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Abstract—Computation partitioning is an important technique to improve the application performance by selectively offloading some
computations from the mobile devices to the nearby edge cloud. In a dynamic environment in which the network bandwidth to the edge
cloud may change frequently, the partitioning of the computation needs to be updated accordingly. The frequent updating of partitioning
leads to high state migration cost between the mobile side and edge cloud. However, existing works don’t take the state migration
overhead into consideration. Consequently, the partitioning decisions may cause significant network congestion and increase overall
completion time tremendously. In this paper, with considering the state migration overhead, we propose a set of novel algorithms to
update the partitioning based on the changing network bandwidth. To the best of our knowledge, this is the first work on computation
partitioning for stateful data stream applications in dynamic environments. The algorithms aim to alleviate the network congestion and
minimize the make-span through selectively migrating state in dynamic edge cloud environments. Extensive simulations show our
solution not only could selectively migrate state but also outperforms other classical benchmark algorithms in terms of make-span. The
proposed model and algorithms will enrich the scheduling theory for stateful tasks, which has not been explored before.

Index Terms—edge cloud; computation partitioning; stateful data stream applications
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1 INTRODUCTION

Edge computing is to enable cloud computing technologies
from the traditional Internet data centers to the network
edge for low latency data accessing and real-time data
processing [7]. As an abstraction of computing resources at
the edge, edge clouds are usually distributed geographically
at the locations which are closer to the end users such as
on the cellular base stations and the wireless local area
networks. The general forms of edge computing include
Cloudlets [9] and Foglets [10] and even a small cluster of
limited devices [8]. Compared with traditional cloud data
centers, edge cloud is more lightweight and resource con-
strained [11]. With an increasing deployment of edge clouds
in today’s network infrastructures, computation partition-
ing is considered as an efficient technique to improve the
mobile application performance by selectively offloading
some computation from the mobile devices to the nearby
edge cloud [4] [12] [18].

There exist many related works on computation parti-
tioning for achieving different purposes such as reducing
the execution time [3], saving the energy consumption on
the end device [1] and the data transmission overhead to the
cloud [2] [4]. These works have different modeling approach
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for the applications. Typical application models include the
method call tree for the procedure-oriented programs, ser-
vice invocation graph for the service-oriented applications
and the data flow graph for the data stream applications.
Among these types of applications, data stream applications
have been increasingly concerned such as the augmented
reality and object tracking [5]. The application is composed
of a set of functional modules with the data flowing through
them. The partitioning of the data stream applications aims
to decide for each incoming data frame which functions are
executed locally and which others are executed on the edge
cloud [4] [12]. However, existing works do not consider the
partitioning of stateful data stream applications. We define
the data stream application as being stateful if it includes
stateful function modules. By stateful function module, if
one data frame flows through it, a ’footprint’ will be left on
the device at which the module is processed. This ’footprint’,
also named by state, is needed by the processing of the
next data frame. Many applications such as object tracking
pertain to the stateful applications.

Partitioning stateful data stream applications is chal-
lenging particularly in dynamic edge cloud environments
where the network connection to the edge cloud changes
frequently and even disconnection could occur. Because of
dynamics of network connection, the partitioning of the
application needs to be updated accordingly, which would
cause state migration between the mobile device and the
edge cloud. Therefore, we need to partition computations
through selectively migrating state to alleviate network con-
gestion. Existing works on computation partitioning con-
sider the application with stateless function modules. When
they are applied in partitioning of stateful applications,
high state migration overhead happens in the network,
which may lead to network congestion and result in a
long completion time of applications. That is why we need
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to specially design new approach for partitioning stateful
application, aiming to balance a good partitioning with low
completion time and the additional state migration time
over the network.

In this paper, we develop a set of efficient algorithms
to solve the problem of partitioning stateful data stream
applications, with the aim of alleviating network congestion
and minimizing the make-span through selectively migrat-
ing state. In particular, we design a novel algorithm, namely
Score Matrix-based Heuristic (SM-H), to solve the one-shot
problem, which updates the partitioning of the current
arriving data frame when the edge network environment
changes. SM-H uses a matrix to record the benefit score of
adjusting the execution position of each module, and then
always select the module with the greatest score to adjust.
The adjustment is done iteratively until none of the modules
has a positive score, which means that adjusting anyone of
modules will cause the increase of the completion time. On
basis of the one-shot SM-H algorithm, we further extend
to solve the partitioning problem with multiple steps look
ahead.

We evaluate the proposed algorithms via extensive sim-
ulations and compare them with several benchmark meth-
ods including the sequential adjustment that is a naive
greedy heuristic, list scheduling that is a classical schedul-
ing method in parallel and distributed computing, genetic
algorithm and so on. The results show that the proposed
algorithms outperform the benchmark algorithms in terms
of the make-span. We summarize the contributions of this
paper as follows.

• To the best of our knowledge, we are the first to study
the partitioning problem for the stateful data stream
applications. The problem models can be extended
into the scheduling of stateful tasks on distributed
processors which so far has not been studied in the
area of task scheduling.

• We develop a new algorithm for partitioning the
stateful data stream applications. The algorithm en-
riches the scheduling theory and methodology for
stateful application tasks.

• We evaluate the proposed algorithm through ex-
tensive simulations, and the results show the pro-
posed SM-H outperforms the benchmark algorithms
in terms of the make-span.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will introduce the system model and
the definition of computation partitioning for stateful data
stream applications in dynamic edge cloud environments.
Furthermore, the functionalities in object tracking is pre-
sented as a realistic example of stateful data stream applica-
tions.

2.1 System Model

In our paper, we focus on the partitioning for the state-
ful data stream applications. These applications take the
streaming data frames as input, perform a series of op-
erations onto each incoming data frame, and then output

... ...

Input Data Output Data
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State

Stateful module

Fig. 1. The Model for Stateful Data Stream Applications

the results continuously. The input data frames are sam-
pled periodically from the sensors on the mobile device.
In addition, some operation modules of the application,
named stateful modules, generate state during execution.
Every stateful module is left with a ’footprint’ (state) after
processing a data frame. The footprint (state) is needed by
the processing of the next data frame. These stateful modules
need to rely on the state during subsequent execution when
the next data frame comes. In addition, for different stateful
applications, the proportion of stateful modules and the size
of the state are diverse.

We model stateful data stream application as a data flow
graph. It consists of a set of modules and a set of edges as
shown in Fig.1. The set of modules include stateful mod-
ules and stateless modules. Each of them takes the output
data from all its precedent edges, and performs particular
operations and then output the data into its successive
edges. The state is associated with a specific module and
is generated at the device where the module is executed.
We use (V,E) to denote the set of modules and edges of
the stateful application graph, where Vstate ∈ V represents
the set of stateful modules. We define the streaming data
transferring along the edge as data flow

In our model, the network bandwidth between a mobile
device and the edge cloud is dynamically changing. We
abstract the total network bandwidth as a set of virtual
network channels to simplify the model referring to the
Frequency Division Multiplexing (FDM) in network trans-
mission protocols. Each channel is assumed to have the
same network bandwidth. Our model and method can also
be extended to heterogeneous network channels. The data
transmission in the network include the data flows and the
state migration. The scheduling of data flows in the network
use the First-Come-First-Served policy. If multiple modules
are allocated to the mobile device or edge cloud server
simultaneously, we execute these modules in a Shortest-Job-
First manner.

The metric to measure the computation partitioning per-
formance of stateful data stream applications is make-span.

• Make-span is defined as the completion time for
processing one data frame. In the stateful data flow
graph, the weights of the modules are represented
as the execution time on the mobile device and on
the edge cloud server for processing one data frame
respectively. The weight of the edge is represented
as the transmission time, and the weight of the state
is expressed by its migration time. The make-span is
defined as the total completion time for processing
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Fig. 2. STC algorithm: a realistic object tracking example

one data frame.

Make-span is usually the primary metric for the perfor-
mance of stateful data stream applications and directly af-
fects the user experience. Since the state migration overhead
could bring network congestion potentially, selectively mi-
grating state is important for minimizing the make-span in
dynamic edge cloud environments.

2.2 A Realistic Example in Object Tracking

Object tracking can be applied to the fields of traffic and
reconnaissance, which collects images through cameras and
makes real-time processing. Considering the limited pro-
cessing power of camera terminals, when the data process-
ing rate cannot meet the requirements, edge cloud servers
are needed to assist the acceleration. Then the models and
methods in our work can be applied in this scenario.

In order to clearly describe the practical significance
of the problem proposed in this paper, we discuss stateful
data stream applications with a realistic object tracking
example. In this example, object tracking is implemented by
STC (Spatio-Temporal Context) algorithm mentioned in the
paper [5]. The STC algorithm is based on a Bayesian compu-
tation framework to learn the spatio-temporal relationship
between the object of interest and its local context region.
Furthermore, the function modules and execution flows of
the STC algorithm is shown in Fig.2, and the data flow
between adjacent modules is used to transfer the calculation
result of the previous module.

As shown in Fig.2, module A captures the t-th data
frame, and moduleB calculates the context prior probability
P (c(z)|o). Module C calculates the spatial context model
hsct . Module D is a stateful function module. The state
fD is a spatio-temporal context model Hstc

t−1 at the (t-1)-
th frame for updating the spatio-temporal context model
Hstc
t of the t-th frame in module D, which is represented

as Hstc
t = (1 − ρ)Hstc

t−1 + ρhsct . Module E calculates the
confidence map of the t-th frame based on Bayesian frame-
work and FFT, which is represented as mt(x) = Hstc

t (x) ⊗
P (c(z)|o) = F−1(F (Hstc

t (x)) · F (P (c(z)|o))). The module
F estimates the best object location of the t-th frame by
x∗t = arg maxx∈Ωc(x∗t−1)mt(x). The tracking result returns
to mobile device finally.

The above is the stateful data flow process of the STC
algorithm in object tracking, which can be abstracted as
a stateful data stream application. In this paper, we study
how to partition the stateful data stream applications to
alleviate network congestion and minimize the make-span
in dynamic edge cloud environments.

TABLE 1
Mathematical notations in this paper

V the set of modules in the application graph;
E the set of edges in the application graph;
Vstate the set of stateful modules in the application

graph;
Nη the number of network channels in the time η;
B the network bandwidth of each channel;
M the mobile device, supposing there is only one

mobile device;
C the edge cloud server, supposing there is only one

server at the edge cloud;
i, j index of the module in the application graph;
fi the amount of state generated by task i;
(i, j) the edge in the application graph;
k index of the network channel;
mi the execution time of the module i on the mobile

device in processing a unit of data;
ci the execution time of the module i on the cloud

processor in processing a unit of data;
−→x η the computation partitioning of the stateful data

stream application at time point η;
xηi a binary variable indicating whether the module i

is allocated to the cloud side in the time η;
tir the release time of module i;
σi the time when the module i starts to execute;
λi the end execution time of module i;
tfis the start transmission time of state fi;
tfif the end transmission time of state fi;
D(i,j) the amount of data that needs to be transmitted

from module i to module j in processing one unit
of data;

t
(i,j)
r the release time of data flow that transferring in

the edge (i, j);
t
(i,j)
s the time when the edge (i, j) starts to transmit;
t
(i,j)
f the end transmission time of edge (i, j);
tke the earliest available time of channel k;
tMe the earliest available time of mobile device;
tCe the earliest available time of edge server;
Uη the set of modules which update the execution

position at time η;
Gη the set of cross edges at time η;

2.3 Problem Formulation

The problem is modeled as follows. Suppose there exits only
one mobile user and only one closest available edge cloud.
The application launched from mobile device processes the
incoming data frames one by one. The execution time of
module i on mobile device and edge cloud is mi and ci
respectively. The execution mode of modules is assumed
to be non-preemptive. The edge cloud may come from
Cloudlets [9] and Foglets [10] and even a small cluster
of limited devices [8]. We use fi to represent the amount
of state generated by stateful module i. Let B represent
the bandwidth of each channel. The decision variable xηi
indicates whether the module i is offloaded to the edge
cloud at time point η. If xηi = 1, it means that module i is
offloaded to the edge cloud; otherwise it means the module
i is executed locally. We use the cross edge to indicate the
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data flow whose two connective modules are executed at
the different sides.

Decision variables. Given the application graph and
its relevant parameters (V,E), the computation partitioning
−→x η−1 at time point η − 1, and the number of network
channels that has changed at time point η. The problem is
to update the computation partitioning according to current
network bandwidth, i.e., to decide whether to update the
execution position of each module at new time point η.

Let σi denote the start execution time of module i.
The completion time λi of module i can be formulated as
σi + xηi · ci + (1 − xηi ) ·mi. Let (i, j) denote the data flow
from the module i to the module j. The release time of data
flow (i, j) is defined as the completion time of its precedent
module. We assume that non-preemptive transmission strat-
egy is utilized for scheduling the cross edge data flow and
state migration onto the network channels.

We use piecewise function yfi(t) to represent the net-
work bandwidth allocated to state migration, which is de-
fined as Equation(1)

yfi(t) =

{
B

0

if t ∈ [tfis , t
fi
f ]

otherwise ,
(1)

where tfis and tfif represent the start migration time and
end migration time of state fi respectively. Similarly, we
use piecewise function y(i,j)(t) to represent the network
bandwidth allocated to transmission of cross edge (i, j),
which is defined as Equation(2)

y(i,j)(t) =

{
B

0

if t ∈ [t(i,j)s , t
(i,j)
f ]

otherwise ,
(2)

where t(i,j)s and t
(i,j)
f represent the start transmission time

and end transmission time of cross edge (i, j) respectively.
Objective. The objective is to minimize themake-span.

In order to formulate the objective conveniently, we add
two virtual modules into the application graph including
the entrymodule denoted by i = 0, and the exitmodule
denoted by i = n + 1. We use Uη to represent the set of
modules which update the execution position at time η.
Since the application normally gets input data frames from
the mobile device and is required to output the result to
the mobile device as well, we set xη0 = 0 and xηn+1 = 0.
With the two virtual modules added, σ0 indicates the start
execution time of the application, which is usually equal to
the release time of the user’s application. σn+1 indicates the
end time of the application. For each module i in Uη , if it is a
stateful module, the migration of state fi occurs. Therefore,
the objective can be formulated by

min−→x η
(σn+1 − σ0). (3)

Constraint on the dependency of modules.
The execution time of the modules should satisfy the
dependency constraint in the application graph. The
module can not be executed until all its precedent modules
are finished. We assume that the module’s execution is
non-preemptive. We can represent the execution interval
of the i-th module by [σi, λi]. The dependency constraint
among the modules is formulated by

λi ≤ σj , ∀(i, j) ∈ V . (4)

Constraint on the state migration. The migration
of state should satisfy the dependency with its relevant
stateful module. Since the stateful module needs to rely on
the state when new data frame comes, the end time of the
state migration should be earlier than the start execution of
its relevant module. Moreover, when the module i updates
its execution position at time point η, the start migration
time of the state fi should be later than the time η. We use
tfis to indicate the start migration time of state fi, and the
end migration time tfif is represented as tfis + fi/B + ω,
where ω is the propagation delay. The constraints on the
state migration are formulated by

tfis ≥ η, ∀i ∈ Uη, and i ∈ Vstate, (5)

tfif ≤ σi, ∀i ∈ U
η, and i ∈ Vstate. (6)

Constraint on the network bandwidth. We use Nη

to represent the number of network channels at time point η.
Let Gη denote the set of cross edges at time point η. At each
time point t ∈ [σ0, σn+1], the sum of allocated bandwidth
for each cross edge transmission and state migration should
be less than Nη ·B. The constraint is formulated by

∑
(i,j)∈Gη

y(i,j)(t) +
∑

i∈Uη, i∈Vstate

yfi(t) ≤ Nη ·B,

∀t ∈ [σ0, σn+1].

(7)

Definition 1 Stateful data stream application Computation
Partitioning Problem (SCPP). Given the application graph
and its associated parameters (V, E). The number of net-
work channels Nη that have changed at time point η, the
network bandwidth B of each network channel, and the
computation partitioning xη−1 at time point η − 1, the
problem is to update the computation partitioning at time
η, and migrate state for alleviating network congestion, so
as to minimize the make-span. The problem is formulated
as follows.

min−→x η
(σn+1 − σ0), (8)

s.t. (4), (5), (6), (7).

An Example. Fig.3 illustrates an example of the com-
putation partitioning problem for stateful data stream ap-
plications when network environment deteriorates. In this
example, we assume that the ratio of the module’s execution
time in the edge cloud to the mobile device is 1:2. The
execution time of the module i on the mobile device and on
the edge cloud server is described as [mi, ci]. The weight on
edge indicates the transmission time. The transmission time
is equal to zero if the two connecting modules are executed
on the same resource. All the weights are measured under
the assumption that the module or edge occupies the device
or network channel exclusively.

In the first graph, assuming the previous partitioning
at time η − 1 is that modules A and B are executed on
the edge cloud server, and modules C and D are executed
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Fig. 3. An example to illustrate the updating process of computation
partitioning for stateful data stream applications

in the mobile device. We can get through First-Come-First-
Served (FCFS) policy that the make-span at time point η− 1
is 25.9s. In the second graph, the network environment
deteriorates and the number of network channels changes
from 2 to 1 at time point η. The make-span becomes 29.4s
as a result. We need to update the computation partitioning
of this stateful data stream application based on the current
network environment, so as to minimize the make-span. In
the third graph, we assume that updating the execution
position of module A and the make-span becomes 22.3s.
In the fourth graph, we assume that updating the execution
position of module B and the make-span becomes 29s. As
we can see, the migration overhead of state fB increases the
make-span. So updating module A first could bring more
benefits than module B and reduce state migration mean-
while. Considering the priority of updating the modules can
have a large impact on the results. In this paper, We discuss
the strategy of adjusting the module first which can reduce
the make-span greatly.

2.4 Problem Uniqueness and Challenges

In general cloud offloading, the cloud that accommodates
the offloaded tasks has abundant computing resources,
while the edge cloud has limited computing resources.
Due to this property, the offloading decision needs to be
jointly considered with the resource scheduling at the server

side such as to optimize the performance. Moreover, the
network model for cloud offloading includes the wireless
access and the Internet connection. The bandwidth of Inter-
net connection is a dominant factor to determine the data
transmission cost, because it is relatively constrained to the
access network. However, the network model for edge cloud
offloading mainly considers the wireless access network.
The bandwidth of wireless access often changes frequently
due to the users mobility. Thus, the offloading decisions in
edge cloud scenario needs to be updated frequently. The
offloading problem in edge cloud pertains to be a dynamic
decision problem which aims to make adaptive decisions
according to the changing bandwidth, while in most of exist-
ing cloud offloading problem like MAUI [19], the offloading
is modeled as a static optimization problem. The offloading
decision can be obtained by an 0-1 programming solver.
Due to the two differences above, the offloading problem in
edge cloud is much more challenging than previous cloud
offloading.

The stateful migration occurs in MapReduce [29]. How-
ever, the state migration in MapReduce occurs due to the
data dependence among the tasks within a job. For example,
the intermediate data from Map task is needed by the Re-
duce task. However, MapReduce does not model the corre-
lation of different jobs. The tasks in MapReduce are stateless.
A map/reduce task has certain life cycle only for a particular
job. The tasks are terminated when a job is finished. As
a new job is released, new tasks are launched for the job.
In our work, we consider the application model of stateful
streaming application. It is different from the general task
model in MapReduce. Although an extended version of
MapReduce, namely MapReduce Online, is proposed for
processing streaming data. The workload in MapReduce
Online fits into the task model in our work. However, the
work does not propose the scheduling method particularly
for stateful streaming application. Moreover, the resources
in a MapReduce cluster are relatively static compared to the
resources in mobile edge cloud. With static resources, the
scheduling of tasks does not need to be changed frequently.
That is why existing scheduling works for big data cluster
rarely studied the dynamic scheduling problem.

MAUI [19] makes an offloading decision based on the
estimation of the network bandwidth and the profiling data
of the program. It is designed for executing a work-flow
program rather than the data stream application. In MAUI,
once the program is started, it generates an offloading
decision by solving an 0-1 integer programming problem.
So the offloading problem in MAUI pertains to a static one-
shot optimization problem. In data stream application, the
program would be repeatedly executed for processing the
periodically arriving data. The data have temporal relation-
ship. The processing of a data unit at one time would leave
some information (state) which is required to process the
data arriving at the next time. As a result, the offloading
decisions at different time slots are correlated in data stream
application. Due to the correlation, the offloading problem
in our paper naturally pertains to a dynamic decision prob-
lem. The dynamic offloading problem is more challenging
than previous one-shot offloading problem.

In addition, our problem is different from the classical
network flow problem. Since the weight of each data flow
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reflects the sum of the transmission delay and propagation
delay in the current network environment, our problem
does not need to meet the Capacity Limit Conditions of
the network flow problem. Correspondingly, the constraint
on the network bandwidth in Section 2.3 is also different
from the Capacity Limit Conditions. Because the sum of
data amount received and the sum of data amount trans-
mitted by each module are not necessarily the same, it
is also different from the Equilibrium Conditions of the
network flow problem. Additionally, the optimization goal
of network flow problems is usually to solve the maximum
flow problem, which can usually be solved by linear pro-
gramming, while our problem is a scheduling problem. The
optimization objective with make-span is usually affected
by multiple constraints, such as the complexity of the DAG
itself, and the dynamics of the edge cloud network, which
is an NP-hard problem.

3 SOLUTIONS TO SCPP
In this section, we introduce the SM-H algorithm and the
RSM-H algorithm to solve the one shot scheduling prob-
lem and the ∆t-steps look ahead problem respectively.
Moreover, we represent the execution process and the time
complexity of both algorithms.

3.1 Solving One Shot Optimization
We propose a new heuristic algorithm, named Score Matrix-
based Heuristic (SM-H), to solve the Problem. Given the
computation partitioning xη−1 at time η − 1 and the pre-
dicted number of channels Nη at time η, the SM-H algo-
rithm greedily adjusts the module with the greatest score
until the performance can not be improved. Specifically,
the network trace prediction could resort to the Network
Status Prediction method [12]. SM-H consists of two phases:
adjustment and update. During the adjustment, we define
the adjustment score of each module as the reduction of
the make-span if the execution position of the module is
changed. The score matrix records the adjustment score of
each module. We always select the module with the greatest
score and adjust this module’s execution position. Then
in the update phase, the score matrix will be recomputed
according to the latest computation partitioning. The above
two phases are repeated alternatively until there is no
positive score in the score matrix. Then we obtain the new
computation partitioning xη at time η. The pseudo-code of
the Score Matrix-based Heuristic is shown in Algorithm 1.

The module’s adjustment score plays an important role
in the algorithm SM-H. And then we first define the data
structures and relevant terminologies in calculating the
make-span as follows.

• Execution time list. Execution time list is used
to represent the execution process of a module. It
contains the module’s release time, the start execu-
tion time, the end execution time and its execution
place. We use the list [tir, σi, λi, x

η
i ] to represent the

execution time list of module i at time point η.
• Transmission time list. Transmission time list is

used to represent the transmission process of a cross
edge. It consists of the cross edge’s release time, the

Algorithm 1: Score Matrix-based Heuristic Algo-
rithm

Input : Ω = {V,E}; the set of stateful modules Vstate;
one mobile device M ; one edge cloud server
C; xη−1; Nη and each channel’s bandwidth B.

Output: xη
1 Process each module i ∈ V by order of Breadth-First

Traversal of the data flow graph Ω.
2 Initialize a 1× n scoring matrix SM ;
3 for each module i ∈ V do
4 Set the original make-span α1 ←Max{λi,∀i ∈ V };
5 if updating the module i’s execution location then
6 Get the predecessor cross edge set Gi of module

i;
7 Use the First-Come-First-Served policy to

transmit the cross edge (j, i) ∈ Gi and update
its transmission time list;

8 if i ∈ Vstate then
9 Migrate the state fi in advance and update

its migration time list;
10 Get the predecessor module set Pi of module i;
11 Set the release time of module i, tir ←

Max{tfif ,Max{t(j,i)f , ∀(j, i) ∈ Gi},Max{λj , ∀j ∈ Pi}};
12 if Xη

i == 0 then
13 Execute the module i using FCFS policy and

set
14 σi ←Max{tMe , t

(i)
r };

15 λi ← σi + xηi · ci + (1− xηi ) ·mi;
16 Update tMe ← λi;

17 else
18 Use the same scheduling method to execute

module i on C as lines 13-16;
19 Execute the remaining modules and get the

make-span α2 ←Max{λs, ∀s ∈ V };
20 Set SM [i]← α1 − α2;

21 Get the greatest score β and the relevant module i;
22 while β > 0 do
23 Adjusting the module i’s execution position as

xηi = 1− xη−1
i ;

24 Recompute the scoring matrix SM as lines 3-20;
25 Get the greatest score β and the related module i;

26 return xη ;

start transmission time, the end transmission time
and the channel index for transmission. Let k(i,j)

indicate the index of channel for transmitting cross
edge (i, j). We use the list [t

(i,j)
r , t

(i,j)
s , t

(i,j)
f , k(i,j)]

to represent the transmission time list of cross edge
(i, j).

• Migration time list. Migration time list is used to
represent the migration process of a state. It contains
the state’s release time, the start migration time, the
end migration time and the index of its occupied
channel. Let kfi indicate the channel index for trans-
mitting the state fi. We use the list [tfir , t

fi
s , t

fi
f , kfi ] to

represent the migration time list of state fi.

The calculation process of make-span is shown in lines
4-19. The related scheduling schemes are shown as follows.
• Modules execution scheduling. We describe the

scheduling of the module’s execution by using the module’s
execution list [tir, σi, λi, x

η
i ]. The update process of tir is

shown in lines 6-11. The release time of the module i is
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Scoring Matrix: [2.3, 1.2, 3.0, -0.1, 0.3]
 

: [1, 0, 0, 1, 0]

Maximum score

Update:

Fig. 4. The illustration of one shot problem

equal to the maximum value of the end transmission time
Max{t(j,i)f ,∀(j, i) ∈ Gi} of its predecessor data flows, the
end execution time Max{λj ,∀j ∈ Pi} of its predecessor
modules and the end migration time tif of its state fi. If
the module is not a stateful module, then its release time is
equal to the maximum of the first two values. The update
process of σi and λi are shown in lines 12-18.
• Cross edge transmission scheduling. We describe

the scheduling of the transmission of cross edges by up-
dating its data transmission list [t

(i,j)
r , t

(i,j)
s , t

(i,j)
f , k(i,j)]. As

shown in line 7, the t(i,j)r is equal to the end execution time
of module i, as shown in Equation(6)

t(i,j)r = λi. (9)

Additionally, the t(i,j)s and t
(i,j)
f can be expressed as Equa-

tion(7) and Equation(8)

t(i,j)s = Max{tk(i,j)e , t(i,j)r }, (10)

t
(i,j)
f = t(i,j)s +D(i,j)/B + ω. (11)

• State migration scheduling process. We describe
the scheduling of state migration based on the state migra-
tion list [tfir , t

fi
s , t

fi
f , kfi ] . As shown in line 9, the tfir can be

defined as Equation(9)

tfir = η. (12)

If there exists an idle time interval in a channel between the
state’s release time and its relevant module’s start execution
time which is capable of migrating the state fi, then the
state will be migrated in this idle time interval in advance.
Otherwise, the state will be migrated by use of FCFS policy
and the tfis and tfif can be expressed as Equation(10) and
Equation(11)

tfis = Max{tkfie , tfir }, (13)

tfif = tfis + fi/B + ω. (14)

A simple example is proposed to describe the key steps
of Algorithm 1. As shown in Fig. 4, in the first adjustment
phase, we will adjust the execution position of module 3
with the biggest score of 3.0 in the scoring matrix, as shown
in line 23. Then in the update phase, we will recompute
the scoring matrix, as shown in line 24. The two phases are
executed iteratively until there is no score greater than zero
in the score matrix.

The time complexity of SM-H algorithm is O(λ × n2),
where n denotes the number of modules. Specifically, the
time complexity required to compute the Score Matrix once

is O(n2). Since the number of repeated adjustments of
each module is set to no more than 3, then the number of
updating rounds λ is within O(n).

3.2 Benchmark Algorithms

In this section, we introduced classical baseline algorithms
such as List Scheduling, Re-partitioning Algorithm, Genetic
Algorithm, and Sequential Adjustment.

3.2.1 List Scheduling

List scheduling is a classical method for scheduling data
stream applications on the constrained resources. It contains
two steps: task selection and resource assignment. In the
scheduling, we abstract the modules, data flows, and state
as tasks. The mobile device, edge cloud server and Nη net-
work channels are abstracted as Nη + 2 machines. The tasks
are selected with priorities based on their release time. The
tasks are selected according to first-come-first-served policy.
The algorithm selects the task with the earliest release time,
and assign it to the machine which can complete the task at
the earliest time. It is a shortsighted heuristic. For fairness in
the comparison, we also use First-Come-First-served policy
for cross edge transmission and state migration as we do in
SM-H algorithm.

3.2.2 Re-partitioning Algorithm

Re-partitioning algorithm does the computation partition-
ing under the current network bandwidth without consid-
ering the state migration overhead. The algorithm updates
the module’s execution position using the algorithm for
partitioning stateless applications. Since the state migration
overhead is ignored, it is more likely to cause network
congestion and increase the make-span.

3.2.3 Genetic Algorithm

The genetic algorithm is a well-known evolutionary ap-
proach to solve the optimization problem. The key functions
in the genetic algorithm implementation are to determine
the chromosome representation and the corresponding fit-
ness function to evaluate the performance of generated
chromosomes. We encode the chromosome using the 0-
1 module execution position variable −→x t at time point
t. Thus, the chromosome contains 1 × n bits. Given the
module execution position variable −→x t, the fitness value is
represented as the reciprocal of make-span. The algorithm
first initializes a population of a certain size. After several
rounds of selection, crossover and mutation, the population
converges to a minimum make-span as the final solution.

3.2.4 Sequential Adjustment

Sequential adjustment approach uses the same method as
SM-H to calculate the adjustment score of each module.
However, the difference is that the sequential adjustment
approach update each module in a sequential order. The
algorithm terminates until all the modules have been tra-
versed.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on August 20,2021 at 06:00:46 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3051046,
IEEE Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, XX 2020 8

3.3 Online Algorithm with ∆t-Steps Look Ahead
The one shot SCPP updates the computation partitioning in
the next time slot, aiming to alleviate the network conges-
tion and minimize the make-span through selectively mi-
grating state. Now we can predict the network bandwidth
in the following ∆t time slots by use of Network Status
Prediction method [12] and aim to compute the computation
partitioning over the ∆t time slots. In this section, we design
an online algorithm, namely Repeated Score Matrix-based
Heuristic (RSM-H), for ∆t steps look ahead.

Our goal is to alleviate the network congestion and
minimize the average make-span of the following ∆t time
slots. We define the objective of this ∆t-steps look ahead as
the Equation(12)

Min
1

∆t

η+∆t∑
t=η+1

(σtn+1 − σt0). (15)

The idea of the online algorithm is shown as follows.
First, we determine the computation partitioning at each one
of the future ∆t time slots by using the SM-H algorithm.
Then, we adjust the computation partitioning towards the
∆t-steps look ahead. Specifically, we use the Execution
Matrix (EM) to describe the execution position of each
module from η + 1 to η + ∆t. Given the computation
partitioning xη at time point η and the network bandwidth
from η+ 1 to η+ ∆t, we use the SM-H algorithm to orderly
calculate the computation partitioning from η+ 1 to η+ ∆t.
Then we obtain the initial execution matrix. We still use
the adjustment score to indicate the module’s priority for
adjustment. The adjustment score of module i at time t is
expressed as follows. After adjusting the execution position
of module i, we use the SM-H to orderly recompute the
computation partitioning from time t + 1 to η + ∆t. And
then the adjustment score of module i is represented as the
reduction of the average make-span from time η+1 to η+∆t.
The Scoring Matrix represents the adjustment score for each
module from η + 1 to η + ∆t.

The RSM-H algorithm also consists of two phases: ad-
justment and update. In the first adjustment phase, we
adjust the module with the greatest score in SM. When the
adjusted module is at time t ∈ [η + 1, η + ∆t], we will use
SM-H to adjust the computation partitioning from t + 1 to
η + ∆t and update the execution matrix accordingly. In the
update phase, we recompute the adjustment score of each
module from η + 1 to η + ∆t and get the updated SM.
The two phases are performed iteratively until there is no
positive score in the SM. Then we get the final solution.

Algorithm 2 shows the pseudo-code of RSM-H. We first
initialize a n × (∆t+ 1) execution matrix EM as lines 1-4.
Then we get the initial scoring matrix as shown in lines 5-
11. The two key steps of the algorithm are performed next.
Lines 14 and 15 indicate the adjustment phase, and line 16
indicates the update phase. These two phases are iteratively
performed until there is no positive score in SM. Line 18
indicates that this algorithm ends and returns the final EM.

The time complexity of the algorithm is O(|∆t|2 × λ1 ×
λ2 × n3), where λ1 and λ2 denote the number of updating
rounds of SM-H and RSM-H respectively, and n denotes
the number of modules. Specifically, the time complexity of
SM-H isO(λ1×n2). And the time complexity for computing

Algorithm 2: ∆t-Steps Look Ahead Algorithm
RSM-H

Input : The computation partitioning xη at time η;
the network bandwidth during ∆t time slots:
Nη+1, Nη+2, ..., Nη+∆t

Output: the execution matrix EM
1 Initialize a n× (∆t+ 1) execution matrix EM and set

the 0-th column of EM as EM [0]← xη ;
2 for each time point t ∈ [η + 1, η + ∆t] do
3 Calculate the computation partitioning xt by use

of SM-H;
4 Set the (t-η)-th column of EM as EM [t− η]← xt;

5 Initialize a n×∆t Scoring Matrix SM ;
6 for each time point t ∈ [η + 1, η + ∆t] do
7 for each module i ∈ V do
8 if assume that updating the module i’s execution

position then
9 Update the computation partitioning from

t+ 1 to η + ∆t with SM-H;
10 Compute the decrease on average

make-span γ for ∆t time slots;
11 Set SM [i][t− η − 1]← γ;

12 Retrieve the greatest score β, the time point t, and the
related index i of module;

13 while β > 0 do
14 Adjust the module i’s execution location at time

point t in EM , EM [i][t− η]← 1− EM [i][t− η];
15 Adjust the computation partitioning from t+ 1 to

η + ∆t with SM-H and updating the EM
accordingly;

16 Recompute the Scoring Matrix SM as lines 6-11;
17 Retrieve the greatest score β, the time point t, the

index i of related module;
18 return the Execution Matrix EM ;

the Scoring Matrix once is O(|∆t|2×n). Through setting the
number of repeated adjustment of each module to no more
than 3, the number of updating rounds λ2 is within O(n).

4 PERFORMANCE EVALUATION

In this section, we will evaluate the performance of the
proposed SM-H for one shot problem and the online solu-
tion for ∆t-steps look ahead respectively. The performance
metric we consider in the evaluation is the make-span.

4.1 Evaluations of the SM-H for the one shot problem
4.1.1 Architecture Design of the Simulator
The simulation was developed in one single machine con-
figured as Intel(R) Core(TM) i5-2520M CPU. The simulation
language was Java.

Fig.5 shows the architecture of the simulator, which in-
cludes a stateful data stream applications generator, an edge
cloud simulator, a network resource monitor, a network
status predictor, and a resources scheduler. The stateful
data stream application is generated by the stateful data
stream application generator firstly. Then the application
is scheduled to execute in the edge cloud environment,
which includes a mobile device, an edge cloud server and
network bandwidth resources. Specifically, we abstract the
total network bandwidth as a set of virtual network chan-
nels referring to the FDM protocol. We use the network
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Fig. 5. Architecture of the simulator

resource monitor to get the usage of network resources,
the degree of network congestion, and the amount of state
migration. We use the network status predictor to predict
the dynamically changing edge cloud network resources.
If the future network bandwidth change significantly, or if
the network resource monitor observes that there is a large
amount of state migration at the current time, and the make-
span is significantly increased caused by severe network
congestion, the resources scheduler will be triggered.

Finally according to the different optimization goals of
the problem, the SM-H algorithm and the RSM-H algorithm
are utilized to solve the one shot scheduling problem and
∆t-step look ahead problem. In addition, the resources
scheduler is responsible for scheduling network bandwidth
resources, mobile device and edge cloud resources at the
same time. Although the stateful data stream applications
we generate are not real data, they are similar to TPC-
H queries and the stateful data flow processes of the STC
algorithm.

Additionally, to the best of our knowledge, there is no
approach/simulator/emulator for partitioning stateful data
stream applications. We can not directly use it for simulating
our approach. If we want to add new components for
stateful tasks simulation, we need to modify source-code of
the existing simulator which is not always supported. That
is why we develop our own simulator. In our future work,
we aim to abstract it into a general simulation framework for
stateful task scheduling and delivery it as an open-source
simulator.

4.1.2 Simulation Settings

Considering the number and size of applications in exper-
iments are both possibly large, we implement a stateful
data flow graph generator to simulate workloads of the
stateful streaming applications. The generator can simulate
applications similar to TPC-H queries [28], which are used
in simulation experiments in the literature [13], and stateful
data flow applications similar to the stateful data flow
processes of the STC algorithm [5] in object tracking. These
generated DAG-type stateful applications can cover all the
configuration parameters described next. We use the level-
by-level method to create the graph which was proposed by

TABLE 2
Parameters in each simulation

Parameters Values
The number of modules n 40
The average indegree 3
The number of network channels N t 3
The network bandwidth B 2MBps
The proportion of stateful modules 50%

The average execution time of modules on mo-
bile device

2.4s

The average execution time of modules on edge
cloud server

1.6s

The average data transmission size 2.66MB
The average size of state 5.32MB
CCR 1

Tobita and Kasahara [6]. We could control the application
graph through the following parameters: 1) the number
of modules; 2) the average indegree of each module; 3)
the proportion of stateful modules; and 4) communication-
to-computation ratio (CCR), which is defined as the ra-
tio of the average data state transmission time to the
average computation time as shown in Equation (13). If
an application graph’s CCR is high, it can be considered
as a communication-intensive application; otherwise, it is
a computation-intensive application. If the proportion of
stateful modules is bigger than zero, the application is
considered as a stateful data stream application; otherwise,
it is a stateless data stream application.

CCR =

D(0,1)+D(n,n+1)+
∑

(i,j)∈E D(i,j)

(|E|+2)×B +
∑
i∈Vstate

fi

|Vstate|×B

2× [
∑
i∈V (mi+ci

2
)/|V |]

(16)

In order to make a trade-off between the convergence
time and the experimental performance in the GA exper-
iments. We set the population size as 50. The evolution
generations are set to 150. The crossover probability and
mutation probability are set to 0.8 and 0.15 respectively.

We have done a group of simulations to evaluate the
effect of input parameters to the performance. In the simu-
lation, we generate a stateful data stream application with
40 modules. We consider a mobile device and an edge
cloud server. The average execution time of modules on the
mobile device and on the edge cloud server is 2.4s and 1.6s
respectively. The number of network channels is 3 and each
channel has the bandwidth 2MBps. The proportion of the
stateful modules is 50%. The CCR is set to 1. The amount
of migration state in the application graph are randomly
generated with the mean of 5.32MB. The amount of data
transmitting on the edges are generated randomly with the
mean of 2.66MB. Table 2 shows the default values of the
environment parameters.

4.1.3 Evaluation Results
The primary performance metric we consider is the make-
span of the application, which is the optimization objec-
tive in our problem. Furthermore, we also concern on the
migration-state, which indicates how much state migration
arises from the update of partitioning. We compare SM-H
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with four benchmark algorithms described in Section 3.2.
The simulation results are shown as follows.

Fig.6(a) compares the make-span of SM-H with the
benchmark algorithms under various application graph
sizes n. As n increases, the other parameters are set as the
default values in Table 2. The number of channels changes
from 3 at t-1 to 2 at t. We define a terminology, named
by make-span at time t-1, which indicates the make-span
at time t if the computation partitioning is the same with
that at time t-1. Under all the application graph sizes, our
proposed SM-H has obviously better performance. As a
benchmark naive approach, Re-partitioning has the worst
performance. LS has slightly better performance than Re-
partitioning due to it schedules the state migration. Com-
pared to LS, Sequential Adjustment takes into account
the impact of the module adjustment on the make-span,
and thus has much better performance than LS. However,
compared to the Sequential Adjustment, our proposed SM-
H considers the adjustment priority of modules, therefore,
SM-H outperforms Sequential Adjustment. GA can theoret-
ically approximate optimum by adjusting parameters and
increasing evolution generations. However, the computa-
tion complexity is very high. In order to make a trade-off
between the computation complexity and the result, we set
the population size as 50 and the evolution generations as
150.

Fig.6(b) shows how the migration state changes as the
application size n increases. It is shown that Re-partitioning,
LS, and GA bring more migration state than SM-H. This
is because the Re-partitioning algorithm does not take into
account the overhead of state migration, so it will bring
more migration state when it is applied to the stateful
applications. Reducing state migration can reduce the pos-
sibility of network congestion and thus reduce the make-
span. Moreover, it can be seen from Fig.6(a) and Fig.6(b) that
although the migration state affects the make-span, there is
no strict correlation between them. In other words, the SM-
H could minimize the make-span by selectively migrating
state.

Next, we study how the performance changes as the
ratio of the processing power of the mobile device to the
edge cloud decreases. We set the average execution time of
the modules on the mobile device as 2.4s, 3.2s, 4.8s, 6.4s,
9.6s, 12.8s while maintaining the average execution time
of the modules on the edge cloud server as 1.6s. Fig.6(c)
shows that SM-H always has better performance. When the
ratio decreases, the differences among these algorithms get
smaller. This is because when the difference between the
processing power of the edge cloud and the mobile device
is too large, these algorithms offload more modules to the
edge cloud server similarly.

Fig.6(d) shows how the ratio affects the migration state.
When the ratio is 2:3 or 1:2, SM-H migrates the least state.
However, when the ratio is less than 1:2, SM-H migrates
more state. This is because when the difference in the
processing power between the mobile device and the edge
cloud is small, the partitioning should be updated greatly
as the network bandwidth changes. Meanwhile, SM-H can
reduce the migration state compared to other approaches.
However, when the difference of processing power is large,
for example, when the ratio is 1:8, the migration state of

the Re-partitioning and LS is 0. This is because they do not
update the computation partitioning, while SM-H adjusts
more stateful modules in order to minimize the make-span.

Fig.6(e) describes the effect of the CCR to the make-span.
As shown in Equation (16), we set the average execution
time of the modules as 20s, 4s, 2s, 0.67s, 0.4s, 0.2s, and the
average transmission time is set to 2s. It is shown that the
make-span decreases as the CCR becomes greater. When the
CCR is small, SH-M has slightly better performance than
the others, because the application is computation intensive,
and most of the modules are executed on the edge cloud.
When the CCR is large, the application is transmission
intensive, and SM-H can get better results. Fig.6(f) shows
the migration state changes as CCR increases. When the
CCR is 0.1 or 0.5, the migration state of these methods is
very small, since these partitioning methods execute most
of the modules in the edge cloud. When the CCR is 1, 3, 5,
the computation partitioning needs to be adjusted greatly,
and the migration state of SM-H is the least among all the
benchmark algorithms in most cases.

Now we study the effect of the number of network
channels at time t to the performance. We set the number
of channels at time t-1 to 3. The number of channels at time
t is set to 1, 2, 4, 5, 6, 7 respectively. Fig.6(g) shows that the
SM-H has much better performance when the number of
channels is 1 or 2. However, when the number of channels
gets large, most modules will be executed on the edge
cloud and thus SM-H almost has the same make-span with
the other algorithms. It is also shown in Fig.6(h) that the
migration state of SM-H is not always the least, especially
when the number of channels is greater than 2. This is
because when the network has much more bandwidth, SM-
H will minimize the make-span by adjusting a small number
more of stateful modules.

Fig.6(i) shows the relationship between the make-span
and the ratio of the average size of the state to the average
data transmission size. We set the average data transmission
size as 2.66MB. The average size of the state is set as 0.67MB,
1.33MB, 2.66MB, 5.32MB, 10.64MB, 21.28MB, respectively.
We can see that the make-span of Re-partitioning continues
to increase as the ratio gets greater because it does not
consider the overhead of state migration. Nevertheless, the
make-span of the other algorithms is not affected much by
the ratio. Fig.6(j) shows how this ratio affects the migration
state. When the ratio increases from 1:4 to 2:1, the migration
state gradually increases. However, when the ratio increases
from 2:1 to 8:1, the migration state decreases. It is because
when the state is relatively small, we can reduce the make-
span by adjusting some more stateful modules. On the other
hand, stateful modules will not be adjusted when the state
is too large.

Fig.6(k) and Fig.6(l) presents how the performance
changes as the proportion of stateful modules increases. We
set the proportion of stateful modules as 10%, 20%, 40%,
50%, 80%, and 100%, respectively. We can see in Fig. 6(k)
that SM-H achieves the best performance in make-span.
In fact, the changes in make-span of all algorithms are
negligible except the Re-partitioning approach. In contrast,
the volume of migration state increases significantly when
the proportion increases as shown in Fig. 6(l).
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Fig. 6. Numerical evaluation results of the one-shot algorithms

TABLE 3
Parameters for ∆ t-steps look ahead

Parameters Values
The number of time slots ∆t 10
The range of channels number at each time slot [1, 5]

The number of modules n 40
The average indegree 3
The network bandwidth B 2MBps
The proportion of stateful modules 50%

CCR 1

4.2 Evaluations of the online solutions

4.2.1 Environment Setting

We still use the same applications in previous simulations,
in which the number of modules is n=40 and the average
indegree is set to 3. We set the network bandwidth of each
channel to 3MBps for simplicity. We set CCR to 1. The
proportion of stateful modules is 50%. The number of time
slots is set to 10 and the range of channel number randomly
generated at each time slot is set to [1, 5]. Table 3 shows the
default parameters setting for the ∆t-steps look ahead.

We compare the proposed RSM-H with three benchmark
methods: Re-partitioning, SM-H, and Sequential Adjust-
ment Online (SAO). The Re-partitioning and SM-H bench-
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Fig. 7. Impact of ∆t on make-span and migration state

mark algorithms are identical to their one shot problem ver-
sion described in Section 3.2, while SAO is slightly revised
from the Sequential Adjustment for the online scenario.
Specifically, after calculating the initial solution by using
SM-H, we orderly adjust each module at each time slot for
just one round. The adjustment criterion is that whether the
decrease on average make-span for ∆t time slots is bigger
than 0 after adjusting the execution position of the module.
This method takes the global optimization for ∆t time slots
into consideration. It does not take into account the priority
that the module is adjusted and the condition for ending the
adjustment.
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4.2.2 Evaluation Results
We simulate the proposed RSM-H and compare with the
benchmark algorithms under various ∆t , i.e., ∆t=2, 4, 5, 6,
8, 10. Our purpose is to minimize the average completion
time of future ∆t time slots. Fig.7(a) describes the relation-
ship between the average make-span and the number of
time slots. Re-partitioning has the worst performance, since
it does not take the state migration overhead into considera-
tion. The network congestion leads to a tremendous increase
in make-span. Because RSM-H and Sequential Adjustment
Online are further optimized based on the initial solution
SM-H, the make-span obtained by RSM-H and SAO are
better than SM-H. Compared to SAO, RSM-H considers
the adjustment priority of modules further, so it has better
performance. Fig.7(b) shows how state migration changes
when the number of time slots increases. The migration state
of RSM-H and Sequential Adjustment is larger than SM-
H. This is because RSM-H and SAO will further selectively
adjust some stateful modules to minimize the average com-
pletion time. Overall, RSM-H outperforms the benchmark
algorithms in terms of alleviating the network congestion
and minimizing the make-span by selectively migrating
state.

4.3 Discussion of the evaluations

To evaluate the proposed approach for a scheduling prob-
lem, normally in the experiment we need to emulate the
workloads and the compute / network resources that cap-
tures the IoT features. These features include the network
dynamic, frequent node failures and disconnections. So
far, the model in our paper only considers the feature of
network dynamic, i.e., the network bandwidth between the
model devices and edge cloud can frequently change with
time, while the node failures and network disconnection
are not modeled in this paper. These features affect the
reliability of the partitioning schemes. In our on-going work
regarding this topic, we focus on the reliable computation
partitioning for stateful streaming application. The solutions
and results for solving the issue of node failures and discon-
nections as suggested by the reviewer will be reported in
future.

The make-span of our proposed SM-H algorithm is
reduced by 9.09% on average over Sequential Adjustment,
and 9.10% on average over GA. The performance increase is
measured by averaging the results in more than ten exper-
iments, where the parameters in the environment settings
such as the size of application graph, the state size, CCR
and etc differ in each experiment. As shown in Fig.6, under
particular settings, i.e., the application size is great and
the state size is large, SM-H can reduce the make-span by
more than 25% compared with SA. Besides the performance
increase in terms of make-span, another benefits of SH-M
is that it can reduce the state transmission cost than the
benchmark methods, which is meaningful and beneficial in
some cases where the network resources of the connections
between the end device and edge server is very limited.

The make-span of the RSMH is reduced by 1.23% on
average compared to Sequential Adjustment Online (SAO),
and by 6.54% on average with respect to SM-H. The reason
why the performance of RSM-H and SAO is similar is

that both of them use the method of score-based module
scheduling, which is first proposed in our paper. Compared
with SAO, RSM-H is further optimized by considering the
adjustment priority of the modules. However, the time
complexity increases as the number of iterations increases.
In our on-going work, we attempt to leverage the GNN and
reinforcement learning to predict the adjustment score of the
module, aiming to improve the performance of RSM-H. This
results will be reported in our future work. Nevertheless,
the value of RSM-H is that it still provides a novel solution
framework. Through increasing the algorithm iteration and
meanwhile reducing the complexity, solutions based RSM-H
framework can further greatly optimize the performance.

5 RELATED WORKS

This paper is most related to the computation partitioning
and task scheduling in dynamic edge cloud environments.
Then we introduce the related works as follows.

Computation partitioning is the widely used technique
to solve the resource poverty problem of mobile devices
in edge cloud environments. Some earliest works consider
the single user computation partitioning problem, which is
to decide for a single user which parts of an application
should be executed locally and which parts are executed
remotely. Rich Wolski [14] proposed a scheduler for making
computation offloading decisions in computational grid set-
tings and formulated the scheduling problem as a statistical
decision problem that can either be treated ”classically” or
using a Bayesian approach. Cai Wei et al [16] presented a
decomposed cloud gaming platform which supports flexible
migrations of gaming components between the cloud server
and the players’ terminals. Chen Xu et al [17] proposed a
comprehensive framework aiming at provisioning flexible
on-demand mobile-edge cloud service. These works [20]
[21] support the application partitioning in the dynamic
network environment. Yang et al [4] proposed a framework
for partitioning and execution of data stream applications
in mobile cloud computing, which is the first work to
propose a framework to provide runtime support for the
dynamic computation partitioning and execution of data
stream applications. When jointly considering the compu-
tation partitioning and the workload scheduling within the
cloud, the multi-user computation partitioning model has
been studied recently [15] [18]. The problem is to solve the
issue arising from the competition among multiple users for
the resources in the cloud. Chen et al [22] studied a multi-
user computation offloading game in case that the cloud has
limited resources.

The related works above consider the partitioning for
stateless data stream applications. Our paper is novel in the
study of the problem of partitioning the stateful data stream
applications.

Previous works that involves state migration are also
important references to our work. First of all, the state is
also mentioned in MapReduce [29]. R. Castro Fernandez
[23] discussed the challenges encountered by the SPS system
in scaling out on demand and fault tolerance. And the
checkpoint method is used to realize state backup and mi-
gration. Moreover, the stateful operator is join or aggregate
in MapReduce. M. Shah [24] proposed Flux to enable state
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partitioning and dataflow routing in MapReduce while state
migration overhead is not considered. Y. Zhu [25] studied
the dynamic plan migration problem for continuous stateful
queries in MapReduce. And two online plan migration
strategies are proposed to address the problem of migrating
query plans that contain stateful operators, such as joins.
However, it is different from the computation partitioning
problem in dynamic edge cloud environments. N R. Kat-
sipoulakis [26] presented a new model for stream partition-
ing which considers tuple imbalance and aggregation cost
for stateful operations. Nevertheless, that work doesn’t take
the online re-configuration and state migration overhead
into account.

Another related area is the parallel and distributed com-
puting. List-based task scheduling heuristic for data stream
applications has been proposed in [30] [31] with high per-
formance and low complexity. Unlike list-based scheduling
heuristics, clustering-based scheduling heuristics could be
applied in heterogeneous systems [32] [33]. The relevant
work to our proposed approach is the Data Ready Time
(DRT) based method [34], where DRT means the latest
arrival time of all its precedent data flows. However, these
classic scheduling heuristics do not consider the partitioning
for stateful applications in dynamic edge environments. In
contrast, our proposed solutions aim to minimize the make-
span with considering the state migration overhead when
edge network environments change.

6 CONCLUSION

In this paper, we study the computation partitioning prob-
lem of stateful data stream applications in dynamic edge
cloud environments. We developed an efficient heuristic,
named by Score Matrix-based Heuristic (SM-H), to solve the
problem. The algorithm takes the reduction of make-span
after updating the module’s execution position as its score.
It iteratively adjusts the module with the greatest score until
there is no score bigger than zero. On basis of SM-H, we
further develop the Repeated Score Matrix-based Heuristic
(RSM-H) to solve ∆t steps look ahead problem. Through
extensive simulations, we conclude that both SM-H and
RSM-H have better performance than benchmark methods
in terms of make-span through selectively migrating state.
Academically the models and solutions proposed in this pa-
per enrich the scheduling theory and methodologies of the
stateful application tasks. In practice, they can be applied in
edge computing for optimizing the performance of stateful
data stream applications such as augmented reality, object
tracking and so on.

Considering that our research work is an NP-hard prob-
lem, normally it can not be solved with an optimal solution
in polynomial time. We present the performance results of
our heuristic solutions by extensive evaluation. Since the
main purpose of our work is to introduce the computation
partitioning problem in dynamic edge cloud environments,
we have simplified the edge cloud and network model
with only reserving the basic and important properties. We
not only simulate the dynamic edge cloud environments
and generate stateful data flow applications that cover all
required parameters, but also conduct a lot of experiments
to verify sufficient test cases. So our simulations are also

sufficient and valuable. We did not develop the testbed
of edge cloud with the mobile devices, edge servers and
varying networks. In our future work, we will test the
performance of our proposed method on top of the testbed.
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