(a), i.e., Φ(an,a−n) > Φ(a′n,a−n). Three cases
should be considered:

1) an = ψ and a′n = ψ. It means the player n is
changing from one beneficial server to another. According
to (4), since the hardware requirement of each player and
the resolution determined by wireless transmission are
fixed within one gaming session, with Ln(an,a−n) >
Ln(a′n,a−n), we can get∑

i∈N\{n}:ai=an
Ri >

∑
i∈N\{n}:ai=a′n

Ri. (15)

In addition, by combining (14) and (15), (16) holds.

Φ(an,a−n)− Φ(a′n,a−n)

= Rn

∑
i̸=n

RiI{ai=an} −Rn

∑
i̸=n

RiI{ai=a′n} > 0. (16)

2) an = ψ and a′n = ψ. It means the player n is changing
to the initialization server ψ. In this situation, the reason
player n selects to migrate is that the load in server ψ is
above the threshold Tn, i.e.,

∑
i∈N\{n}:ai=an Ri > Tn.

This can implies that

Φ(an,a−n)− Φ (a′n,a−n)

= Rn

∑
i̸=n

RiI{ai=an} −RnTn > 0 .
(17)

3) an = ψ and a′n = ψ means the player n judges and
associates with the server ψ providing better gaming
experience. According to the definition of beneficial
offloading,

∑
i∈N\{n}:ai=a′n

Ri < Tn holds and further
the result (18) can be obtained.

Φ(an,a−n)− Φ(a′n,a−n)

= RnTn −Rn

∑
i̸=n

RiI{ai=a′n} > 0 .
(18)

At last, an algorithm based on game theory is presented as
Algorithm 1. The time complexity of it is O(M logM) which
makes agile resource optimization possible.

Algorithm 1 Beneficial Offloading Algorithm

Initialization:
Each player associates with ψ, i.e., an(0) = ψ.

Iteration:
1: repeat
2: Each player at time slot t transmits its target physical

server an(t) to the data center dispatcher
3: Receive decisions of other players from dispatcher
4: Each player computes its beneficial server set ∆n(t)
5: if ∆n(t) ̸= ∅ then
6: Each player sends its target server decision to the

cloud to contend for decision update token
7: if receive the update message from the dispatcher

then
8: Choose one from the beneficial server set ∆n(t)

and update the decision
9: else

10: Keep original decision an(t+ 1) = an(t)
11: end if
12: else
13: Keep original decision an(t+ 1) = an(t)
14: end if
15: until END message is received from the dispatcher

V. THE PERFORMANCE OF DISTRIBUTED GAME

To quantify the performance of our solution, we use Price
of Anarchy (PoA) [18] in game theory to quantify the effec-
tiveness. γ is denoted as the strategy set of players at a NE.
By defining a∗ as the optimal solution minimizing the overall
experience loss, i.e., a∗ = argmina∈

∏N
n=1 An

∑
n∈N Ln(a),

PoA can be obtained as

PoA =
maxa∈γ

∑
n∈N Ln(a)∑

n∈N Ln(a∗)
. (19)



For the overall experience loss, a smaller PoA is better. With
first introducing (20), we can show the result as (21).

Ln,min
∆
= λ1(

Sn
W

+ P )− λ2ω1Rn

1 + eω2
Rn
κ +ω3

− λ3Vn

Ln,max
∆
= λ1(

Sn
W

+ P )− λ2ω1Rn

1 + eω2(Tn+
Rn
κ )+ω3

− λ3Vn
(20)

1 ≤ PoA ≤
∑N
n=1 min{Lψn ,Lψn,max}∑N
n=1 min{Lψn ,Lψn,min}

(21)

Proof: We denote ã ∈ γ as a NE of potential game.
Since the optimal solution is inevitably better than any other
solutions, PoA ≥ 1 naturally holds.

We find the interference on the same server can at most be
1
M

∑
i∈N\{n} Ri. Counter-evidence method is used to show

this result. We let the interference sensed by the player n at
NE â over 1

M

∑
i∈N\{n} Ri, i.e.,∑

i∈N\{n}:âi=ân
Ri >

1

M

∑
i∈N\{n}

Ri . (22)

Because players at NE can not change the decision to get
lower experience loss, so there exists∑

i∈N\{n}:âi=ân

Ri ≤
∑

i∈N\{n}:âi=m

Ri, ∀m ∈ M. (23)

We can get that

M
∑

i∈N\{n}:âi=ân

Ri ≤
∑
m∈M

∑
i∈N\{n}:âi=m

Ri . (24)

According to (22) and (24), we can get the contradiction∑
i∈N\{n}

Ri < M
∑

i∈N\{n}:âi=ân

Ri

≤
∑
m∈M

∑
i∈N\{n}:âi=m

Ri ≤
∑

i∈N\{n}

Ri .
(25)

This contradiction means the interference experienced by
player n must be less than or equal to 1

M

∑
i∈N\{n} Ri.

According to that and (3), if we let ân = ψ, we can have

Fn (â) ≥
ω1Rn

1 + eω2[
1
κ (

∑
i∈N\{n}

Ri
M +Rn)]+ω3

= F ′
n(a) . (26)

With combining (4), the experience loss of player n equals

Lψn (â) ≤ λ1Dn − λ2F ′
n(a)− λ3Vn = Lψn,max . (27)

Besides, if Lψn(a) < Lψn(a) and ân = ψ, then player can
always choose server ψ to maintain lower experience loss,
i.e., ân = ψ. So we can get

Ln(â) = min{Lψn ,Lψn} ≤ min{Lψn ,Lψn,max}. (28)

In addition, for centralized optimum a, if an = ψ, we have

Fn (a) ≤
ω1Rn

1 + eω2Rn/κ+ω3
. (29)

Then, we can get experience loss relation as

Lψn(a) ≥ λ1Dn − λ2ω1Rn

1 + eω2Rn/κ+ω3
− λ3Vn = Lψn,min. (30)

Besides, if Lψn(a) < Lψn(a) and an = ψ, then player can
choose the initialization server ψ to minimize its experience
loss, i.e., an = ψ. The reason is that player n’s decision
changed to ψ will not affect the other server. So we can get

Ln(a) = min{Lψn ,Lψn} ≥ min{Lψn ,L
ψ
n,min} . (31)

According to (28) and (31), we can obtain (21).
We can easily learn from (21) that when the physical server

of the cloud gaming increases the total resources, the comput-
ing performance allocated by each player will be improved
overall, and the maximum player experience loss Lψn,max

will decrease. The lower interference player experiences from
others, the better cloud gaming experience will be. Besides,
the result of NE will be closer to the central optimal algorithm.

VI. EXPERIMENT RESULT

In our experiments, M = 10 physical servers are employed.
Each server is equipped with a CPU with 18 cores, 4 GTX
1080 graphics card, and 128 GB RAM. We select 40 popular
games with different hardware requirements. Each players
target game is initialized randomly. To acquire the average
result, all experiments are repeated 100 times.

A. Convergence of the Resource Competition Game

For portraying the convergence of the resource competition
game, we collect all the statics in experiments and present the
experience variation of 30 players chosen at random. During
the competition process, as shown in Fig. 3, the experience
loss of each player is high at the beginning when all players
are associated with the initial server ψ. Nonetheless, with
performing the proposed algorithm, every player updates its
strategy at each time of iteration. By virtue of this, the
gaming experience of everyone is improving over iterations
and eventually reaching equilibrium, which means the resource
competition game shall converge to a Nash Equilibrium.

Fig. 3. Experience loss of players throughout the game.

Further, in order to demonstrate the overall performance
of the proposed algorithm, two metrics in terms of the overall
experience loss and the number of beneficial offloading players
are investigated. As shown in Fig. 4, both metrics are finally
reaching the state point. In addition, these results demonstrate
the effectiveness of the proposed algorithm especially on
improving the gaming experience of players.



Fig. 4. Overall experience loss and beneficial player numbers.

B. Performance of the Proposed Algorithm

To evaluate the performance of our algorithm, three com-
mon strategies are introduced for comparison: 1) Polling
Placement Strategy, players associate with server from 1 to
M in sequence repeatedly; 2) Random Greedy Placement
Strategy, players waiting in queue associate with the server
which can provide the best gaming experience according to
others’ association strategies; 3) Sorted Greedy Placement
Strategy, players are sorted by the hardware requirement and
the least resource-requiring player is first admitted to associate
with a server providing the best gaming experience.

Fig. 5. Performance compari-
son on experience losses.

Fig. 6. Iteration times for con-
vergence.

Comparison results of different algorithms are given in Fig.
5. For the metric of overall experience loss, the proposed
algorithm can achieve up to 75%, 54%, and 66% improvement
compared with the polling placement strategy, the random
greedy placement strategy and the sorted greedy placement
strategy, respectively. In addition, with more players, our
algorithm can bring very good placement strategies and effects
when resources are relatively sufficient.

Finally, the relationship between the number of players and
the iterations times required for the competing game is studied.
The average required iteration times is shown in Fig. 6, which
demonstrates that as the number of players increases, the
iteration time increases almost linearly. Hence, our algorithm
scales well with the number of players and could be a potential
method for optimizing resources in cloud gaming.

VII. CONCLUSION

In this paper, we devise a distributed algorithm by means
of potential game. First, optimization problems in multi-player
cloud gaming scenario are proved to be NP-hard. Then, the
potential function is constructed for proving the presence of
Nash Equilibrium. Finally, we analyze and quantify the perfor-
mance of our algorithm in term of PoA, and demonstrate that
our algorithm can converge to a stable point quickly. Besides,
numerical results demonstrate that the proposed algorithm

achieves superior performance than other strategies and scales
well as the increasing number of players.
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